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How do we exploit this independence among different paths?
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Transmit Spatial Diversity
• Multiple transmit antennas (antenna array) separated in distance, 

transmit redundant signals

• Consider: 

• No Channel State Infomation (CSI) at Transmitter

• Orthogonal Space-Time Block Codes (i.e., Alamouti Scheme)
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For maximal transmit diversity gains,
we require antenna separation difficult to 

achieve in mobile devices 
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Virtual MISO (vMISO)

TX RX

vMISO/CooperationGeneral Tx Diversity

1. System Model 

1.1. Distributed System

1.2. Single-Antenna Nodes 
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1. System Model 
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Cooperator/Relay Selection - Select a 
neighboring user as cooperator
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vMISO Protocol Design 
Challenges

Triggering vMISO - Establish a criteria and mechanism 
used to trigger vMISO transmissions, i.e., how and 
when?
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To develop a comprehensive understanding of vMISO in the 
context of WLANs: 

• Gains for vMISO flow
• Implications on network graph due to increased spatial 

footprint
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To develop a comprehensive understanding of vMISO in the 
context of WLANs: 

• Gains for vMISO flow
• Implications on network graph due to increased spatial 

footprint

trigger policies      when should the cooperator be used?

In particular, to provide the understanding 
needed to design trigger policies that 

maximize throughput performance gains
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vMISO Triggers
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vMISO Triggers

1. Method employed to invoke a vMISO transmission:

1.1. Reactive (On-Demand) - Reacts to a failed 
packet transmission

1.2. Proactive - Prevent packet failures in 
an already known bad channel

2. Trigger policies to identify scenarios in which vMISO 
transmissions yield a net throughput gain (or loss)
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vMISO Triggers
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Trigger Policies in WLANs

Identify when the cooperator should or should not be used
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Evaluation Roadmap
• System Implementation

• Comprehensive vMISO 
Evaluation

• Atomic Scenarios 
(Fundamental Small-
Scale Topologies)

• Large-Scale 
Topologies (up to 20 
flows)
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System Implementation
• Combination of over-the-air 

experiments (small topologies) 
and simulation (large topologies)

• WARP Platform [1] and 
WARPnet - Clean slate MAC 
and PHY

• Simulations in NS-2

• Performance Metric: Throughput 
(bps)

• Protocol Implementation: 
Idealized NACK-based 
(benchmarking) vs practical 
NACK-based scheme.
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control station issues an Ethernet broadcast to the boards
at the beginning of each experiment, which is used to reset
their clock. We verified that our technique achieves clock
offsets below a few micro-seconds.

Testbed Setup. We conduct our experiments on a five-
node indoor testbed. In order to verify the robustness of MI-
DAS to different node densities, we alternately deployed our
nodes in different topological configurations. As a reference
for the reader, we list the locations used in our topologies in
decreasing order of density, with reference to Figure 2: in the
single-hop topology S1 all nodes are next to each other close
to position b; in the multi-hop topology M1 the nodes are
located in the positions {a, b, c, d, e}; in the multi-hop M2
the nodes are in positions {a, b, c, d, f}. Each board trans-
mits 1000-byte data packets, with constant inter-packet time
whose value depends on the experiment. Each experiment
run lasts 10 seconds and, where not differently specified, the
reported results are cumulative over 10 runs.

Figure 2: Layout of our testbed deployment.

5.2 Testbed Results
Experimental Methodology. We evaluate the accu-

racy of the inference tool, by assessing its predictions in dif-
ferent testbed and simulation settings. At the end of each
experiment performed, we collect a single report from each
node including its transmission time and busy time, which
represent the parameters T and B in Problem (5). We com-
pute the optimal solution of Problem (5) corresponding to
the collected values using the Matlab solver fmincon. We
establish the accuracy of the Activity Share inference by
comparing our estimations with the ground truth provided
by an omniscent centralized approach based on the collection
of detailed traces (see the Validation Tool above).

