
For:hkim
Printed on:Fri, May 1, 1998 11:04:22

Document:elec422
Last saved on:Wed, Dec 17, 1997 17:47:12

ELEC 422 Final Report H. Kim and L. Favichia

1

The “Vanilla” Arithmetic and Logic Unit

 1. Functional Description

 1.1 Overview

The ALU consists of five main parts: control unit, 4 8–bit operand registers, 8–bit parallel adder,
17–bit accumulator/shift register, and a logic unit. ALU will support three 8–bit arithmetic
operations (ADD, SUBTRACT, and MULTIPLY) in both positive and negative numbers (2’s
complement, MULTIPLY will only support positive numbers). ALU supports three full 8–bit logical
operations (NOT, OR, and AND).

Also, ALU will be able to perform two types of shift operations (SHIFT RIGHT with 0 replacement
and SHIFT RIGHT with loop around) in 9–bit format. This means that the input is the 8–bit and the
actual SHIFTER is in 9–bit. So, in all of the cases, both SHIFT will perform exactly the same kind of
SHIFT b/c you cannot do a multiple SHIFTs within one cycle.

 1.2 Op–Code Assignment

Due to number of commands it supports, the ALU will have 4–bit op–code, and following is the
assignment. Reserved Op–codes will be treated as a NOOP (no operation).

Op–Code Operation
0000 ADD

0001 SUB

0010 MULT

0011 Reserved (NOOP)

0100 NOT

0101 OR

0110 AND

0111 Reserved (NOOP)

1000 SHFT with 0

1001 SHFT with loop around

1010 Reserved (NOOP)

1011 Reserved (NOOP)

1100 Reserved (NOOP)

1101 Reserved (NOOP)

1110 Reserved (NOOP)

1111 Reserved (NOOP)

ELEC 422 Final Report H. Kim and L. Favichia

2

 1.3 I/O Pin Description

Pin Name Pin Count I/O
Op–Code 4 Input

Data–In 8 Input

Data–Out 8 Output

Overflow 1 Output

Data Ready 1 Output

Reset (Restart) 1 Input

DFT (State Bits, DONECNT) 6 Output

Clocks 2 Input

1.4 Control Logic

The control logic will be implemented in FSM. Due to the complexities of the logic, the control
section is divided into two sections (a main controller and a counter). Basically, the inputs of the
main controller are the CLK1, CLK2, OP–CODE, RESET, M (Multiplier bit for multiply operation)
and DONECNT bit (from the counter) The following are control output signals: LDREG1, LDREG2,
LDREG3, LDREG4, LDACCUM, LDREGOUT, CLRACCUM, SUBT, INADDER, INPAD,
DATARDY, SHIFT, SEL0, SELL, INV, OR, AND, STARTCNT, OUTACCUM, OUTREG2,
OUTADDER, OUTLOGIC. DATARDY signal is required b/c all of the operation have different
timings (for example, AND operation will take 3 CLK cycles, as opposed to MULT, which can take
anywhere from 12 to 20 CLK cycles)

1.5 Adder/Subtractor/Multiplier/Shifter

The Adder is a 8–bit parallel adder with an accumulator, so it could be used as a regular adder and
a part of a multiplier. It will implement no complex carry look–ahead algorithms to save on logic
complexities. Subtractor basically is the same adder with 2’s complement on subtracter. 2’s
complement is implemented by complementing the subtracter, and feeding 1 in the first bit of the
adder carry–in bit. For regular ADD and SUB operations, only bit 15:7 (total of 8 bits) of the 17–bit
accumulator/shift register will be used.

The multiplier basically is a shift–adder that will repeat the add and shift / shift only operation for 8
times to implement 8–bit by 8–bit multiply. It will only support positive number multiply for circuit
complexity and timing issues.

Shift operation is done by the 17 bit accumulator/shift register, but will only use 15:7 bits.

The logic operations will be done in separate one or two 8–bit registers, depending on how many
operands each logic function require.

In order to utilize same 16–bit accumulator/shift register, 8–bit register, and the 8–bit adder for
many different operations, the data flow will be controlled by many MUXs and passgates controlled
by various control signals.

ELEC 422 Final Report H. Kim and L. Favichia

3

 1.6 Input/Output Control

Inputs and outputs (mainly data) is handled by two main 8–bit bus systems. The input bus is
hooked up to 5 different registers and output is hooked is shared by four different circuits. The
input bus is common to all the inputs of registers and output is tri–stated when not in use.

For the inputs, the first clock cycle will accept the first operand, and second clock will accept the
second operand (if there is one). For the outputs, data will output in one clock cycle, except the
multiply where the results are in 16–bit form. The multiply will take two clock cycles to output its
entire data.

