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Abstract

Using an operational urban mesh network serving nearly 2,000 users, we show that one-hop TCP flows can
obtain high throughput whereas multi-hop TCP flows starve. We characterize the origins of starvation as compounding
effects of mechanisms within the medium access protocol and end-to-end congestion control protocol. We develop an
analytical model that captures this phenomenon and yields a solution: We propose a counter-starvation policy in which
the gateway’s one-hop neighbors increase their minimum contention window in comparison with other nodes. The
policy therefore requires no change to TCP nor IEEE 802.11. Despite its simplity, we demonstrate through the model,
experiments, and simulations, that the policy has a powerful effect on network-wide behavior, shifting the network’s
queueing points, mitigating problematic MAC behavior, and ensuring that TCP flows obtain a fair share of the gateway
bandwidth, irrespective of their spatial locations.

1 INTRODUCTION

Large-scale mesh network deployments are planned and underway in cities across the world. According
to In-Stat, the market will grow from 248 cities in 2005 to 1,500 cities in 2010, becoming a $1B industry
in mesh access point sales alone. The prevailing architecture for large-scale deployments is a two-tier
architecture in which an access tier connects end users’ PCs and mobile devices to mesh nodes and a
backhaul tier forwards traffic to and from high-speed gateway nodes. Directional antennas terminating at
the gateway are also used to expand coverage and capacity.

We have deployed and are operating UrbanMesh,1 a two-tier mesh network serving a user population
of nearly 2,000 users in a 3 km2 urban community. As most deployments are in the planning or early-
deployment stages, to the best of our knowledge, this is the highest density urban mesh network operating
to date.

Unfortunately, we have observed that under heavy load, flow starvation will occur in which one-hop
flows obtain high throughput whereas competing multi-hop flows obtain near zero throughput. The phe-
nomena occurs under two hardware/software platforms as well as in simulation. Clearly, for mesh networks
to be successful, it is critical that network resources are distributed fairly among users, irrespective of
their spatial location.

In this paper, we (i) perform extensive measurements in UrbanMesh to characterize starvation, (ii) study
starvation’s protocol origins, (iii) develop an analytical model to capture the interaction of medium access
and congestion control that leads to starvation and (iv) design, justify, and evaluate a counter-starvation

1. We refer to the network as UrbanMesh for double-blind reviewing.
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policy in which nodes one-hop away from the gateway increase their minimum contention window. In
particular, our contributions are as follows.

First, we experimentally demonstrate the existence of starvation in UrbanMesh. Moreover, we design
a set of experiments to isolate the factors that cause starvation. We identify that only a one-hop TCP
flow coupled with a two-hop TCP flow is sufficient to induce starvation. Moreover, we demonstrate that
starvation is not merely a hidden-terminal effect by showing that starvation does not occur if the TCP
flows are replaced by UDP flows and IEEE 802.11’s RTS/CTS handshake is used to counter hidden
terminals; yet, the use of RTS/CTS is irrelevant for TCP flow starvation.

Second, we describe the protocol origins of starvation as a compounding effect of three factors. First,
the medium access protocol induces bi-stability in which pairs of nodes alternate in capturing system
resources. Second, the system’s nested congestion control loops utilizing the wireless medium make it
more likely that outer loops (multi-hop flows) are disrupted rather than inner loops (single-hop flows).
Third, and most critically, the system incurs a high penalty when switching between the two states of
the bi-stable system. In particular, a state is normally exited when either a flow “runs out of ACKs” and
thus cannot transmit data because it cannot receive feedback, or when a DATA packet is dropped at the
medium access layer.

Third, we develop an analytical model to both study starvation and to drive the solution to counter
starvation. The model omits many intricacies of the system (TCP slow start, fading channels, channel
coherence time, etc.) and instead focuses on the minimal elements needed such that starvation manifests.
Namely, the model uses a discrete-time Markov chain embedded over continuous time to capture a fixed
end-to-end congestion window, a carrier sense protocol with or without RTS/CTS, and all end-point
and intermediate queues. The model yields a Counter-Starvation Policy in which all of the gateway’s
neighbors should increase their minimum contention window to a value significantly greater than that of
other nodes.2 The model also characterizes why the policy is effective in that it forces all queueing to occur
at the gateway’s one-hop neighbors rather than elsewhere. Because these nodes have a perfect channel
view of both the gateway and their neighbors that are two hops away from the gateway, bi-stability is
eliminated such that the subsequent penalties are not incurred.

Finally, we validate the Counter-Starvation Policy by re-deploying a manageable set of MirrorMesh
nodes on-site (mirroring a subset of the UrbanMesh mesh nodes). The results demonstrate that our
solution completely solves the starvation problem for TCP upstream and downstream traffic. We extend
our investigation to a broader set of scenarios using simulations and show that our solution enables TCP
flows to fairly share the gateway bandwidth in more general scenarios.

The rest of the paper is organized as follows. In Section 2, we introduce UrbanMesh. In Section 4, we
demonstrate the existence of starvation experimentally and analyze its protocol origins. We develop the
analytical model and Counter-Starvation Policy in Section 5. In Section 6, we evaluate the policy with
measurements and simulations. We discuss related work in Section 7 and conclude in Section 8.

2 URBANMESH: AN OPERATIONAL ACCESS NETWORK

In this section, we describe the UrbanMesh network, its hardware and software platform, and our exper-
imental setup.

2.1 Network Description
UrbanMesh is an operational two-tier mesh network that provides Internet access in a densely populated,
single-family residential, urban neighborhood. The network is two-tier because it consists of a backhaul
tier which wirelessly forwards data and an access tier which wirelessly provides access between end-users
and the mesh infrastructure.

2. In existing mesh deployments, all nodes employ the same value as recommended by the IEEE 802.11 standard.
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UrbanMesh backhaul nodes are predominantly deployed on single-story residences with the exception of
two schools, two businesses, and a public library within the neighborhood. The current mesh infrastructure
is composed of 18 backhaul nodes which coordinate to share the Internet bandwidth from a single fiber
that is burstable to 100 Mbps. Fig. 1 depicts the spatial distribution of the UrbanMesh backhaul tier and
the connectivity map. In the figure, nodes are depicted as connected if a direct transmission can occur
between the two backhaul nodes. All links are omni-directional with the exception of a directional link
(shown in black) which serves as an additional point of capacity for the network.

Each mesh node serves access nodes or clients wirelessly within its immediate proximity of approx-
imately 200-300 m in radius. The radius is limited primarily by heavy tree foliage and densely packed
homes with lot sizes averaging only 510 m2.

At the time of our experiments, there are nearly 2,000 users in the network in an area of nearly 3 km2,
i.e., approximately 600 users and 6 backhaul nodes per km2, which makes UrbanMesh one of the most
dense mesh networks operating to date; for comparison, the St. Cloud mesh network currently serves
120 users per km2 [1]. There are 4,760 residents per km2 in the served neighborhood; as a point of
reference, the average population density of the 20 largest U.S. cities is 2,800 residents per km2. Planned
and deployed commercial mesh networks also employ this two-tier architecture in which Internet gateways
feed multiple multi-hop wireless paths and directional links are used to provide high-speed “short-cuts” to
the gateway for capacity improvement. The process is then duplicated every 3-10 km2 for larger coverage
areas.

Fig. 1. Connectivity graph of the UrbanMesh backhaul topology with appropriate scaling for
distance between nodes. There are nearly 2,000 residential users (not shown).

2.2 Hardware Platform
The UrbanMesh platform is programmable and observable. Each of the UrbanMesh nodes runs an
open-source operating system. We perform extensive, non-intrusive, and privacy-respecting measurements
consisting of detailed packet and signal measurements for network operations, modeling, and protocol
design. The UrbanMesh nodes have much greater processing power (1GHz) and storage (4 GB) than most
commercial mesh nodes to handle advanced protocol design and rapid data logging. The Linux operating
system is derived originally from the open-source LocustWorld mesh networking software which uses
AODV routing and HostAP drivers.

