### MUTE: Sounding Inhibition for MU-MIMO WLANs

Oscar Bejarano Rice University

Eugenio Magistretti Rice University

Omer Gurewitz Ben Gurion University Edward W. Knightly Rice University

July 1st, 2014



Bejarano SECON 2014

### Single-Antenna Systems (Downlink)

802.11-Based Networks











### Multi-Antenna Systems (Downlink)

802.11-Based Networks



### Multi-Antenna Systems (Downlink)

802.11-Based Networks



### Multi-Antenna Systems (Downlink)



- Spatial multiplexing
- Simultaneous spatial sharing of medium by multiple users
- Sum capacity scales with  $min(M, \sum N_k)$

#### Similarly to SU-MIMO

Increases spectral efficiency

#### In contrast to SU-MIMO

- As many users as antennas at AP
- Multiplexing gain at AP even with minimal number of antennas in users

M antennas at AP  $N_k$  antennas at user k

AP

Spencer, Q. H., Peel, C. B., Swindlehurst, A. L., & Haardt, M. (2004). An introduction to the multi-user MIMO downlink. *Communications Magazine*, IEEE, 42(10), 60-67.

#### Multi-User MIMO

# Extensive body of literature (theoretical and recent experimental work) has demonstrated vast capacity gains

|  | Large | PHY | gains |
|--|-------|-----|-------|
|--|-------|-----|-------|

| MAC | not | considered |  |
|-----|-----|------------|--|
|     |     |            |  |

#### **Experimental**

**Theoretical** 

| Aryafar'10 |
|------------|
| Rahul'12   |
| Balan' I 2 |
| Shepard'12 |
| Shen'12    |
| Yang' I 3  |
| Zhang'13   |
| Chen'I3    |
|            |

Venkatesan'03 Viswanathan'03 Caire'03 Jindal'04 Spencer'04 Sharif'05 Yoo'06 Gesbert'07 Caire'10

#### The Problem

#### Costly overhead

Bejarano SECON 2014

#### The Problem



Bejarano SECON 2014

#### The Problem

We demonstrate that the costs required to enable MU-MIMO can outweigh the benefits

- Sounding process in current MU-MIMO systems is expensive and inefficient
- MAC enhancements necessary
- Large gap between innovative theoretical tools and protocol design

#### **Our Objective**

To provide a protocol-based framework that guarantees the *benefits* of MU-MIMO outweigh *costs*, with the goal of realizing PHY gains at the system level

## We propose MUTE

# MUTE addresses the issue of overhead associated with channel sounding

- Temporarily inhibits sounding based on channel stability
- Leverages presence of static users and epochs characterized by slowly moving channels
- Best case: MU-MIMO transmissions without preceding channel sounding
- Worst case: Basic 802. | lac behavior

#### Roadmap

- Motivation
- Sounding process in MU-MIMO
- Sounding overhead reduction via sounding inhibition
  - Design of MUTE
  - Evaluation of MUTE
- Conclusion



### IEEE 802. I lac Sounding Timeline





### Null Data Packet: sound users (training sequences)







#### IEEE 802.1 lac Sounding Overhead Analysis

#### We demonstrate sounding overhead has a significant impact on the overall system performance

### IEEE 802.1 lac Sounding Overhead Analysis



Sounding time + Data transmission time

#### Parameters

Maximum subcarrier grouping Minimum quantization bits Packet Size 1500 bytes

Lower-Bound

#### IEEE 802.1 Lac Sounding Overhead Analysis

### No frame aggregation



### IEEE 802. I lac Sounding Overhead Analysis

### 18 kB aggregation



#### Frame Aggregation<sup>†</sup>

Larger packets by aggregating frames to amortize overhead
However, depends on traffic demands, contention, delay and channel stability

K.Tan, et al., "Fine-Grained Channel Access in Wireless LANs." In Proc. of ACM SIGCOMM, 2010.

### IEEE 802.1 Lac Sounding Overhead Analysis

96 kB aggregation



#### Frame Aggregation<sup>†</sup>

Larger packets by aggregating frames to amortize overhead
However, depends on traffic demands, contention, delay and channel stability

K.Tan, et al., "Fine-Grained Channel Access in Wireless LANs." In Proc. of ACM SIGCOMM, 2010.

