RAT Selection Games in HetNets

Presented by Oscar Bejarano

Rice University

Ehsan Aryafar

Princeton University

Michael Wang

Princeton University

Alireza K. Haddad

Rice University

Mung Chiang

Princeton University

Motivation

 Key feature of current- and next-gen wireless networks is heterogeneity, or coexistence, of network architectures

 Many mobile devices now are equipped with multiple Radio Access Technologies (RATs) (e.g. 3G/4G, 802.11)

 Devices can choose to connect to specific access technologies

Central Question

With all of these different choices of RATs, one needs to ask the question:

How should a user select the best access network at any given time?

Prior Work

- Heterogeneous Network Selection with Network Assistance
 - S. Deb, et al., ('11), and Coucheney, et al., ('09)
- Heterogeneous Network Selection with a centralized controller
 - Ibrahim, et al., ('09), and Ye, et al., ('12)
- Congestion Games and Network Selection (e.g., single type of throughput sharing)
 - Rosenthal ('72), and Even-Dar, et al., ('07)

We present an algorithm that addresses the access network selection problem from a fully-distributed approach

Network Model

- Heterogeneous wireless environment
- User-specific set of RATs
- Multiple BSs modeled as multiple RATs
- Each user uses 1 RAT at a time

Fig. 1. An example heterogeneous network.

Throughput Models

Class-1

User throughput depends on the rates of all users on that network (User *i*, BS *k*).

$$\omega_{i,k} = f_k(R_{1,k}, R_{2,k}, \dots, R_{n_k,k})$$

$$\forall i \in N_k$$

e.g., 802.11 DCF

$$\omega_{i,k} = \frac{L}{\sum_{j \in N_k} \frac{L}{R_{j,k}}} \quad \forall i \in N_k$$

Class-2

User throughput depends only on the number of users on that network (User i, BS k).

$$\omega_{i,k} = R_{i,k} \times f_k(n_k)$$

$$\forall i \in N_k$$

e.g., Time-Fair TDMA MAC

$$\omega_{i,k} = \frac{R_{i,k}}{n_k} \qquad \forall i \in N_k$$

RAT Selection Game + Nash Equilibrium

Non-Cooperative Game

Nash Equilibrium

User goal: Maximize Individual Throughput

Player Set: Set of N

users

Strategy Profile: Set of

RATs chosen by the

users $\sigma = (\sigma_1, \sigma_2, ..., \sigma_N)$

Strategy profile σ is at "Nash Equilibrium" if each chosen strategy σ_i is the best for each player given the other σ_i

Improvement Path

- A Path is the sequence of strategy profiles in which each subsequent profile differs in only one coordinate
- An Improvement Path
 is a path in which the
 unique deviator in each
 step strictly increases
 its throughput

Distributed RAT Selection Algorithm

To switch from RAT k to kl':

- Expected gain must exceed threshold n
 - Exceed for at least **switching frequency** T timesteps
- Randomization p
 - similar to binary exponential backoff
- Hysteresis h
 - prevent inter-Class oscillations

Randomization **P** - Single-User Arrival/ Departure

 Different users can occasionally join and/or leave a single BS concurrently

 Randomization parameter p forces such events to occur infrequently and diminish rapidly with network congestion

Single-Class RAT Selection Games

Theorem 1:

Class-1 RAT selection games converge to a Nash Equilibrium.

Proof: See pg. 4.

Theorem 2:

Class-2 RAT selection games converge to a Nash Equilibrium.

Proof: See pg. 4.

Mixed-Class RAT Selection Games

 Infinite Improvement Paths may exist for a Mixed-Class RAT Selection Game

Example:

$$R \downarrow 1 = (7.2, 9, 10.1, 0)$$

 $R \downarrow 2 = (0, 48, 23.4, 9)$

RATs {b,d} are Class-1 RATs {a,c} are Class-2

Rates chosen from 802.11a for Class-1 Rates chosen from 3G HSDPA for Calss-2

BS	а	b	С	d
User RAT Selection and Trajectory	1	2	ф	ф
	ф	1, 2	ф	ф
	ф	1_	ф	2
	ф	ф	1	2
	ф	ф	1, 2	ф
	1	φ.	. 2	ф
	1	2	ф	ф

Transition Inequality

$$R_{1,a} < (\frac{1}{R_{1,b}} + \frac{1}{R_{2,b}})^{(-1)}$$

$$(\frac{1}{R_{1,b}} + \frac{1}{R_{2,b}})^{(-1)} < R_{2,d}$$

$$R_{1,b} < R_{1,c}$$

$$R_{2,d} < \frac{R_{2,c}}{2}$$

$$\frac{R_{1,c}}{2} < R_{1,a}$$

$$R_{2,c} < R_{2,b}$$

Mixed-Class Convergence with Hysteresis

Theorem 3:

Mixed-Class RAT selection games, with hysteresis policy, converge to an equilibrium.

Class-1 BSs

Proof: See pg. 6.

