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Transmit Spatial Diversity

Multiple transmit antennas (antenna array) separated in distance,
transmit redundant signals

Consider:

No Channel State Infomation (CSI) at Transmitter

Orthogonal Space-Time Block Codes (i.e.,Alamouti Scheme)
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For maximal transmit diversity gains,
we require antenna separation difficult to
achieve in mobile devices
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Virtual MISO (vMISO)

|. System Model
|.1. Distributed System

|.2. Single-Antenna Nodes

General Tx Diversity »VMISO/Cooperation
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vMISO Protocol Design
Challenges

Triggering vMISO - Establish a criteria and mechanism .

used to trigger vMISO transmissions, i.e., how and

when! |
I ———— ————

Cooperator/Relay Selection - Select a ¢
neighboring user as cooperator ;
AR ——
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Objective

To develop a comprehensive understanding of vMISO in the

context of WLAN:s:
e Gains for vMISO flow

* [mplications on network graph due to increased spatial
footprint
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Objective

To develop a comprehensive understanding of vMISO in the

context of WLAN:s:
e Gains for vMISO flow

* [mplications on network graph due to increased spatial
footprint

In particular, to provide the understanding
needed to design trigger policies that
maximize throughput performance gains

trigger policies = when should the cooperator be used?
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vMISO Triggers
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|. Method employed to invoke a vYMISO transmission:
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Reactive
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1) Initial transmission - Sender to Receiver

2) Neighboring node overhears transmission

3) If transmission fails, receiver replies with a NACK

4) NACK triggers simultaneous coded retransmission (from Sender and
Cooperator)

Reacts to Failure
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vMISO Triggers

|. Method employed to invoke a vYMISO transmission:

|.1. Reactive (On-Demand) - Reacts to a failed
packet transmission

|.2. Proactive - Prevent packet failures in
an already known bad channel

2. Trigger policies to identify scenarios in which vMISO
transmissions Yyield a net throughput gain (or loss)
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Proactive

time

) Initial transmission - Sender to Receiver
2) Neighboring node overhears transmission
3) Simultaneous coded retransmission (from Sender and Cooperator)

Prevents Failure
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Proactive
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vMISO Triggers

|. Method employed to invoke a vYMISO transmission:

|.1. Reactive (On-Demand) - Reacts to a failed
packet transmission

|.2. Proactive - Prevent packet failures in an already
known bad channel

We wiill show results only for Reactive

2. Trigger policies to identify scenarios in which vMISO
transmissions Yyield a net throughput gain (or loss)

% RICE

Thursday, April 11, 2013
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Trigger Policies in WLANSs
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= * Interference Range
Cooperator Footprint
=3 Intended Data Tx

d @_,
2 ()—()

Information Asymmetry

|dentify when the cooperator should or should not be used
% RICE

20

Thursday, April 11, 2013



Trigger Policies in WLANSs

= == Interference Range
Cooperator Footprint
=3 Intended Data Tx

—, Collisions

O

Information Asymmetry

|dentify when the cooperator should or should not be used
% RICE

20

Thursday, April 11, 2013



Trigger Policies in WLANSs

= == Interference Range
Cooperator Footprint
=3 Intended Data Tx

— Collisions

Information Asymmetry

|dentify when the cooperator should or should not be used
% RICE

20

Thursday, April 11, 2013



Trigger Policies in WLANSs
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Transmissions Over Shorter/Higher Quality Links
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Trigger Policies in WLANSs
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Evaluation Roadmap

® System Implementation

® Comprehensive vMISO
Evaluation

® Atomic Scenarios
(Fundamental Small-
Scale Topologies)

® Llarge-Scale
Topologies (up to 20
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System Implementation
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Combination of over-the-air
experiments (small topologies)
and simulation (large topologies)

e WARP Platform [1] and

WARPnRet - Clean slate MAC
and PHY

® Simulations in NS-2

Performance Metric: Throughput
(bps)

Protocol Implementation:
|dealized NACK-based

(benchmarking) vs practical
NACK-based scheme.
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vMISO in Large-Scale
Scenarios
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vMISO in Large-Scale
Scenarios

|. Aggregate effects observed in atomic scenarios

2. Complex interactions between nodes (specially
between cooperator and neighboring nodes/flows)
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vMISO in Large-Scale Scenarios

—— Perfect NACK NvMISO

on
T

® 2 to 20 flow networks, random
position, static topology

N
T

® Aggregate effects due to the
cooperator (increased transmission
footprint) hinder gains attained by

vMISO

N
T

Throughput Gain (Mbps)

® @Gains decrease from 47% (2 flows)
to approximately 0% (20 flows)

o

2 Flows 5 Flows 10 Flows |5 Flows 20 Flows

% RICE
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vMISO in Large-Scale Scenarios
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VMISO in Large-ScaIe Scenarlos

| Establish a Network |
Wide Trigger Policy |
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VMISO in Large-ScaIe Scenarlos

How do we diminish ,
i negative effects of vMISO? |

| Establish a Network |
Wide Trigger Policy |

| e.g., Local Approach: only

| flows achieving Y% gains |
tallowed to trigger vMISO

&

RICE
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vMISO in Large-Scale Scenarios

6 S . —
- Peorfect NACK NVMISO
—— NvMISO

5L | =====Trigger Threshold Policy |

»

N

Throughput Gain (Mbps)

T | .

o

2 Flows b5 Flows 10Flows |5 Flows 20 Flows

% RICE
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vMISO in Large-Scale Scenarios

6

—*— Perfeét NACK NVMISO

e Network-wide trigger threshold | SO Pl
policy: o e N R nm———L - -

»

N

Throughput Gain (Mbps)

T | .

o

2 Flows b5 Flows 10Flows |5 Flows 20 Flows

% RICE
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%arbitrarily chosen)

N

Throughput Gain (Mbps)

T | .

o

2 Flows b5 Flows 10Flows |5 Flows 20 Flows

% RICE

32

Thursday, April 11, 2013



vMISO in Large-Scale Scenarios

6

| | —— Perfect NACK NvMISO
* Network-wide trigger threshold . | —6— NvMISO

. | === Trigger Threshold Policy ||
policy: — —

¢ | ocal Decisions

»

* Only flows achieving 10+%

ains allowed to trigger vMISO
%arbitrarily chosen)

N

* Why it works?

Throughput Gain (Mbps)

T | .

o

2 Flows b5 Flows 10Flows |5 Flows 20 Flows

% RICE

32

Thursday, April 11, 2013
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* Reduce Footprint oL . .
2 Flows b5 Flows 10Flows |5 Flows 20 Flows
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vMISO in Large-Scale Scenarios

6

—*— Perfeét NACK NVMISO

e Network-wide trigger threshold . | SO Pl
policy: | R R m— - =

¢ | ocal Decisions

»

* Only flows achieving 10+%

ains allowed to trigger vMISO
%arbitrarily chosen)

N

* Why it works?

Throughput Gain (Mbps)

* Reduce aggressiveness

L

2 Flows b5 Flows 10Flows |5 Flows 20 Flows

* Reduce Footprint 0

Even a simple policy can be highly efficient in large networks
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Conclusion

® Objective: To develop a comprehensive understanding of
vMISO in the context of WLANSs that, leads to the design of
trigger policies that maximize throughput performance gains

® Demonstrated that cooperation is able to achieve very high
gains at atomic level scenarios

® However, the magnitude of these gains decrease at network-
scale scenarios

® Nonetheless, simple trigger policies can have a significant
positive impact on the performance of vMISO

% RICE
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Thank You!

% RICE
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