#### IEEE 802.1 Lac Sounding Overhead Analysis



#### IEEE 802.1 Lac Sounding Overhead Analysis





#### IEEE 802. I lac Sounding Overhead Analysis





Costs can outweigh the benefits

#### Roadmap

- Motivation
- Sounding process in MU-MIMO
- Sounding overhead reduction via sounding inhibition
  - Design of MUTE
  - Evaluation of MUTE
- Conclusion

## Understanding **MUTE**

MUTE evaluates two key tradeoffs

Tradeoff I:

Extensive channel knowledge at the APVS increased sounding overhead

Tradeoff 2:

High channel estimate accuracy VS increased sounding overhead

Tradeoff I:

Extensive channel knowledge at the APVS increased sounding overhead

Leverage User Diversity



\*NOTE: Notice, this correlation happens in signal space

- Sound and serve 2 users (possibly correlated\*), OR
- sound all users and serve the rate maximizing group (orthogonal/semiorthogonal)
- However, prohibitive to sound more than 4 users

User Diversity - Find users with orthogonal/semi-orthogonal channels

#### Topology

- One 4-antenna AP
- 30 single-antenna users



#### Experiment

- Sound N random users (uniform distr.)
- 2) Choose the K users that maximize rate

User Diversity - Find users with orthogonal/semi-orthogonal channels

Topology

One 4-antenna AP

30 single-antenna users

Experiment

- Sound N random users (uniform distr.)
- 2) Choose the K users that maximize rate





User Diversity - Find users with orthogonal/semi-orthogonal channels



Tradeoff 2:

High channel estimate accuracy VS increased sounding overhead

Accuracy - Channel estimates degrade with time, specially in highly mobile environments

VS

Sounding Overhead - Costly to sound every time before a transmission

MUTE strives to use the most accurate information available from as many users as possible while minimizing sounding overhead to guarantee a net throughput gain

However, a fundamental change in traditional systems is needed

#### Sounding Inhibition (MUTE)

Who to sound? Traditional system - sounding user set selection coupled with transmission user set selection

Who to serve?

Traditional system - sounding user set selection coupled with transmission user set selection



Schedule transmissions for 4 users

Traditional system - sounding user set selection coupled with transmission user set selection



Sound all same 4 users

High overhead

Traditional system - sounding user set selection coupled with transmission user set selection



Serve all same 4 users

Poor user grouping

### Sounding Inhibition (MUTE)

In contrast...









#### Therefore, a **decoupled** system:

- Allows the AP to sound only the users that need to be sounded
- Enables the AP to serve only the set of users that maximizes the aggregate rate

## In MUTE, the AP relies on channel statistics to decide which users to sound

#### **Two Empirical Observations**

- Variation in most recent samples provides insights into nearfuture samples (e.g., [1-5])
- Collected samples in static channels degrade similarly with time (e.g., coherence time)

## We enable the AP to assess the tradeoff between predicted channel volatility and rate penalty due to inaccurate CSIT

[1] Shen, Zukang, Jeffrey G. Andrews, and Brian L. Evans. "Short range wireless channel prediction using local information." Signals, Systems and Computers, 2004. Conference Record of the Thirty-Seventh Asilomar Conference on. Vol. 1. IEEE, 2003.

[2] Duel-Hallen, Alexandra. "Fading channel prediction for mobile radio adaptive transmission systems." Proceedings of the IEEE 95.12 (2007): 2299-2313.

[3] Gesbert, David, et al. "Outdoor MIMO wireless channels: Models and performance prediction." Communications, IEEE Transactions on 50.12 (2002): 1926-1934.

[4] Halperin, Daniel, et al. "Predictable 802.11 packet delivery from wireless channel measurements." ACM SIGCOMM Computer Communication Review 41.4 (2011): 159-170.

[5] Phillips, Caleb, Douglas Sicker, and Dirk Grunwald. "A survey of wireless path loss prediction and coverage mapping methods." Communications Surveys & Tutorials, IEEE 15.1 (2013): 255-270.