Each mesh node has a single, SMC 2532-B 802.11b wireless adapter with 200 mW transmission power
to serve both backhaul and access traffic. The cards connect to a 15 dBi omni-directional antenna with
a vertical beamwidth of 8 degrees. The mini-ITX motherboard is encased in a waterproof enclosure
installed on the outside of building structures of backhaul deployment locations. The backhaul antennas
are attached to the sides of homes at 10m height, and at slightly greater height (maximum of 20m) at the
library, schools, and businesses. The client access node hardware is in many cases unknown to us. Yet,

3



Rice University Technical Report TREE0709

it is clear that a wide variety exists, from PCs employing an external USB WiFi antenna placed near a
window to laptops.

2.3 Experimental Setup
In each experiment of Section 4, we generate traffic (TCP and UDP) using iperf and measure the achieved
throughput. Before each experiment, we measure the throughput when each of the flows is singly active
to ensure good channel state. Unless stated differently, our measurement intervals are 120 seconds. The
maximum PHY rate is 11 Mbps and the radio band adopted is channel 6 of the 2.4 GHz ISM band. All
experiments on UrbanMesh take place in the presence of the network’s normal user traffic.

Fig. 2. TCP throughput of a singly-active flow from each hop of a three-hop route within
UrbanMesh.

For the remainder of the paper, we explore the relationship between one-hop and two-hop flows
simultaneously contending with one another. As a baseline, we first characterize the behavior of a single
active flow over a multihop route. In Fig. 2, each point represents one singly-active TCP flow generated 1,
2, or 3 hops away from the gateway from the same route. In the measurements, RTS/CTS is disabled, and
the experiment is run during the off-peak hours to minimize the effects of background traffic. The effect
of TCP throughput vs. hop count and its reasons have been extensively studied in prior work, e.g., [22],
and we do not review it here. Rather, we present this result as a baseline to study multiple contending
flows and the resulting starvation phenomena.

3 ORIGINS OF STARVATION

In this section, we first demonstrate the existence of starvation of two-hop TCP flows in UrbanMesh. We
then describe the factors inherent in medium access protocols, congestion control protocols, and their joint
behavior, that lead to starvation. Finally, we show that analysis of these factors predicts that starvation
should also occur in a multi-branch scenario and we experimentally show that this is indeed the case.

3.1 Measurements in UrbanMesh
Here, we experimentally demonstrate the existence of starvation in UrbanMesh. Moreover, we experimen-
tally isolate the originating starvation factors by eliminating alternate explanations such as background
congestion and hidden terminals. Because we cannot directly control the system’s offered load due to the
large user population, we perform experiments at different times of the day and night to study this factor.

In all experiments, user traffic from community residents is originating from all nodes of the network. We
select three nodes A, B, and the gateway GW depicted in Fig. 13 for our test workload and measurements.
Although A is physically close to the gateway, it is not in radio range of the gateway due to the propagation
environment, i.e., A and the gateway are not in transmission range nor interference range due to obstacles
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Fig. 3. Nodes used within the UrbanMesh for traffic generation and measurement. Background
traffic exists from hundreds of users from a user population of near 2,000.

such as trees and houses. All of A’s packets to and from the gateway are forwarded by node B, as verified
by observing the routing table. Therefore, node A has a two-hop route whereas node B has a one-hop
route to the gateway GW .

3.1.1 Starvation under Heavy User Load
We first explore heavy background load which occurs daily between the hours of noon and 10pm. In each
trial of the experiment, we simultaneously generate a long-lived TCP flow from the two-hop node (A) and
a TCP flow from the one-hop node (B) to the gateway (GW ). Thus, in all experiments, all three nodes
mutually contend for channel access in support of both uplink data and downlink acknowledgements.3

Fig. 4. Two-hop chain contention measured at six different times of the day.

Fig. 14 depicts the throughput of the two flows and illustrates that severe starvation occurs. In particular,
the one-hop TCP flow from node B dominates whereas the two-hop TCP flow from node A receives nearly
zero throughput in all experiments conducted at different times under different traffic load of the network.
Moreover, before and after each experiment, we ensure that link A-B, as well as all other links, are fully
operational and that full throughput can be achieved when each link is used alone.

3.1.2 Starvation under Light User Load
A potential explanation for the two-hop flow’s starvation is that node A has high contention and interference
due to its neighbors. We eliminate this hypothesis by repeating the above experiment at 3am when network

3. To ensure that our results are not unique to injecting a single flow from both nodes in the presence of many background flows, we also
generate aggregate flows from both nodes and obtain nearly identical results which are not shown.
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activity is at a minimum. Fig. 5 (left) shows that even when the background load is light, indicating low
contention and interference, starvation persists. Thus, inter-flow contention between the two injected TCP
flows alone is sufficient for starvation.

Fig. 5. Single Branch Upload: A → B → GW is a chain of nodes and GW is the gateway.
Congestion with other mesh and access nodes is minimized by running the experiments from 3am
to 6am.

3.1.3 Starvation with RTS/CTS
In the above experiments, RTS/CTS is turned off. However, a second potential explanation for starvation
is that nodes A and GW suffer from a hidden terminal effect when A transmits DATA and GW transmits
ACKs. In particular, the second-hop node A and the gateway node GW are out of range. Consequently,
without the RTS/CTS handshake, the two nodes are hidden [25] such that carrier sense is ineffective.
Thus, RTS/CTS provides a mechanism to coordinate nodes that cannot carrier sense each other but can
carrier sense a common node (B in this case).

Here, we invalidate the hypothesis that use of RTS/CTS would eliminate starvation. Fig. 5 (right) shows
that despite the 2nd-hop throughput being slightly improved with RTS/CTS, the throughput imbalance is
nearly as severe as that with RTS/CTS off.

Fig. 6. UDP traffic matrix to compare to the bidirectional nature of TCP sending 1500 bytes
upstream (DATA) and 50 bytes downstream (ACK).

3.1.4 No Starvation for UDP with RTS/CTS
Finally, we show that starvation is not simply due to the traffic matrix, i.e., simultaneously having two-
and one-hop upload and download flows. Rather, it is the compound effects of TCP and medium access
mechanisms that are required to induce starvation. We show this via experiments in which TCP’s DATA
uplink traffic is replaced with fully backlogged 1500 byte UDP DATA packets, and TCP’s ACK downlink
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traffic is replaced with 50 byte UDP DATA packets. This 50-byte packet rate is 250 packets per second,
corresponding to the ACK rate of a saturated TCP flow. This scenario is illustrated in Fig. 17.

Fig. 7. Same two-hop chain without the windowing mechanism. Hidden terminals (RTS OFF)
cause starvation, but without the windowing, traffic has much more equal distribution (considering
the two-hop flow takes twice the resources as the one-hop flow).

The results of the experiment are depicted in Fig. 18. First, we revisit the issue of RTS/CTS. Comparing
the cases of RTS/CTS off (left) and RTS/CTS on (right), it is clear that for UDP, the use of RTS/CTS
yields a “fair” bandwidth distribution. In particular, when the RTS/CTS mechanism is enabled, the two
throughputs reflect that the two-hop flow utilizes twice the resources at node B compared to the one-hop
flow. Thus, for UDP traffic, RTS/CTS has the desired effect of countering hidden terminals.

Second, comparing TCP and UDP when both have RTS/CTS on, Fig. 5 (right) and Fig. 18 (right), we
conclude that it is not a consequence of hidden terminals, but rather mechanisms within TCP that are
necessary for starvation to occur.

3.2 Starvation’s Protocol Origins
Here we describe how the protocol mechanisms of medium access and congestion control mechanisms
interact to cause starvation.