Sensitivity to Network Density. The network density
influences the information in the node reports as follows.
In low density conditions, the busy time reports constrain
the overlapping transmissions of a limited set of neighboring
nodes (see Equation (3)), thus providing redundant infor-
mation. For instance, in networks where each node has one
neighbor, the busy time of a node corresponds to the trans-
mission time of the sole neighbor, which is also reported by
the neighbor itself. However, in high density conditions,
more combinations of neighbor overlapping transmissions
can produce the same busy time value, thus increasing the
complexity of the decomposition of the busy time in its Ac-
tivity Share components. We investigate the effect of net-
work density on the Activity Share accuracy by running our
experiments on the three different topologies of our testbed.

Figure 3 shows the CDF of the normalized relative error
of the Activity Share estimation, where the relative error
committed in a state is weighted by the Activity Share of
that state, i.e., proportionally to the duration. The X-axis

indicates the normalized relative error committed, while the
Y-axis is in (non-dimensional) time ratio units. For instance,
a point in (0.1, 0.7) indicates that the network spends 70% of
the time in states where our inference tool commits an error
of 10% or less. All plots show that our inference technique
is extremely accurate under all density conditions; further,
S1 is the most accurate solution, while the M1 plot mostly
dominates M2. The respective average normalized relative
errors, i.e., the relative error committed in a randomly sam-
pled instant, are 4.6% for S1, 9.9% for M1, and 11.5% for
M2. These results are obtained for broadcast packets; how-
ever, similar values have been obtained using one-hop uni-
cast flows, i.e., 4.8% for S1, 6.1% for M1, and 7.7% for
M2. Figure 4 shows the scatterplot of the predicted and
actual Activity Share collected for one run of scenario M2.
Each value k on the X-axis denotes a network state !D cor-
responding to the binary representation of k (once mapped
the bit indices 0 through 4 to the nodes positioned in a, b,
c, d, and f , respectively, e.g., k = 20 maps to the network
state {10100}, i.e., where only nodes f and c transmit). The
graph shows an excellent agreement between the inferred Ac-
tivity Share and the actual Activity Share obtained from the
traces. Further, we can observe that a number of states have
very short durations: these typically include simultaneous
transmissions of nodes in carrier sensing range, which occur
less frequently than the others. We conclude that network
density increases the accuracy of the Activity Share inference
tool by reducing the amount of redundant information.

Sensitivity to Network Density is revisited in the simula-
tions in Section 5.3 for larger topologies.

Throughput Prediction Accuracy. We evaluate the
accuracy of the model in Section 4, by comparing its pre-
dictions with testbed experiments in the topology M1 with
single-hop flows {a → c; b → a; c → a; d → b; e → c}. For
each set of experiments, we consider a target under-served
link whose traffic is fully backlogged, and we perform a refer-
ence run, measuring the throughput of the target link when
all others transmit at 900 kbps rate. At the end of the
reference run, we collect the node reports, infer the Activ-
ity Share, and predict the throughput increase of the tar-
get link obtained by rate-limiting any of the four conflicting
nodes of a fixed quantity (400 kbps). Then, we perform four
additional runs on the testbed, alternately rate-limiting a
different conflicting node for the same 400 kbps quantity,
and we record the actual throughput gain of the target link.
Finally, we contrast the throughput gain predicted by our
model with the actual gain obtained in the testbed.

Figure 5 shows the CDF of the relative error for all pos-
sible target link/conflicting node pairs for 10 repetitions of
our scenario (200 predictions in total). The long tail of the
distribution is due to few combinations for which the actual
gain is very small (on the order of a few kbps); in those cases,
even an error of few packets is decisive in relative terms. In
terms of the absolute error, the predicted throughput gain
is on average less than 80 kbps different from the actual
throughput gain (i.e., 20% of the rate-limiting value of 400
kbps, or around 30% of the average actual throughput gain
of approximately 240 kbps).

Additional Results. In [13] we present several addi-
tional findings, including: 1) The accuracy of the inference
tool does not decrease for unsaturated and low traffic loads.
We ran a set of experiments with topology M1, where we
increased the traffic load of the nodes from 400 kbps to fully

control station issues an Ethernet broadcast to the boards
at the beginning of each experiment, which is used to reset
their clock. We verified that our technique achieves clock
offsets below a few micro-seconds.