- Guarantees convergence for RAT selection games with many different types of RATs
- Hysteresis prevents the existence of an infinite improvement path

Definitions

Pareto-Domination

Let G be a game with a set of N players. We say a strategy profile σ' **Pareto-dominates** strategy profile σ if it holds that

$$\forall i \in N : \omega_{i,\sigma_i} \ge \omega_{i,\sigma_i}$$

Average Pareto-Efficiency Gain

Let G be a game with N players. Let σ' denote a strategy profile that Pareto-dominates strategy profile σ . The average Pareto-efficiency gain of σ' to σ is

$$\frac{\sum_{i=1}^{N} \frac{\omega_{i,\sigma'_{i}}}{\omega_{i,\sigma_{i}}}}{N}$$

Pareto-Efficiency for Class-1

Theorem 4:

Let G be a Class-1 RAT selection game with N users.

σ^P: Pareto-Optimal strategy profile

σⁿ: Nash Profile

 $\Upsilon=R_{max}/R_{min}$: Ratio between max and min rates across all users

Then:

- 1) G has Pareto-optimal Nash Equilibrium,
- 2) The average Pareto-efficiency gain of σ^P to σ^n can become unbounded as $\Upsilon \rightarrow \infty$

Proof: See page 6

Pareto-Efficiency for Class-2

(Time-Fair)

Theorem 6:

For a time-fair RAT selection game with **N** users and **M** BSs, the average Pareto-efficiency gain of σ_p to σ_n is bounded by

$$\begin{cases} 2 & N \leq M \\ \frac{N+M}{N} & \text{if } N \leq M \end{cases}$$

For Proof, see Page 7

Pareto-Efficiency for Class-2

(Proportional-Fair)

Theorem 7:

For a proportional-fair RAT selection game with **N** users and **M** BSs, the average Pareto-efficiency gain of σ_p to σ_n is bounded by

$$\begin{cases} 2 \times (1 + \ln(N)) \\ \frac{N+M}{N} \times (1 + \ln(N)) \end{cases} \quad \text{if} \quad N \le M \\ N > M$$

For Proof, see Page 7

Measurement-Driven Simulations

Cellular Statistics

- Measured number of accessible wireless towers, frequencies and type of technology, and received SNR
- 100 randomly-selected locations across three floors of a large university building
- AT&T's Cellular Network

Wi-Fi Statistics

- Measured received SNR, frequencies and technology (802.11a/b/g)
- Same locations as Cellular Statistics

Average Number of Equilibria

- 9-User system with 3
 RATs (2x WiFi and 1x 3G). Number of system states: 39
- Users randomly selected from measurement database
- Equilibria averaged over
 20 realizations

Pareto-Optimality of Equilibria

Num. Pareto/Num.
 non-Pareto similar
 for different values of η

Increasing
 η can
 significantly increase
 number of equilibria

Comparing Throughput Types

Pareto-Efficiency Gain

Pareto-Dominating States

Know that as η
increases, the number
of equilibria increases
rapidly

Summary of Key Results

- Proved convergence to Nash Equilibrium for single-class RAT selection games; same for multiple-class RAT selection games with hysteresis
- Described conditions under which Nash Equilibria are Pareto-Optimal, and quantified average pareto-efficiency gain when not met.
- Showed that average pareto-efficiency gain can be unbounded for Class-1, and tightly bounded by constant approximation for Class-2.

• Described the effects of switching threshold η

Thank you!

earyafar@princeton.edu

Back Up Slides

Effect of User Arrival/Departure on Throughput

Single-User Arrival/Departure

T=200: 1 user departs T=600: 1 user arrives T=400: 1 user arrives T=800: 1 user departs

10 initial users; rates and users randomly chosen from 802.11a and 3G HSDPA

Multi-User Arrival Departure

T=200: 5 users depart T=600: 2 users arrive T=400: 5 users arrive T=800: 3 users depart

10 initial users; rates and users chosen from 802.11a and 3G HSDPA

Fraction of Users Switching RATs

(due to single-user arrival/departure)

Single-User Arrival

Single-User Departure

Departing user chosen randomly
Arriving user's rates randomly chosen from 802.11a and 3G HSDPA

Fraction of Users Switching RATs

(due to multi-user arrival/departure)

Multi-User Arrival

Multi-User Departure

Departing user chosen randomly
Arriving user's rates randomly chosen from 802.11a and 3G HSDPA

Throughput Models

Class-1

User throughput depends on the rates of all users on that network.

$$\omega \downarrow i, k = f \downarrow k (R \downarrow 1, k, R \downarrow 2, k, ..., R \downarrow n \downarrow k, k)$$

 $\forall i \in N \downarrow k$

Class-2

User throughput depends only on the number of users on that network.

$$\omega \downarrow i, k = R \downarrow i, k \times f \downarrow k \ (n \downarrow k)$$
$$\forall i \in N \downarrow k$$

e.g. Time-Fair TDMA MAC $\omega \downarrow i, k = R \downarrow i, k / n \downarrow k$, $\forall i \in N \downarrow k$

e.g. 802.11 DCF
$$\omega \downarrow i, k = L/\sum j \in N \downarrow k \uparrow \text{ } \text{ } L/$$
 $R \downarrow j, k , \forall i \in N \downarrow k$