 1.7 Bonding map and Pin Assignment

ELEC 422 Final Report H. Kim and L. Favichia

4

 2. Circuit Design

This design relies heavily on two types of latches: regular and shiftable and loadable latch.
Regular latches are used to store the input and output data. Shiftable registers are used in multiply
and shift functions. Adder circuit is a basic ripple–carry adder with no look–ahead mechanism, but
has been carefully sized for optimal speed performance. MUXs and T–gates have been used to
control and limit the data flow.

2.1 Logic Diagrams

Schematics of sub–cells and upper level cells (Continue on next page)

ELEC 422 Final Report H. Kim and L. Favichia

5

2.2 System Timing Diagrams

ELEC 422 Final Report H. Kim and L. Favichia

6

2.3 Irsim Results of Subcells

Continue on next page

2.4 Irsim Results of Entire chip

Top level cell is called “full_chip.” Continue after IRSIM results of the subcells

ELEC 422 Final Report H. Kim and L. Favichia

7

3. PLA Description

This circuit has two PLAs for control: the main controller and a counter. Counter is only activated
during the MULTIPLY cycles and puts out DONECNT signal when it is done counting 8 shifts, and
stops the main controller. The main controller takes care of other operations.

Every operation basically takes three steps of computation: load REGA, load REGB, and load
REGout. It loads two operands into two separate registers, then the operators (logic or arithmetic)
cells generate proper outputs between the clock, then loading REGout will put those results into
the output bus.

3.1 State Diagram

Main PLA

ELEC 422 Final Report H. Kim and L. Favichia

8

Counter PLA

ELEC 422 Final Report H. Kim and L. Favichia

9

3.2 Input to MEG

MAIN CONTROLLER
––––––––––––––––––

–– control.meg
–– By: Han Kim
–– Main PLA controller for the ALU project
–– RESTART probably required on initial run

INPUTS: OP0 OP1 OP2 OP3 M DONECNT RESTART;
OUTPUTS: LDREG1 LDREG2 LDREG3 LDREG4 LDACCUM LDREGOUT CLRACCUM
 SUBT INADDER INPAD DATARDY
 SHIFT SEL0 SELL INV OR AND XOR
 STARTCNT OUTACCUM OUTREG2 OUTADDER OUTLOGIC;

RESET ON RESTART TO state0;

state0: case (OP3 OP2 OP1 OP0)
–– ADD
 0 0 0 0 => state1 (LDACCUM=1 INPAD=1);
–– SUB
 0 0 0 1 => state17 (LDACCUM=1 INPAD=1);
–– MULT
 0 0 1 0 => state11 (LDREG1=1 CLRACCUM=1);
–– NOT
 0 1 0 0 => state3 (LDREG3=1 INV=0 OR=0 AND=0 XOR=0);
–– OR
 0 1 0 1 => state5 (LDREG3=1 INV=0 OR=0 AND=0 XOR=0);
–– AND
 0 1 1 0 => state18 (LDREG3=1 INV=0 OR=0 AND=0 XOR=0);
–– XOR
 0 1 1 1 => state20 (LDREG3=1 INV=0 OR=0 AND=0 XOR=0);
–– SHFT0
 1 0 0 0 => state7 (LDACCUM=1 INPAD=1);
–– SHFTL
 1 0 0 1 => state9 (LDACCUM=1 INPAD=1);
 endcase => LOOP;

–– ADD / SUB
state1: GOTO state2 (LDREG1=1);
state17: GOTO state2 (LDREG1=1 SUBT=1);
state2: GOTO state0 (LDREGOUT=1 OUTADDER=1 DATARDY=1);

–– LOGIC FUNCTIONS
–– NOT
state3: GOTO state4;
state4: GOTO state0 (LDREGOUT=1 OUTLOGIC=1 INV=1 DATARDY=1);

–– OR
state5: GOTO state6 (LDREG4=1);
state6: GOTO state0 (LDREGOUT=1 OUTLOGIC=1 OR=1 DATARDY=1);

ELEC 422 Final Report H. Kim and L. Favichia

10

––AND
state18: GOTO state19 (LDREG4=1);
state19: GOTO state0 (LDREGOUT=1 OUTLOGIC=1 AND=1 DATARDY=1);

–– XOR
state20: GOTO state21 (LDREG4=1);
state21: GOTO state0 (LDREGOUT=1 OUTLOGIC=1 XOR=1 DATARDY=1);

–– SHIFT FUNCTIONS
–– SHFT0
state7: GOTO state8 (SHIFT=1 SEL0=1);
state8: GOTO state0 (LDREGOUT=1 OUTACCUM=1 DATARDY=1);