Testbed Setup. We conduct our experiments on a five-
node indoor testbed. In order to verify the robustness of MI-
DAS to different node densities, we alternately deployed our
nodes in different topological configurations. As a reference
for the reader, we list the locations used in our topologies in
decreasing order of density, with reference to Figure 2: in the
single-hop topology S1 all nodes are next to each other close
to position b; in the multi-hop topology M1 the nodes are
located in the positions {a, b, c, d, e}; in the multi-hop M2
the nodes are in positions {a, b, c, d, f}. Each board trans-
mits 1000-byte data packets, with constant inter-packet time
whose value depends on the experiment. Each experiment
run lasts 10 seconds and, where not differently specified, the
reported results are cumulative over 10 runs.

Figure 2: Layout of our testbed deployment.

5.2 Testbed Results
Experimental Methodology. We evaluate the accu-

racy of the inference tool, by assessing its predictions in dif-
ferent testbed and simulation settings. At the end of each
experiment performed, we collect a single report from each
node including its transmission time and busy time, which
represent the parameters T and B in Problem (5). We com-
pute the optimal solution of Problem (5) corresponding to
the collected values using the Matlab solver fmincon. We
establish the accuracy of the Activity Share inference by
comparing our estimations with the ground truth provided
by an omniscent centralized approach based on the collection
of detailed traces (see the Validation Tool above).

Sensitivity to Network Density. The network density
influences the information in the node reports as follows.
In low density conditions, the busy time reports constrain
the overlapping transmissions of a limited set of neighboring
nodes (see Equation (3)), thus providing redundant infor-
mation. For instance, in networks where each node has one
neighbor, the busy time of a node corresponds to the trans-
mission time of the sole neighbor, which is also reported by
the neighbor itself. However, in high density conditions,
more combinations of neighbor overlapping transmissions
can produce the same busy time value, thus increasing the
complexity of the decomposition of the busy time in its Ac-
tivity Share components. We investigate the effect of net-
work density on the Activity Share accuracy by running our
experiments on the three different topologies of our testbed.

Figure 3 shows the CDF of the normalized relative error
of the Activity Share estimation, where the relative error
committed in a state is weighted by the Activity Share of
that state, i.e., proportionally to the duration. The X-axis

indicates the normalized relative error committed, while the
Y-axis is in (non-dimensional) time ratio units. For instance,
a point in (0.1, 0.7) indicates that the network spends 70% of
the time in states where our inference tool commits an error
of 10% or less. All plots show that our inference technique
is extremely accurate under all density conditions; further,
S1 is the most accurate solution, while the M1 plot mostly
dominates M2. The respective average normalized relative
errors, i.e., the relative error committed in a randomly sam-
pled instant, are 4.6% for S1, 9.9% for M1, and 11.5% for
M2. These results are obtained for broadcast packets; how-
ever, similar values have been obtained using one-hop uni-
cast flows, i.e., 4.8% for S1, 6.1% for M1, and 7.7% for
M2. Figure 4 shows the scatterplot of the predicted and
actual Activity Share collected for one run of scenario M2.
Each value k on the X-axis denotes a network state !D cor-
responding to the binary representation of k (once mapped
the bit indices 0 through 4 to the nodes positioned in a, b,
c, d, and f , respectively, e.g., k = 20 maps to the network
state {10100}, i.e., where only nodes f and c transmit). The
graph shows an excellent agreement between the inferred Ac-
tivity Share and the actual Activity Share obtained from the
traces. Further, we can observe that a number of states have
very short durations: these typically include simultaneous
transmissions of nodes in carrier sensing range, which occur
less frequently than the others. We conclude that network
density increases the accuracy of the Activity Share inference
tool by reducing the amount of redundant information.

Sensitivity to Network Density is revisited in the simula-
tions in Section 5.3 for larger topologies.

Throughput Prediction Accuracy. We evaluate the
accuracy of the model in Section 4, by comparing its pre-
dictions with testbed experiments in the topology M1 with
single-hop flows {a → c; b → a; c → a; d → b; e → c}. For
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link whose traffic is fully backlogged, and we perform a refer-
ence run, measuring the throughput of the target link when
all others transmit at 900 kbps rate. At the end of the
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get link obtained by rate-limiting any of the four conflicting
nodes of a fixed quantity (400 kbps). Then, we perform four
additional runs on the testbed, alternately rate-limiting a
different conflicting node for the same 400 kbps quantity,
and we record the actual throughput gain of the target link.
Finally, we contrast the throughput gain predicted by our
model with the actual gain obtained in the testbed.