Medium Access and Bi-stability. The collision avoidance mechanism in CSMA/CA, with or without
RTS/CTS, causes node pairs (A,B) and (B, GW ) to alternate in transmission of multiple packet bursts.
In particular, the system alternates between a state in which A and B jointly capture the system resources
for multiple transmissions while the GW is idle, and a state in which A is idle while GW and B transmit.
As depicted in Fig. 19, when mesh node A (or GW ) wins the channel, it enters a success state in which
it will transmit a burst of packets, while GW (or A) enters a fail state in which it will not succeed in
transmitting any packets. Node B, which is in sensing range with the other two nodes, is always in a
success state. Hence, it sends a steady flow of DATA to GW , and potentially, ACKs to A. In other words,
node B contends fairly with the other node that is in a success state and interleaves its packets with the
burst generated from either A or GW . Note that a resembling phenomenon has been previously illustated
in [6], [20] for a simpler scenario consisting of two one-hop flows.

A trafficGW traffic B traffic

Multiple packet burst (GW,B) Multiple packet burst (A,B)

Fig. 8. Depiction of bi-stability with alternation of (A,B) and (B, GW ) transmissions.

The Congestion Control Loops. TCP’s congestion control mechanism creates a closed-loop system
between each sender-receiver pair in which the transmission of new packets is triggered by the reception
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Fig. 9. Illustration of multiple control loops and a shared medium.

of acknowledgments. The two-hop scenario contains two nested transport loops, one for each upstream
flow. We term the single-hop and the two-hop loops as the inner loop and outer loop respectively, as
depicted in Fig. 20(a). The outer loop consists of four links, two upstream links and two downstream
links. Because the inner loop only consists of two links which are a subset of the links of the outer loop,
the outer loop is more likely to be broken due to any of its links not being able to transmit over a period
of time.

Penalty to Switch States. When switching between the two states, the system incurs a severe penalty,
namely, high delay and/or a dropped packet. Yet, the system’s bi-stability and alternation between success
and fail states has different effects on the two transport loops. In particular, when A bursts, the gateway
is in a fail state, and both transport loops are broken (Fig. 20(b)). However, due to the lack of feedback
(ACKs) from the gateway, A’s burst length is limited by its congestion window.

Conversely, when GW bursts and A is in a fail state, only the outer loop is broken. In this case, the
inner loop is self-sustaining due to the loop’s own ACK generation (Fig. 20(c)). Consequently, the duration
for GW and B to jointly capture the channel is not bounded in the way A’s duration is bounded. Thus,
the ratio between the average durations of the capture states for GW and A is large. Furthermore, when
GW bursts, most of the packets transmitted belong to the inner loop, i.e., the one-hop flow, due to the
fact A is in a fail state and therefore can not inject new packets to the network. To exit this state, A again
pays a high cost: because of binary exponential backoff, A mostly likely drops a data packet in order to
have an equal chance of capturing the medium to enter the success state. If A loses contention again, it
will not have an equal chance to capture the medium until it drops a subsequent packet.

3.3 Prediction for Two Branches
In this section, we show that the starvation origins described in Section 3.2 are able to correctly predict
that starvation will also occur in an alternate scenario.

According to Section 3.2, TCP starvation is caused by the joint effect of mechanisms in medium access
contention resolution and closed loop congestion control. Moreover, if a scenario contains a one-hop loop
sharing a common node with a two- or more- hop loop, starvation will occur.

In this experiment, the one-hop loop and the two-hop loop join at the gateway as depicted in Figure 23.
In this case, although node C does not forward traffic for node A, the same reasoning of starvation origins
applies. The gateway GW and A are out of carrier sense range yielding bi-stable behavior. When GW
and C obtain the channel, the one-hop loop is self-sustaining. When A and B obtain the channel, GW
is in fail state and both loops are broken. Consequently, the burst size of A is limited by its congestion
window.
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Fig. 10. Two Branch Loop

Fig. 11. Two Branch Upload: A → B → GW is a chain of nodes, GW is the gateway, and C → GW
is another branch of the mesh. The two-hop flow has slightly higher throughput, but starvation still
occurs.

In UrbanMesh, we select another one-hop node C, as depicted in Fig. 13. Two TCP flows are active on
the two branches A → B → GW and C → GW , respectively. Fig. 24 depicts the result of the experiment
and shows that starvation persists in this two branch topology. As expected, the behavior of the TCP flow
pair A → B → GW and C → GW , is strictly analogous to the behavior of the pair A → B → GW and
B → GW discussed above.

4 ORIGINS OF STARVATION

In this section, we first show TCP starvation observed in UrbanMesh, an operational two-tier urban mesh
network. We then reveal the origin of starvation through analysis. Finally, we examine more general
topologies within UrbanMesh to show that starvation persists beyond the two-hop chain.

4.1 Experimental Set-up
In order to measure goodput, we generate long-lived TCP flows using iperf and measure the achieved
goodput. Unless stated differently, our measurement intervals are 120 seconds. As can be seen in Fig. 12,
the UrbanMesh links are very stable during each run, and goodput does not vary much (low standard
error), hence 120-second interval captures the behavior of the observed path with minimum interference
with the UrbanMesh users. Unless stated differently, the mesh nodes are configured based on their
default configuration. The RTS/CTS mechanism is disabled, the intra-mesh routing protocol is AODV, the
maximum PHY rate is 11 Mbps and the radio band adopted is channel 6 of the 2.4GHz ISM band.

4.2 Measurements on UrbanMesh
In order to show starvation within an urban mesh network, We run an extensive set of measurements on
the three nodes, A, B and GW ,
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Fig. 12. Available TCP Goodput for selected UrbanMesh nodes under normal daytime load.

Fig. 13. Nodes used within the UrbanMesh network to create a three-node chain and a three-node
chain with an additional branch from the gateway.

4.2.1 Starvation Under Normal Network Load
We select three nodes A, B, and the gateway GW depicted in Fig. 13. Although A is physically close
the gateway, due to the propagation environment, it is not in radio range of the gateway GW 4. According
to the routing table of the network, A’s packets to and from the gateway are all forwarded by node B.
Therefore, node A has a two-hop route whereas node B has a one-hop route to the gateway GW .

We conducted a set of measurements in UrbanMesh between the hours of noon to 10pm under normal
network operations. In each experiment, we simultaneously generate a TCP flow from the two-hop node
(A) and a TCP flow from the one-hop node (B) to the gateway (GW ), i.e., in all experiments, node A
and B mutually contend for channel access.

We present the goodput of the two flows in Fig. 14, which shows severe starvation occurs. In all
experiments being conducted at different times under different traffic load of the network, the one-hop
TCP flow from node B dominates the channel while the two-hop TCP flow from node A receives nearly
zero throughput.

4. A and the gateway GW is not in transmission range nor in interference range, due to obstacles between them such as trees and houses.
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Fig. 14. Two-hop chain contention measured at six different times of the day.

4.2.2 Starvation on Clean Channel
Under normal network operations, the interference level for the two flows is unpredictable. If due to the
activity of other users, the 2nd hop node receives much more interference than the 1st hop node, the
two-hop TCP flow can be starved. To examine whether this hypothesis is true, we repeat the experiment
at 3am when the network activity is minimum. Fig. 15 reports that even when the channel is relatively
clean, starvation persists. Inter-flow contention between the two flows is sufficient for starvation.

Fig. 15. Single Branch Upload: A → B → GW is a chain of nodes and GW is the gateway.
Congestion with other mesh and access nodes is minimized by running the experiments from 3am
to 7am.

4.2.3 Starvation with RTS/CTS
In Fig. 14, severe starvation occurs with default network configurations, i.e., RTS/CTS is disabled. Note
that TCP ack packets are transmitted from the gateway node GW , which also contend for channel access.
Since the second-hop node A and the gateway node GW are hidden terminals with respect to each other,
the well known hidden terminal effect is present in the network. we experimentally explore whether
the hidden terminal effect with RTS/CTS off is the root cause of starvation. In this experiment, we turn
RTS/CTS on to combat the hidden terminals, and again let first hop node A and second hop B all transmit
TCP flows to the gateway simultaneously. The experiment result is reported in Fig. 16 shows that despite
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of the 2nd-hop throughput being slightly improved with RTS/CTS, the throughput imbalance is as nearly
the same as that with RTS/CTS off. Next we analyze the root cause of starvation in this two-hop chain
topology and see why RTS/CTS does not solve the problem.