Two Empirical Observations:

Variation in most recent samples provides insights into near-future samples

Collected samples in static channels degrade similarly with time



In principle, MUTE determines how much the last collected sample is expected to vary

- AP computes magnitude and phase change between each collected sample and selects relevant samples
  - Most recent samples
  - Samples within certain age
- Compute sample variance
- If variance above threshold,
   sound user (per-user threshold)



#### Roadmap

- Motivation
- Sounding process in MU-MIMO
- Sounding overhead reduction via sounding inhibition
  - Design of MUTE
  - Evaluation of MUTE
- Conclusion

#### Our evaluation answers the following question:

Can MUTE strike a balance between overhead suppression and rate penalty due to inaccurate channel estimates?

#### MUTE

### Experimental Evaluation of MUTE

 Comprehensive channel measurement collection (indoor static, dynamic, and mobile environments)





- Trace-driven emulation
  - Complete downlink zero-forcing beamforming system
  - Flexible system, replay channels for different schemes





- Benchmark
  - Always sound
  - Most updated information
- MUTE Two tolerance levels
  - Set threshold to allow close to 2 bps/Hz loss
  - Set threshold to allow close to 1 bps/Hz loss
  - Tradeoff: overhead reduction vs rate loss
- Environments
  - Static Static users and static environments
  - Dynamic Static users and dynamic environments

#### Setup

- Benchmark
  - Always sound
  - Most updated information
- MUTE Two tolerance levels
  - Set threshold to allow close to 2 bps/Hz loss
  - Set threshold to allow close to 1 bps/Hz loss
  - Tradeoff: overhead reduction vs rate loss

Environments

- Static Static users and static environments
- Dynamic Static users and dynamic environments

- Benchmark
  - Always sound
  - Most updated information
- MUTE Two tolerance levels
  - Set threshold to allow close to 2 bps/Hz loss
  - Set threshold to allow close to 1 bps/Hz loss
  - Tradeoff: overhead reduction vs rate loss
- Environments
  - Static Static users and static environments
  - Dynamic Static users and dynamic environments

#### Evaluation of rate penalty due to infrequent sounding

- Overhead not considered
- 4x4 system
- 30-user topology
- Compute rate loss

MUTE

#### Experimental Evaluation of MUTE

#### Evaluation of rate penalty due to infrequent sounding

- Overhead not considered
- 4x4 system
- 30-user topology
- Compute rate loss



#### Evaluation of rate penalty due to infrequent sounding

10

8

6

4

2

0

Static

Per–User Rate (bps/Hz)

Setup

- Overhead not considered
- 4x4 system
- 30-user topology
- Compute rate loss
- Penalty inversely proportional to overhead reduction
  - Smaller penalty in dynamic — more conservative
  - Higher penalty in static
     less conservative
- Accurately tune how much we are willing to sacrifice in terms of rate performance

Dynamic

MUTE 2bps/Hz tolerance MUTE 1bps/Hz tolerance

Benchmark

#### Evaluation of overall throughput performance

- Overhead considered
- 4x4 system
- 30-user topology
- I.5 to I8 kBytes aggregation
- Compute xput gain compared to benchmark

#### MUTE

### Experimental Evaluation of MUTE

#### Evaluation of overall throughput performance

- Overhead considered
- 4x4 system
- 30-user topology
- I.5 to I8 kBytes aggregation
- Compute xput gain compared to benchmark



#### Evaluation of overall throughput performance

- Overhead considered
- 4x4 system
- 30-user topology
- I.5 to I8 kBytes aggregation
- Compute xput gain compared to benchmark
- Significant gains in different environments
  - Near 70% gains, and 30% even with large frame aggregation
  - Close to 50% gains in dynamic
- MUTE adapts to provide balance between overhead and estimate accuracy



MUTE

#### Experimental Evaluation of MUTE



#### MUTE attains a net throughput gain

Gains originated from sounding overhead reduction dominate the losses incurred due to inaccurate channel estimates



#### Conclusion

#### Costs to enable MU-MIMO can outweigh the benefits

Even without considering losses due to inter-stream interference

Sounding overhead in 802.11 ac can be detrimental to MU-MIMO performance

#### We demonstrate the feasibility of sounding inhibition in MU-MIMO networks

MUTE strikes a balance between overhead reduction and rate penalty due to inaccurate channel estimates

#### Conclusion

Thank you!