Figure 5 shows the CDF of the relative error for all pos-
sible target link/conflicting node pairs for 10 repetitions of
our scenario (200 predictions in total). The long tail of the
distribution is due to few combinations for which the actual
gain is very small (on the order of a few kbps); in those cases,
even an error of few packets is decisive in relative terms. In
terms of the absolute error, the predicted throughput gain
is on average less than 80 kbps different from the actual
throughput gain (i.e., 20% of the rate-limiting value of 400
kbps, or around 30% of the average actual throughput gain
of approximately 240 kbps).

Additional Results. In [13] we present several addi-
tional findings, including: 1) The accuracy of the inference
tool does not decrease for unsaturated and low traffic loads.
We ran a set of experiments with topology M1, where we
increased the traffic load of the nodes from 400 kbps to fully

control station issues an Ethernet broadcast to the boards
at the beginning of each experiment, which is used to reset
their clock. We verified that our technique achieves clock
offsets below a few micro-seconds.

Testbed Setup. We conduct our experiments on a five-
node indoor testbed. In order to verify the robustness of MI-
DAS to different node densities, we alternately deployed our
nodes in different topological configurations. As a reference
for the reader, we list the locations used in our topologies in
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mits 1000-byte data packets, with constant inter-packet time
whose value depends on the experiment. Each experiment
run lasts 10 seconds and, where not differently specified, the
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5.2 Testbed Results
Experimental Methodology. We evaluate the accu-

racy of the inference tool, by assessing its predictions in dif-
ferent testbed and simulation settings. At the end of each
experiment performed, we collect a single report from each
node including its transmission time and busy time, which
represent the parameters T and B in Problem (5). We com-
pute the optimal solution of Problem (5) corresponding to
the collected values using the Matlab solver fmincon. We
establish the accuracy of the Activity Share inference by
comparing our estimations with the ground truth provided
by an omniscent centralized approach based on the collection
of detailed traces (see the Validation Tool above).

Sensitivity to Network Density. The network density
influences the information in the node reports as follows.
In low density conditions, the busy time reports constrain
the overlapping transmissions of a limited set of neighboring
nodes (see Equation (3)), thus providing redundant infor-
mation. For instance, in networks where each node has one
neighbor, the busy time of a node corresponds to the trans-
mission time of the sole neighbor, which is also reported by
the neighbor itself. However, in high density conditions,
more combinations of neighbor overlapping transmissions
can produce the same busy time value, thus increasing the
complexity of the decomposition of the busy time in its Ac-
tivity Share components. We investigate the effect of net-
work density on the Activity Share accuracy by running our
experiments on the three different topologies of our testbed.

Figure 3 shows the CDF of the normalized relative error
of the Activity Share estimation, where the relative error
committed in a state is weighted by the Activity Share of
that state, i.e., proportionally to the duration. The X-axis

indicates the normalized relative error committed, while the
Y-axis is in (non-dimensional) time ratio units. For instance,
a point in (0.1, 0.7) indicates that the network spends 70% of
the time in states where our inference tool commits an error
of 10% or less. All plots show that our inference technique
is extremely accurate under all density conditions; further,
S1 is the most accurate solution, while the M1 plot mostly
dominates M2. The respective average normalized relative
errors, i.e., the relative error committed in a randomly sam-
pled instant, are 4.6% for S1, 9.9% for M1, and 11.5% for
M2. These results are obtained for broadcast packets; how-
ever, similar values have been obtained using one-hop uni-
cast flows, i.e., 4.8% for S1, 6.1% for M1, and 7.7% for
M2. Figure 4 shows the scatterplot of the predicted and
actual Activity Share collected for one run of scenario M2.
Each value k on the X-axis denotes a network state !D cor-
responding to the binary representation of k (once mapped
the bit indices 0 through 4 to the nodes positioned in a, b,
c, d, and f , respectively, e.g., k = 20 maps to the network
state {10100}, i.e., where only nodes f and c transmit). The
graph shows an excellent agreement between the inferred Ac-
tivity Share and the actual Activity Share obtained from the
traces. Further, we can observe that a number of states have
very short durations: these typically include simultaneous
transmissions of nodes in carrier sensing range, which occur
less frequently than the others. We conclude that network
density increases the accuracy of the Activity Share inference
tool by reducing the amount of redundant information.