Fig. 16. Single Branch Upload: A → B → GW is a chain of nodes and GW is the gateway.
Congestion with other mesh and access nodes is minimized by running the experiments from 3am
to 7am.

Fig. 17. UDP traffic matrix to compare to the bidirectional nature of TCP sending 1500 bytes
upstream (DATA) and 50 bytes downstream (ACK). The upstream packets are fully backlogged
and the downstream sent at a rate of 2k pkt/sec which would be approximately the rate of ACKs
for a 3 Mbps link.

4.2.4 Removing Windowing
We finally consider UDP traffic on the same three nodes to remove the windowing mechanism. We have
generated 1500 byte packets upstream to represent TCP data packets and 50 byte packets downstream
to represent acknowledgment packets (see Fig. 17). We have fully backlogged the upstream packets
and generate the downstream packets at 2000 pkt/sec (the expected rate of a 3 Mbps TCP connection
considering there is a 30:1 ratio between the size of the two packets and that each DATA packet has a
corresponding ACK). We find in Fig. 18 that with RTS/CTS disabled we still have starvation which can
be attributed to the well-known hidden terminal problem [17]. However, when the RTS/CTS mechanism
is enabled we see that there is a much more fair distribution of traffic considering that the two-hop flow
takes twice the resources at node B that the one-hop flow. We conclude that the windowing mechanism
of TCP combined with the innate IEEE 802.11 MAC protocol is the cause of the severe starvation that
we have seen in the same scenario with TCP traffic without hidden terminals. We now elaborate on this
relationship.
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Fig. 18. Same two-hop chain without the windowing mechanism. Hidden terminals (RTS OFF)
cause starvation, but without the windowing traffic has much more equal distribution (considering
the two-hop flow takes twice the resources as the one-hop flow).

A trafficGW traffic B traffic

Multiple packet burst (GW,B) Multiple packet burst (A,B)

Fig. 19.

4.3 High Level Explanation
Here we show that the starvation experienced by the two-hop flow is a result of the coupling of two
separate mechanisms located in two separate layers of the protocol stack. The first is the Carrier Sense
Multiple Access with Collision Avoidance (CSMA/CA), which is a contention-based protocol that manages
the medium access of the wireless devices (MAC Layer). The second mechanism is the window based
flow control operated at the transport layer, such as TCP congestion control. In this section, we explain
the impact of the coupling between the two mechanism on throughput distribution. We start with high
level description the role each factor contributes to the starvation, followed by detailed discussions. Later,
in Section 5, we will suggest an analytical model that completes the understanding of the starvation.

The role of CSMA/CA MAC As we will show in this section, the collision avoidance mechanism in
CSMA MAC causes nodes A and GW to alternate successful bursts of transmissions, which contributes
to starvation when coupled with flow control in the transport layer. For the ease of presentation, we use
an Success/Fail source model to describe this burst behavior of the two nodes: when mesh node A (GW )
wins the channel, it enters a Success state in which it will transmit a burst of packets, while GW (A)
enters its Fail state in which it will not succeed in transmitting any packets. Node B, which is in sensing
range with the other two nodes, is always in Success state. Hence, it sends a steady flow of packets to the
GW , i.e., the MAC will allow it to contend fairly with the node that is in Success state and interleaves
its packets with the burst generated from either A or GW (see Fig. 19).

The role of transport Layer Sliding Window Transport layer sliding window congestion control
creates a closed-loop system between each sender-receiver pair, meaning the transmission of new packets
is triggered by the reception of acknowledgments. In our two-hop scenario, we have two nested transport
loops, one for each upstream flow. We term the single-hop and the two-hop loops as inner loop and
outer loop respectively (Fig. 20(a)). The outer loop consists of four links, two upstream links and two
downstream links. The inner loop only consists of two links which are a subset of the links of the outer
loop. Consequently, the outer loop is more likely to be broken due to any of its links not being able to
transmit over a period of time.

Coupling of CSMA and Sliding Window The occurrence of burst alternation has different effects on
the two transport loops. For example, when A bursts, the gateway GW is in fail state, and both transport
loops are broken (Fig. 20(b)). However, due to the lack of feedbacks (ACKs) from the gateway GW ,
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this burst length is limited by its congestion window. Conversely, in the case GW bursts (A is in fail
state), only the outer loop is broken. In this case, the inner loop is self-sustaining due to ACK generation
(Fig. 20(c)). Its burst length is therefore unbounded. As a result, the ratio between the burst lengths from
GW and A is large with high probability. Furthermore, when GW bursts, most of the packets transmitted
belong to the inner loop, i.e., the one-hop flow, due to the fact A is in its Fail state and therefore can not
inject new packets to the network. Next we give a detailed explanation about the cause of starvation.

4.4 Detailed Explanation of Starvation Factors
We now describe in detail the burst nature of transmission in the MAC and how the MAC and window-
based congestion control jointly cause starvation. For the ease of presentation, we use IEEE 802.11 as
an example of a CSMA/CA protocol. Here we assume RTS/CTS is enabled. The same analysis can be
extended to the case with RTS/CTS off: we only need to replace RTS packet with contending DATA
packet.

We observe that Node B is in transmission range with both A and GW , and hence, the collision
probability is negligible for its packets5. Therefore, its contention behavior is predictable: B contends
fairly with either mesh node A or GW whoever bursts, and the packets from B will be interleaved with
the packets from either A or B whoever in its Success state. Moreover, both A and the gateway GW
perceive the transmission of B in the same way, as shown in Fig. 21. Due to these reasons, when we
discuss the interaction between A and GW , for simplicity we omit transmissions of node B, which will
not change the interaction between A and GW .

High Collision Probability at Middle Node Since A and GW are not in sensing range of each other,
if one of them starts an RTS transmission while the other one is transmitting an RTS, both RTS packets
will fail. In order to avoid collision, no RTS can start TRTS + TSIFS seconds before, and TSIFS seconds
after the transmission of RTS of the other node, where TRTS is the duration of an RTS transmission and
TSIFS is the duration of a SIFS defined in the standard. The vulnerable interval for an RTS packet is
therefore 2× TRTS + TSIFS , comparable to the minimum value of the contention window. As a result of
long vulnerable interval, if one of the hidden node (either GW or A) is contending with small window,
whenever the other node transmits an RTS packet (even after a long backoff), with very high probability
a collision will occur. Due to the vulnerable interval of this RTS packet, the node with a small contention
window is very likely to win the contention.

5. Indeed, for them to collide, A and B has to start their transmissions within a propagation delay interval. The probability of this occurring
is negligible.
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Burstiness A successful transmission will eventually occur after one or more collisions, which will
widen the two windows (Fig. 22(a)). Let us assume without loss of generality that GW is the mesh node
that eventually wins the contention and successfully transmits an RTS. Obviously, due to MAC symmetry,
the same holds for mesh node A. After GW transmits its RTS it will reset its contention window to
CWmin and and transmit a burst of one or more packets before the mesh node A will try to transmit an
RTS of its own (Fig. 22(b)). In order for A to win, it should place an RTS frame between two consecutive
trails of GW . The probability of A successfully doing so is small, since GW is back to CWmin and
the average idle channel between its two consecutive trails is small. With very high probability the RTS
from A will collide with the RTS from GW (Fig. 22(b)). Each such collision causes both mesh nodes
to increase their contention window; however GW goes to the second contention stage and A goes to a
much higher contention stage, so that GW will likely transmit another burst. This burst will be longer than
its previous one, due to the incremented contention window of A; e.g., with binary exponential backoff,
the average of the burst will be doubled. GW is more and more likely to keep its winning streak and
transmit longer and longer burst as A falls into deeper and deeper backoff stage. The process will repeat
itself until the mesh node A eventually wins the channel and starts a burst of its own (Fig. 22(c)). The
burst is terminated when (i) with low probability A(GW ) wins the contention while still in high backoff
stage; (ii) the GW (A) has no transport-layer ACKs (no data packets) to transmit; (iii) A (GW ) wins the
contention with high probability after it reaches its maximum transmission limit and resets its contention
window to CWmin.