–– SHFTL
state9: GOTO state10 (SHIFT=1 SELL=1);
state10: GOTO state0 (LDREGOUT=1 OUTACCUM=1 DATARDY=1);

–– MULTIPLY
state11: GOTO state12 (INADDER=1 LDREG2=1 STARTCNT=1);
state12: IF M THEN state13 (LDACCUM=1 INADDER=1) ELSE state14 (SHIFT=1 SEL0=1);
state13: IF DONECNT THEN state15 (SHIFT=1 SEL0=1) ELSE state14(SHIFT=1 SEL0=1);
state14: case (M DONECNT)
 0 0 => state14 (SHIFT=1 SEL0=1);

0 1 => state15 (SHIFT=1 SEL0=1);
1 ? => state13 (LDACCUM=1 INADDER=1);

 endcase => ANY;
state15: GOTO state16 (LDREGOUT=1 OUTACCUM=1 DATARDY=1);
state16: GOTO state0 (LDREGOUT=1 OUTREG2=1 DATARDY=1);

COUNTER
 ––––––––

–– counter.meg
–– (8–1) SHIFT counter for the 16–bit multiplier
–– RESTART probably required on initial run

INPUTS: RESTART STARTCNT SHIFT;
OUTPUTS: DONECNT;

RESET ON RESTART TO state0;

state0: IF STARTCNT THEN state1 (DONECNT=0) ELSE state0 (DONECNT=0);
state1: IF SHIFT THEN state2 (DONECNT=0) ELSE state1 (DONECNT=0);
state2: IF SHIFT THEN state3 (DONECNT=0) ELSE state2 (DONECNT=0);
state3: IF SHIFT THEN state4 (DONECNT=0) ELSE state3 (DONECNT=0);
state4: IF SHIFT THEN state5 (DONECNT=0) ELSE state4 (DONECNT=0);
state5: IF SHIFT THEN state6 (DONECNT=0) ELSE state5 (DONECNT=0);
state6: IF SHIFT THEN state7 (DONECNT=0) ELSE state6 (DONECNT=0);
state7: IF SHIFT THEN state8 (DONECNT=1) ELSE state7 (DONECNT=0);
state8: IF SHIFT THEN state0 (DONECNT=0) ELSE state8 (DONECNT=1);

ELEC 422 Final Report H. Kim and L. Favichia

11

3.3 Irsim simulation

Main_PLA

Counter_PLA

ELEC 422 Final Report H. Kim and L. Favichia

12

4. Circuit Layout

4.1 Plots of Subcells

Continue on next page

4.2 Cell hierarchy

Continue after subcells

4.3 Floor Plan

Continue after cell hierarchy

4.4 Full Plot of Chip

Continue after floor plan

ELEC 422 Final Report H. Kim and L. Favichia

13

5. Performance Analysis

5.1 Crystal Analysis

Since the worst circuit for delay and clocking speed purpose is the adder8 cell, a SPICE simulation
was performed before it was checked with Crystal. We believe SPICE gives a more accurate
result, so the Crystal analysis was not necessary.

5.2 Spice Analysis of Critical Circuit (Adder8)

SPICE outputs

ELEC 422 Final Report H. Kim and L. Favichia

14

ELEC 422 Final Report H. Kim and L. Favichia

15

5.3 Maximum Clock Frequency

According to the SPICE simulation of the Adder8 cell, we can see that there is about 20ns delay
between the input of the adder and last SUM bit switching (SUM[7]). This suggests that
theoretically, we can clock the circuit up to 50 MHz (limited by the slowest section of the circuit,
which is the Adder). With other factors and delays accounted in, we predict about 25 MHz of safe
operation of this circuit.

6. Summary

The “Vanilla” Arithmetic and Logic Unit accomplished our two goals: essential and simple functions
and fast operation. We accomplished a fairly simple design with some basic circuit elements that
performs most major ALU functions (ADD, SUBT, etc.) We knew even before actual layout was
done that the Adder will be our speed bottleneck, so a full custom and a careful layout was done, so
that the delay in that circuit will be minimum.

6.1 References

1. Principles of CMOS VLSI Design; A Systems Perspective
 Weste, Neil H. E., Eshraghian, Kamran
 1993, AT&T

6.2 Comments on CAD tools

Generally the CAD tools were decent, considering that they are freeware and widely distributed.
Learning curve is fairly easy on all of the tools that we used. We especially liked the PLA tool for
synthesizing logic quickly and easily. Surprisingly, MAGIC had some features that some of the
expensive professional layout tools does not have, such as an interactive design rule checker.