Sensitivity to Network Density is revisited in the simula-
tions in Section 5.3 for larger topologies.

Throughput Prediction Accuracy. We evaluate the
accuracy of the model in Section 4, by comparing its pre-
dictions with testbed experiments in the topology M1 with
single-hop flows {a → c; b → a; c → a; d → b; e → c}. For
each set of experiments, we consider a target under-served
link whose traffic is fully backlogged, and we perform a refer-
ence run, measuring the throughput of the target link when
all others transmit at 900 kbps rate. At the end of the
reference run, we collect the node reports, infer the Activ-
ity Share, and predict the throughput increase of the tar-
get link obtained by rate-limiting any of the four conflicting
nodes of a fixed quantity (400 kbps). Then, we perform four
additional runs on the testbed, alternately rate-limiting a
different conflicting node for the same 400 kbps quantity,
and we record the actual throughput gain of the target link.
Finally, we contrast the throughput gain predicted by our
model with the actual gain obtained in the testbed.

Figure 5 shows the CDF of the relative error for all pos-
sible target link/conflicting node pairs for 10 repetitions of
our scenario (200 predictions in total). The long tail of the
distribution is due to few combinations for which the actual
gain is very small (on the order of a few kbps); in those cases,
even an error of few packets is decisive in relative terms. In
terms of the absolute error, the predicted throughput gain
is on average less than 80 kbps different from the actual
throughput gain (i.e., 20% of the rate-limiting value of 400
kbps, or around 30% of the average actual throughput gain
of approximately 240 kbps).

Additional Results. In [13] we present several addi-
tional findings, including: 1) The accuracy of the inference
tool does not decrease for unsaturated and low traffic loads.
We ran a set of experiments with topology M1, where we
increased the traffic load of the nodes from 400 kbps to fully
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1. Aggregate effects observed in atomic scenarios

2. Complex interactions between nodes (specially 
between cooperator and neighboring nodes/flows) 
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vMISO in Large-Scale Scenarios
•Network-wide trigger threshold 

policy: 

• Local Decisions 

•Only flows achieving 10+% 
gains allowed to trigger vMISO 
(arbitrarily chosen)
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vMISO in Large-Scale Scenarios
•Network-wide trigger threshold 

policy: 

• Local Decisions 

•Only flows achieving 10+% 
gains allowed to trigger vMISO 
(arbitrarily chosen)

•Why it works? 
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vMISO in Large-Scale Scenarios
•Network-wide trigger threshold 

policy: 

• Local Decisions 

•Only flows achieving 10+% 
gains allowed to trigger vMISO 
(arbitrarily chosen)

•Why it works? 

•Reduce aggressiveness
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vMISO in Large-Scale Scenarios
•Network-wide trigger threshold 

policy: 

• Local Decisions 

•Only flows achieving 10+% 
gains allowed to trigger vMISO 
(arbitrarily chosen)

•Why it works? 

•Reduce aggressiveness

•Reduce Footprint
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vMISO in Large-Scale Scenarios
•Network-wide trigger threshold 

policy: 

• Local Decisions 

•Only flows achieving 10+% 
gains allowed to trigger vMISO 
(arbitrarily chosen)

•Why it works? 

•Reduce aggressiveness

•Reduce Footprint
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Conclusion

• Objective: To develop a comprehensive understanding of 
vMISO in the context of WLANs that, leads to the design of 
trigger policies that maximize throughput performance gains

• Demonstrated that cooperation is able to achieve very high 
gains at atomic level scenarios

• However, the magnitude of these gains decrease at network-
scale scenarios

• Nonetheless, simple trigger policies can have a significant 
positive impact on the performance of vMISO
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Thank You!
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