4.4.1 Compound Effect of MAC and Sliding Window
As previously explained, node B keeps transmitting its packets during bursts of both A and GW . During
the burst of the GW , it transmits ACKs to B. the transport layer sliding window mechanism then allows
B to generate more traffic to GW upon receiving these ACKs. GW generates new ACKs upon receiving
new traffic from B. The Inner loop is therefore self-sustaining. Due to this closed-loop feedback, the GW
burst size is not upper-bounded, and most of the packets transmitted belong to the one-hop flow. On the
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other hand during A’s burst, the fact that GW is in Fail state breaks both both loops. Consequently, the
number of ACKs fed back to A is limited to the number of ACKs backlogged at B at the beginning of
the burst. Hence, the maximum burst size of A is bounded by the size of the transport layer congestion
window.

Furthermore, when GW bursts, the queue at GW is backlogged because the Inner loop is self-sustaining.
Then it is most likely that A has to reach its retry limit and drops its packet in order to exist its Fail
state. As far as the transport layer adopts a sliding window mechanism such as TCP, the dropping costs
a high a penalty. In fact, the next transmission opportunity will be completely wasted by retransmissions
of previously dropped packets. Note that this process can be repeated several times for the same transport
packet.

4.4.2 TCP Effect on Burstiness
TCP magnifies the negative impact of sliding window mechanisms at transport layer. TCP adapts the
transmission windows with additive increments after ACK receptions and with multiplicative decrements
after packet losses (e.g., by dropping). According to factor (iii), node A has to pay a multiplicative window
decrease when it exists its fail state. As a result, its congestion window is small, making its burst short.

4.4.3 Summary
To summarize, the joint effect of window based congestion control in the transport layer and the MAC
contention resolution mechanism causes starvation. A more rigorous explanation is given in Section 5,
where the interaction between the two layers is modeled. This negative effect is magnified by TCP
window dynamics. It is worth noting that, according to the famous formula for TCP throughput given by
Towsley in [?], and also according to remarks given by Altman in [4] on the effects of end-to-end delay
variations tipical of wireless networks, the TCP goodput is expected to roughly be inversely proportional
to the Round Trip Time (RTT ) and to the square root of loss probability (

√
p), which are exactly the

parameters affected by the described coupling effect.

4.5 Validation on Two-branch Topology.
In this section, we first show that our analysis predicts much broader starvation scenario than the two-hop
chain topology. We then validate our analysis by validating this prediction.

According to our analysis, TCP starvation is caused by the joint effect of the MAC contention resolution
mechanism and the closed loop congestion control scheme. Burst traffic due to MAC contention broke
different transmission links in the burst cycle, which has different effect on the one-hop loop (1st hop
loop) and the longer loop (2nd hop loop). If in a scenario a one-hop loop shares a common node with a
two- or more- hop loop, starvation is likely to occur.
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Fig. 23. Two Branch Loop
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According to this analysis, we predict that in a two-branch topology shown in Fig. 23, where the one
hop loop and the two hop loop joins at the gateway, starvation occurs. In this topology, although node C
does not forward traffic for the node A, the same starvation analysis applies. The gateway GW and A
are hidden terminals to each other and thus, the probability of collision between gateway node GW and
node A is high, resulting in burst traffic. When GW bursts its traffic, the one-hop loop is self-sustaining.
When A bursts its traffic, GW is silenced and both loops are broken. Consequently, the burst size of A
is limited by its window.

Fig. 24. Two Branches Upload: A → B → GW is a chain of nodes, GW is the gateway, and
C → GW is another branch of the mesh. The two-hop flow has slightly more goodput but starvation
still occurs.

We now validate through UrbanMesh that starvation occurs in two branches shown in Fig. 13. Two
TCP flows are active on the two branches A → B → GW and C → GW , respectively. Fig. 24 reports
that starvation persists in this two branch topology. As expected, the behavior of the TCP flow pair
A → B → GW and C → GW , is strictly analogous to the behavior of the pair A → B → GW and
B → GW discussed above.

5 ANALYTICAL MODEL AND STARVATION SOLUTION

In this section, we develop an analytical model to study the compounding effects of medium access and
congestion control on starvation. We employ a highly simplified system model in order to isolate and
study the root causes of starvation under the simplest conditions in which they arise. Finally, driven by
the model, we propose a contention window policy to counter starvation.

5.1 System Model
As described in Section 3.2, the DATA-ACK control loop is a key factor in starvation. Consequently, we
model only one aspect of congestion control, the sliding window, and in particular, we consider a fixed
congestion control window. Consequently, when the corresponding analytical model predicts starvation,
we can conclude that among congestion control’s many mechanisms, the DATA-ACK control loop and a
sliding window alone are sufficient to induce starvation.

For medium access, we also consider a highly simplified system model with an idealized physical layer
in which GW and B, and A and B can communicate without channel errors. We consider a collision
model in which even partially overlapped transmissions fail and require retransmission, e.g., overlapped
transmission of RTS messages from A and GW or overlapped transmission of A’s DATA with GW ’s
ACK. We consider that the initial contention window of node i is given by CWmin,i and the contention
window evolves according to the binary exponential backoff scheme. Moreover, we assume that the backoff
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counter of each station is geometrically distributed over the current window. This assumption allows us
to exploit the memoryless property of the geometric distribution and to avoid tracking the number of
mini-slots already elapsed. This assumption is common and has been previously validated, e.g., [20],
[23], [29]. Our model captures both RTS/CTS on as well as pure CSMA with RTS/CTS off.

In addition to medium access and end-to-end sliding window, we also model the queues at each node.
We assume that a node contains a separate queue for each subflow, e.g., node B has a queue for downlink
ACKs to node A, a queue for uplink DATA originating from A, and a queue for uplink DATA originating
from B. Moreover, each time a node gains channel access, each of the node’s queues receives service with
equal probability. This assumption provides a memoryless property thereby aiding the model’s tractability.

We will show that while this system model omits many aspects of our experimental system, it nonethe-
less captures starvation.

5.2 Model Description
As shown in Fig. 25, six sub-flows originated from the three mesh nodes need to be modeled. Included
in the six sub-flows are three upstream DATA flows and three down-stream ACK flows, respectively,
traversing to and from the gateway node. Correspondingly, we need to track the queue occupancy of the
six flows as shown in the figure.
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Fig. 25. Queues at different mesh points.

All possible channel states are illustrated in Fig. 26. Eight channel states are identified including three
DATA transmission states occupied by upstream DATA transmissions on links 1, 2, and 3 in Fig. 25;
three ACK transmission states occupied by ACK transmissions on links 4, 5, and 6; one collision state
occupied by RTS (or DATA if the RTS/CTS mechanism is not used) collisions between the second-hop
and gateway node; and one idle state occupied by an idle mini-slot to characterize when all nodes are
counting down their backoff counters. The time instants of a possible channel state change are pointed
by arrows placed below the temporal axis in Fig. 26. We label a transmission state using the index of the
link on which this transmission occurs. For example, channel state 4 refers to transmission on link 4. We
denote the duration of the transmission states, the collision state, and the idle state by Ti(1 ≤ i ≤ 6), Tc

and Tδ, respectively.

t
ACK CollisionIdle Idle IdleDATA

Fig. 26. Illustration of channel states.

We now construct a Markov chain model embedded over continues time at mini-slot boundaries in
which all three nodes can (potentially) start transmitting the first packet of a new data exchange (either
the RTS or the DATA packet), provided that their queue is not empty and their backoff counter reaches
zero.

For the ease of presentation, in notations we use a, b and g to represent nodes A, B and GW ,
respectively. For node i, (i ∈ {a, b, g}), the parameter ei of the geometric distribution that characterizes
the backoff counter is given by ei = 2

CWi
, where CWi is the current contention window of node i. With
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ei computed above, the mean backoff interval with geometric distribution is set to be the same as with
the system’s actual uniform distribution. Consequently, at any state-switching time epoch, a node with
contention window CWi attempts a new transmission with probability ei.

We denote the length of queue i for link i as Qi. Let Qg = Q4 + Q5 be the aggregate queue length
at gateway node GW and Wa, and Wb be the fixed congestion window for flow A → GW and flow
B → GW , respectively. Because the middle node is in radio range of the two other nodes, the collision
probability between the middle node and one of the other two nodes is very small,6 compared to the
collision probability between A and GW . We therefore assume that the middle node never collides and
never doubles its backoff counter, i.e., CWB = CWmin,B.

In order to capture both the MAC contention status and the queue behavior, we represent the system
state as S = {Q1, Q2, Q3, Qg, CWa, CWg}. Although the length of some of the queues is not incorporated
in the system state, they can all be expressed with (Q1, Q2, Q3, Qg) as follows.

Q4 = Wb −Q3

Q5 = Qg − (Wb −Q3)

Q6 = Wa + Wb − (Q1 + Q2 + Q3 + Qg)

(1)

5.3 Transition Probability Computation
To compute the transition probabilities given a system state, we first use the queue occupancy to determine
the set of nodes that are contending for channel access. Since the next state that the system switches
to depends on the contention outcomes, we compute the probability that each of the possible contention
outcomes occurs. The key to compute these probabilities is to handle hidden terminals, which is described
below.

We consider the system state (Q1, Q2, Q3, Qg, CWa, CWg), in which each queue of Fig. 25 has packets
to send. This is the state in which the computation of the transition probability is most involved due to the
fact that all nodes are contending. We therefore show the computation of the transmission probabilities
through this example. For system states in which not all queues have packets to send, the transition
probability can be similarly computed.

With all queues backlogged, all three nodes contend for channel access at the next state switching time,
in which node i, (i ∈ {a, b, g}) transmits a packet (RTS or data packet depending on which hand-shake
mechanism is used) with probability ei = 2

CWi
. Let f denote the duration of the first packet expressed in

the number of mini-slots. The 2nd hop node A successfully transmits a packet only if (1) it attempts to
transmit in the next mini-slot, (2) the middle node does not attempt to transmit in the next mini-slot, and
(3) the gateway does not attempt to transmit in the next f mini-slots. Thus, the successful transmission
probability of the 2nd hop node is given by

ea(1− eb)(1− eg)
f ,

which is the transition probability from the current state to (Q1 − 1, Q2 + 1, Q3, Qg, 0, CWg).
All of the possible next states and their transition probabilities can be computed similarly and are

summarized in Table 1. When collision occurs, both the 2nd hop and the gateway increase their backoff
to the next stage, e.g., after k collisions CWi = 2kCWmin,i for binary exponential backoff. If the backoff
stage reaches the maximum retry limit denoted by RL, it is reset to 0, which explains the modulus operator.
When a node with more than 1 non-empty queue wins contention, these queues have equal probability to
transmit their head-of-line packet, which explains the division operator.

6. To collide, the middle node has to send the first packet of a data transmission within the propagation delay of one of the outer nodes.
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which link to state probability
link 1 (Q1 − 1, Q2 + 1, Q3, Qg, 0, CWg) ea(1− eb)(1− eg)f

link 2 (Q1, Q2 − 1, Q3, Qg + 1, CWa, CWg)
(1−ea)eb(1−eg)

3

link 3 (Q1, Q2, Q3 − 1, Qg + 1, CWa, CWg)
(1−ea)eb(1−eg)

3

link 4 (Q1, Q2, Q3 + 1, Qg − 1, CWa, 0) (1−ea)f (1−eb)eg

2

link 5 (Q1, Q2, Q3, Qg − 1, CWa, 0) (1−ea)f (1−eb)eg

2

link 6 (Q1 + 1, Q2, Q3, Qg, CWa, CWg)
(1−ea)eb(1−eg)

3

colliding (Q1, Q2, Q3, Qg, (CWg + 1)%RL, (CWg + 1)%RL) (1− eb)(ea + eg − eaeg − ea(1− eg)f − eg(1− ea)f )
none (Q1, Q2, Q3, Qg, CWa, CWg) otherwise

TABLE 1
Some of the transition probabilities of the Markov Model, when one of the queues is empty.

5.4 Throughput Computation
After computing all transition probabilities, we can numerically solve the Markov Chain and obtain the
stationary distribution Π = {Πi, 1 ≤ i ≤ H}, where H is the total number of system states, given by

H = R2
LW 2

a Wb(Wa + Wb). (2)

We also compute binary matrix ϕi, for the transmission channel state i, (1 ≤ i ≤ 6), ϕc for the collision
state, and ϕδ for the idle state. These matrices have the same dimension as the transition matrix and
can be computed as follows. If the system makes a transition from state i to state j, and in making this
transition, a transmission on link 1 occurs, we set ϕ1(i, j) = 1; otherwise, we set ϕ1(i, j) = 0. Similarly,
when making this transition, if a collision occurs, we set ϕc(i, j) = 1. If none of the nodes attempt a
new transmission, we set ϕδ(i, j) = 1. Let M be the transition matrix. Then the occurrence probability
of each channel state can be computed as

pi =
∑

(Π× (ϕi ·M)), i ∈ {1, 2, 3, 4, 5, 6, c, δ}, (3)

in which, the operator · denotes inner product, and the operator
∑

denotes the operation that adds all
elements of a vector. The throughput of the two flows originating from node A and B is then expressed
in pkts/s as,

λa =
p1T1

4 , λb =
p3T3

4 , (4)

in which 4 is the average duration of the channel states, computed as the average of the duration of
all channel states, weighted by their respective probabilities. Recall that T1 and T3 are the duration of
transmission state 1 and 3, respectively. To compute the duration of the collision state, we assume that,
on average, the colliding packet starts in the middle of the packet that is transmitted first.

5.5 Model Validation
We first validate the analytical model of the two hop chain topology using both UrbanMesh and ns-2
simulations. The parameters used in both the model and the simulations are listed in Table 3. Because
the six-dimensional Markov chain leads to a large state space as shown by Equation (2), we numerically
solve the model for WA = WB = 3, i.e., both flows are modeled as having a fixed congestion window
of 3 packets. To simulate fixed-window congestion control, we set the congestion window of TCP in
the simulator to 3. In UrbanMesh, TCP’s window is allowed to adapt as normal. We vary the minimum
contention window of CWmin of the middle node and evaluate the impact on throughput.

We make the following observations on the results depicted in Fig. 27. First, the model accurately
predicts the trends measured via simulation, i.e., the impact of node B’s minimum contention window
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Fig. 27. Analytical model predictions compared to simulation and UrbanMesh.

on both flow’s throughput. Second, for CWmin,B = 32, the value employed by UrbanMesh, both the
model and simulation underestimate the true extent of starvation. Thus, in the actual system, non-modeled
factors of TCP such as time out and window dynamics, and non-modeled factors of medium access such
as fading channels, have only aggrevated the starvation problem.

5.6 Starvation Solution
The most important observation about Fig. 27 is that it reveals the solution to starvation. In particular,
the figure shows that increasing the contention window of node B has the desired effect of removing
starvation and indeed providing fairness among the two flows. When the contention window is very high,
e.g., 512, fairness is achieved at the un-necessary cost of throughput reduction. However, when node
B’s minimum contention window is modestly increased to 64 or 128, fairness and high throughput are
simultaneously achieved. Regardless, note that the sum of the two flow throughputs is reduced when
starvation is removed. This is necessarily the case because the two-hop flow consumes at least twice the
resources of a one-hop flow. Consequently, we propose the following policy to counter starvation.

Counter-Starvation Policy: All nodes that are directly connected to the gateway should increase their
minimum contention window to a factor of at least two greater than all other nodes.

Analysis of the model’s state probabilities reveals the effect of the policy on the system queues. Fig. 28
shows that when the minimum contention window of the 1st-hop node B increases, the probability that
both Q1 and Qg are empty dramatically increases. Recall that Q1 is the queue at 2nd-hop node A and
Qg is the aggregate queue at gateway node GW . Having both of these queues empty indicates that most
packets in the system are queued at B. Since B always contends fairly for the channel due to its ability to
sense both A or GW (see Section 3.2), this is the ideal queueing point within the system. Consequently,
collisions between A and GW are almost zero. Indeed, the model indicates that with large CWmin for
the 1st-hop node, A and GW will rarely collide and rarely increases their backoff window.

Thus, the model indicates that the Counter-Starvation Policy results in minimal queueing at the gateway
and two-hop node for flows employing a sliding window protocol. Without these queues, the MAC
protocol’s bi-stable behavior is broken. Without bi-stability, the “penalty to switch states” is very rarely
incurred.

6 EVALUATION OF THE COUNTER-
STARVATION POLICY
In this section, we evaluate our contention window policy’s ability to counter starvation. As described
in Section 4, the policy sets the minimum contention window of the gateway’s immediate neighbors to
a value significantly larger than all other nodes. Here, we address issues such as the ideal setting, the
impact on downstream traffic, and the effect of gateways with multiple branches. We use a combination
of simulations and an on-site deployment termed MirrorMesh.
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Fig. 28. Queue behavior as a function of the minimum contention window of B.

6.1 MirrorMesh Testbed
To implement our CWmin policy we need to change the minimum contention window of all of the gateway’s
immediate neighbors. In the current deployment of UrbanMesh, changing CWmin is not supported by the
SMC wireless cards. As part of our network operations plans, we will be replacing the cards with ones
that allow this parameter change.

Here, we describe the results of a set of experimental tests designed to validate the Counter-Starvation
Policy in the field. We refer to the platform as MirrorMesh we perform all experiments in the same
area as UrbanMesh in order to inherit the UrbanMesh’s propagation environment. MirrorMesh nodes are
desktop PCs with a Linux Operating System and Atheros wireless card that allows CWmin to be changed.
Each desktop PC connects to an external omni-directional antenna. The technical details describing our
replacement mesh nodes are listed in Table 2. Although different from the UrbanMesh nodes with respect
to the wireless card and Linux kernel, they retain the behavior of network protocols such as TCP. All
parameters for MAC and physical layer are according to IEEE 802.11b standard reported in Table 3,
except the minimum backoff window, which is 16 by default in Atheros chip set. MirrorMesh contains
no user-generated background flows such that the only traffic is that generated by our tests.

Operating system Linux Red Hat, kernel 2.6
TCP version TCP/Reno

Wireless Card Atheros chipset
Wireless Driver Madwifi v. 0.9.2 (modified)

MAC IEEE 802.11b
Physical rate Fixed to 11 Mbps

Physical channel ch. 3
Mesh Point Connectivity WDS

TABLE 2
System parameters for the MirrorMesh nodes.

6.2 One and Two Branches via MirrorMesh
Here, we experimentally validate our Counter-Starvation Policy on MirrorMesh. In this set of experiments,
we test per-flow throughput and network utilization with various topologies and system parameters, both
for the default CWmin and for increased CWmin as recommended by the Counter-Starvation Policy. Each
experiment lasts 120s and the packet size is set to 1500 unless stated otherwise.
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6.2.1 Experiments on a Single Branch
We first consider the scenario depicted in Fig. 13, in which nodes A and B both transmit packets to the
gateway node, GW . As in UrbanMesh, we first verify that all links are operational and that A and GW
are out of range.

RTS/CTS on. In this experiment, we enable RTS/CTS and set CWmin of node A, B, and GW to
the default value of 16. Fig. 29(left) depicts a severe throughput imbalance and confirms that the system
behavior for this scenario is consistent between MirrorMesh and UrbanMesh. Increase CWmin to 128 and
repeat the experiment. The result is also shown in Fig. 29(left), which indicates significantly improved
throughput for flow A → B → GW . In this case, A and B share the gateway bandwidth almost equally.
Fig. 29(right) shows the aggregate utilization in which we observe that the increased CWmin of B only
leads to slightly dropped utilization. Note that when we compute utilization, we count A’s throughput
twice, because its packets need to traverse two links to and from the gateway node GW .

Fig. 29. Starvation with default CWmin and Couter-Starvation Policy result in a two-hop chain of
MirrorMesh. Aggregate network utilization is shown in the rightmost graph. RTS/CTS mechanism
is enabled.

RTS/CTS off. Fig. 30 report results for the case that RTS/CTS is disabled. We consider CWmin = 16
for all nodes as well as CWmin = 128 for node B. The results indicate that the Counter-Starvation Policy
is equally effective and allows equal throughput distribution among the two contending TCP flows, even
without RTS/CTS. The reason is that, as discussed in Section 4, our solution results in having all queued
packets at B. Consequently the hidden nodes, A and GW , are not backlogged such that the probability
that both A and GW have packets to send simultaneously and collide is negligible, irrespective of the
RTS/CTS mechanism.

Fig. 30. Starvation with default CWmin and Couter-Starvation Policy result in a two-hop chain
of MirrorMesh. Aggregate utilization is shown in the rightmost graph. RTS/CTS mechanism is
disabled.

Baseline CWmin = 32. In the above experiments, the baseline CWmin is set to 16, the default value for
Atheros. However, for most commercial wireless cards, including those deployed in UrbanMesh, CWmin

is set to 32 as recommended by the IEEE 802.11 standard. Consequently, we evaluate our policy for
CWmin = 32 on MirrorMesh. We first set CWmin to 32 for A, B and GW and collect the measurement
results. Then we enlarge CWmin of node B to 128 and report the result for both cases in Fig. 31. We
observe from the two figures that with the default value set according to the IEEE 802.11 recommendation,
the nature of the starvation problem remains, yet our solution is equally effective.
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Fig. 31. Starvation and Counter-Starvation Policy result in a two-hop chain of MirrorMesh with the
most common default minimum contention window setting for commercial devices (32). Aggregate
utilization is shown in the rightmost graph.

Adoption of small packet size. Because realistic traffic does not have only 1500 byte packets, we next
test the impact of packet size on the starvation problem and on our solution. As shown in Fig. 32, the
mere adoption of small packet sizes does not significantly effect the starvation problem. When RTS/CTS
is on, contending packets are RTS packets rather than data packets. When RTS/CTS is disabled, data
packets that are usually larger than RTS packets contend for channel access. This results in more severe
bi-stability effect than with RTS packets. Our analysis in Section 4 and 5 captures that smaller data packets
do not mitigate the starvation problem, and that the Counter-Starvation Policy is equally effective.

6.2.2 Experiments on Two Branches
Fig. 24 in Section 3.3 demonstrated that starvation occurs not only on one branch in a mesh network, but
also on two or more branches. In this experiment, we evaluate our solution in the scenario shown in Fig.
23 in which three flows are active on two branches. Fig. 33 reports that flow A is starved, whereas flow
B and C almost equally split the bandwidth. We then invoke the Counter-Starvation Policy by increasing
CWmin for both B and C, both of the gateway’s one-hop neighbors. As shown in Fig. 33, with our
solution, the throughput of the second hop flow is dramatically improved. This is because with increased
CWmin, most of the packets of flow A → B → GW are queued at node B, and therefore contend with
node C more fairly.

Fig. 32. Starvation and Counter-Starvation Policy result with 500 Byte TCP packets. Aggregate
utilization is shown in the rightmost graphs.

6.2.3 Downstream Traffic
Thus far, we have considered upstream data traffic. In Fig. 23, we reverse the direction of the flows
such that DATA packets are transmitted from GW to nodes A and B, respectively, and TCP ACKs are
transmitted from A and B to GW . In this scenario, both the hidden terminal effect in the MAC layer
and the flow loops enforced by the sliding window congestion control remain the same as in uploading
scenario. In this experiment, we show the presence of the starvation problem and the effectiveness of our
solution for downstream flows.

Fig. 34 shows the throughput A and B receive when CWmin is 16 for all three nodes and the throughput
of A and B when CWmin is set to 32. As predicted, starvation indeed occurs in the download scenario,
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Fig. 33. Starvation in a two-hop chain of MirrorMesh with default contention windows in all nodes.
Aggregate utilization is shown in the bottom graph.

Fig. 34. Starvation and Counter-Starvation Policy result in a downstream two-hop chain of
MirrorMesh nodes. Aggregate utilization is shown in the bottom graph.

and our solution allows the two-hop downstream TCP flow to receive significantly higher throughput than
the default window.

6.3 Larger Scenarios via Simulation
We use the ns-2 simulator to validate our solution in more general scenarios. We begin our simulations
with a longer chain topology where spatial reuse is present. We then perform simulations on a topology in
which three branches are connected to the gateway, with each branch further diverging. In all simulations,
we use TCP-Reno for congestion control and IEEE 802.11b for medium access control. We use the MAC
and physical parameters of Table 3.

Four hop chain topology. In a four-hop chain topology as depicted inFig 35, spatial reuse is possible
and there are an increase in the number of nodes out of carrier sense range. In these simulation, we
explore whether these factors change the nature of the problem and solution. In this scenario, four mesh
nodes simultaneously creat long-lived TCP connections to the gateway.

SIFS 10 µs
DIFS 50 µs
EIFS 364 µs
σ 20 µs
BasicRate 2 Mbps
DataRate 11 Mbps
PLCPRate 1 Mbps
(CWmin, CWmax) (32,1024)
Short Retry Limit 7

TABLE 3
Parameters setting for the MAC and physical layers.
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Fig. 36 depicts the simulation results for all nodes having CWmin = 32 and node 1 (the gateway’s
one-hop neighbor) having CWmin = 128 following the Counter-Starvation Policy. We observe that with
all nodes having the same minimum contention window, the 1st hop node receives an order of magnitude
larger throughput than the sum of the throughput received by all other nodes. In contrast, by changing
CWmin of the gateway’s neighbor to 128, all mesh nodes receive equal throughput.

4 2 13

Gateway

Fig. 35. TCP flows in four-hop chain topology.
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Fig. 36. TCP throughput in a four-hop chain topology, with minimum contention windows all 32
(left) and the one hop neighbor changed to 128 (right).

In a longer chain topology, while spatial reuse is possible, nodes farther away from the gateway have
less forwarding responsibility and are more lightly loaded. In contrast, nodes that are one and two hops
away from the gateway still share the medium with all flows and consequently, are the bottleneck. Thus,
the starvation problem in a longer chain has the same nature as in the two-hop chain topology, and our
solution is just as effective in eliminating starvation.

Three-branch tree topology Finally, we consider a scenario in which several branches are connected
to the gateway such as depicted in Fig. 37. The key issue is whether the first-hop node on one branch is
silenced by the transmissions on other branches, thus leaving more spare capacity to downstream nodes
on the same branch to transmit, and subsequently eliminating starvation without requiring the Counter-
Starvation Policy.
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Fig. 37. TCP flows in a tree topology.

We test the scenario in Fig. 37, in which each mesh node is simultaneously transmitting TCP traffic to
the gateway. Fig. 38 shows that starvation persists in this scenario, as the three one-hop nodes obtain most
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Fig. 38. TCP throughput in three-branch tree topology, with new window 32-128-32.

of the gateway bandwidth, whereas the six two-hop nodes receive significantly reduced throughput. Our
Counter-Starvation Policy suggests to increase the minimum backoff window CWmin of all three one-hop
nodes, and we select a value of 128. We observe in Fig. 38 that with this policy, all flows in the network
equally share the gateway bandwidth, albeit with decreased utilization.

In this topology, indeed the one-hop flow on one branch can be silenced by the transmissions on other
branches. However, downstream TCP flows on this branch cannot take advantage of this silenced flow,
because their DATA transmissions to the gateway still collide with the TCP ACK from the gateway with
high probability. Thus the root causes of starvation are not eliminated.

This confirms that the starvation phenomenon exists not only in two-hop chains, but also in a much
broader scope beyond a single branch of a tree. Any one-hop mesh node(s) can starve any node(s) that are
two or more hops away from the gateway whenever they transmit simultaneously, if no counter-starvation
mechanism is present. This simulation also verifies that our solution is effective in a more general topology
than a chain.

7 RELATED WORK

There is significant prior work investigating TCP performance over wireless networks including mesh
networks, e.g., [5], [14], [16], [26]. However, none of this work demonstrates TCP starvation via mea-
surements, models, nor simulations. Moreover, no prior work exists for a large-scale urban mesh network.
Likewise, there are several analytical models of TCP over wireless, e.g., [16], [21], yet, none are able to
predict the existence of starvation.

Prior work on starvation focuses on MAC layer modeling without TCP effects [19] and 802.11s-like
rate limiting to counter starvation [11], [18]. Moreover, starvation of two-hop flows was not identified and
no measurements were performed in an operational environment.

Policies for determining the contention window have been studied extensively in the context of providing
quality of service, e.g., [10], [13], [24], [27], [28], [30]. However, no prior work recognized the role of
the contention window in countering starvation.

A number of techniques have been proposed for joint design of congestion control and medium access,
e.g., [9], [12], [26], [31], [32]. In contrast, our approach requires no changes to TCP nor 802.11 and our
solution is demonstrated experimentally.

The IEEE 802.11s draft [2] contains a mechanism for hop-by-hop congestion control such that nodes
can request other nodes to ramp up or slow down. While this mechanism has the potential to alleviate
starvation, the standard does not specify an algorithm (only the message structure), and to the best of our
knowledge, no implementation, simulated nor experimental, yet exists.

Finally, there are a number of measurement studies on deployed mesh networks [3], [7], [8], [15]. Such
networks differ architecturally from UrbanMesh in that they support a smaller user population with a
single-tier architecture combined with the use of multiple residential DSL lines: such an architecture is
often referred to as a community mesh network and is characterized by an “organic” topology. In contrast,
UrbanMesh employs the two-tier architecture used by commercial deployments, with an access tier to
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serve a large user population, and a planned backhaul tier with multiple branches and directional links
feeding high-speed gateways. In any case, [7] focuses on single active TCP flows and therefore did not
observe starvation.

8 CONCLUSION

In this paper, we measure starvation in an operational two-tier mesh access network, UrbanMesh, and
identify the origins of starvation by isolating potential causes. We show that a one-hop TCP flow interacting
with a two-hop TCP flow is sufficient to induce starvation. Furthermore, we describe how starvation’s
originating factors stem from interaction between the transport layer’s congestion control and the MAC
layer’s collision avoidance to produce effects such as (i) bi-stability in which node pairs alternate between
dominating system resources, (ii) multiple interacting congestion control loops with an unequal probability
of disrupting the loops, and (iii) a high penalty incurred by the system when switching states of the
bi-stable system. We analytically model the system and utilize the model to devise a simple counter-
starvation policy in which nodes one-hop away from the gateway increase their minimum contention
window. We implement and empirically validate the solution on MirrorMesh, a network redeployment
within the same urban environment. Finally, we extend our validation to larger topologies and traffic
matrices via simulation.
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