Using Crystal for Timing Analysis

John Ousterhout

Computer Science Division
Electrical Engineering and Computer Sciences
University of California
Berkeley, CA 94720
415-642-0865
Arpanet address: ousterbout@berkeley
Uucp address: ucbvax!ousterhout

This user manual corresponds to Crystal version 2.

1. Introduction

Crystal is a program that analyzes the performance of VLSI circuits. Its
input consists of a circuit description extracted from the mask layout by the
Mextra program. Users also supply a few lines of text to guide the analysis.
Crystal then determines how long each clock phase must be and outputs
information about the portions of the circuit that cause the worst delays.

Crystal helps in performance tuning by pointing out paths that limit clock
speed. It is intended for circuits designed using multiple non-overlapping clocks.
It will determine the length of each clock phase, but will not check clock skew or
set-up and hold times. Circuits using more complex timing disciplines may
require additional timing analysis besides what Crystal provides.

This manual is a tutorial on how to use the Crystal commands to get
accurate timing information. It should be used together with the Unix man page,
which provides detailed syntax information along with more concise descriptions
of the commands, options, and built-in tables. Crystal is easiest to understand if
you try it out on simple test cases while you read the manual sections.

17

Using Crystal for Timing Analysis November i7, 1985

2. Timing Analysis versus Simulation

Crystal's approach is very different from simulation, so the way you'll use it
is quite different from the way you use a simulator. The difference is that Crystal
does not consider specific data values. When you use a simulator like SPICE, you
invoke a run by giving specific values for all the inputs to the circuit. The
simulator then tells you exactly what will happen at each node at each point in
time. When using Crystal, the goal is to specify as little as possible about your
circuit. You only give Crystal vague information about a few nodes in the circuits
(usually the clocks). Wherever Crystal doesn't have specific information from
you, it chooses the worst possible alternative. Crystal combines all these worst
possibilities to find the overall slowest path through the circuit, which it presents
to you.

Simulation results are only as good as the specific choice of test cases: if your
test cases don’t exercise a particular portion of the circuit, bugs in that portion
may go undetected. The advantage of Crystal’s value-independent approach is
that it is guaranteed to find the worst-case timing behavior of the circuit. Crystal
tries all possibilities at each point and picks the worst, so it doesn’t depend on
designer input to find the critical paths. Furthermore, Crystal does all this in a
single run. Simulation requires separate runs for the different test cases, which
can be expensive for large: circuits.

The disadvantage of Crystal’s approach is that it may examine paths that
could not occur in the actual chip. For example, Crystal may examine a path
whose first portion can occur only when signal A is zero and whose second portion
can occur only when A is one. Unless the value of A has been specified explicitly,
Crystal will assume that A could be zero in the first portion of the path and one
in the second portion. False paths like this result in camouflage that may hide the
true critical paths. To eliminate false paths, you restrict Crystal’s analysis by
fixing a few node values, by restricting the way that signals can flow through
transistors, and by giving Crystal specific information about which nodes to
watch. Sections 10 and 11 show how to do this. You should try to get by with as
little additional information as you possibly can: if you restrict the analysis too
much, you may accidentally prevent Crystal from examining the true critical
path. The best way to use Crystal is to start out with no additional information,
and then add only the bare minimum that’s needed to eliminate the false paths.

Crystal is not a replacement for a simulator. Since it ignores most data
values, it doesn’t give any information about whether your circuit is functionaily
correct; it will merely tell you how fast it will run. However, by analyzing the
timing behavior for you, it allows you to use a fast high-level simulator that
ignores timing behavior (ESIM, for example) instead of a slow circuit-level
simulator like SPICE. Crystal's models for timing are much simpler than
SPICE’s. This makes the program run fast, but produces less accurate results in
some situations. Section 14 discusses Crystal’s models in detail.

318

Using Crystal for Timing Analysis November 17, 1985

3. Signal Flow, Stages, and Delay Analysis

Crystal analyzes your circuit in terms of signal flow. “Signals’” means zero
or one signals, not current or electrons. Signals flow from sources to targets.
Signal sources are the chip inputs and the Vdd and GND supply rails. In
addition, nodes of the circuit that are labelled as busses are also considered to be
signal sources in some situations (see Section 9). Signal targets are places where
information is used: gates of transistors and the chip outputs. A stage is a path
leading from an signal source through transistor channels and other nodes to a
target. If all the transistors in a stage are turned on, then 2 signal can flow from
the source to the target. See Figure 1.

Vdd vdd vdd

Figure 1. The path from Vdd to C through transistors 2 and 3 is a stage. If you
tell Crystal that node A can fall at a certain time, Crystal will infer that node C
might rise at a later time, node E might fall at a still later time, and pode F rise
latest of all.

To start a delay analysis, you give Crystal the time when some signal in your
circuit rises or falls (usually this is the input pad for a clock signal). Crystal finds
all the signal targets that can be reached from that node. For each target that is
a gate, Crystal looks for stages that might be activated by the change in the gate.
For each stage that it finds, Crystal computes the time when the stage's target
will change value. Then if the target is a gate, Crystal repeats the whole analysis
recursively by finding other stages that the gate change might activate. This
continues until all possible consequences have been examined.

For example, in the circuit of Figure 1, if you tell Crystal that node A can
rise at time 0, Crystal will realize that this change could activate a stage from
GND to C through transistors 1 and 3. Whether or not this happens in the actual
circuit depends on the value of B; if you haven't specified that value, Crystal will
assume that it might be 1, so it will examine the stage. Using the information in
the stage, Crystal will compute the delay to C, and use it to update the worst-
case fall time for C. Since C connects to the gate of transistor 5, Crystal will then
realize that when C falls, it could turn off the pulldown stage from GND through
transistors 4 and 5 to E. This could activate the pullup stage from Vdd to E
through transistor 6, so Crystal will examine that stage (of course, if node Dis 0
then the pulldown stage was already turned off and the change in C has no effect;
if you haven't explicitly told Crystal that D is 0, it will assume that it might be
1). Finally, when E rises it could activate the stage from GND through transistor

[

-3-

319

Using Crystal for Timing Analysis November 17, 1985

7 to F, so the worst-case fall time for F will be updated.

If the circuit has many input signals, you invoke the delay analysis again for
each of them. Crystal remembers the worst delays seen in any of the analyses.
After all the delay analysis has been done, you tell Crystal to print out the worst-
case paths through the circuit. A path is 8 sequence of stages, each causing a
change in the next. The worst-case path is the one whose final target reaches its
final value later than any other node in the circuit. For example, the path from A
to C to E to F is the worst case path in Figure 1. Information about the worst-
case paths is recorded by Crystal as part of the delay analysis; you can control
how many paths Crystal records. ’

4. Naming Nodes

Many of the Crystal commands take node names as parameters. A name can
either refer to a single node or to a group of nodes. There are two forms for
group names. The first form selects nodes whose names form a numerical
sequence. The limits of the sequence are delimited by angle brackets (which are
not part of the name). Thus, Bit<1:4> selects the nodes with names Bitl,
Bit2, Bit3, and Bit4. To select a node whose name contains an angle bracket,
use a backslash character in front of the bracket. For example, type
TruelfX\<Y to select the node whose name is TruelfX<Y. To get a
backslash in a node name, use two backslashes in a row.

The second form of group name selects all nodes whose names contain a
given pattern. The name is specified as a star follwed by the pattern. Thus,
*abe selects all nodes containing the pattern abe. Only simple pattern matching
is done. The name *® selects all nodes in the circuit.

5. How to Run Crystal
Invoke Crystal with the shell command

crystal file

where file is the name of a .sim file. If you want to modify Crystal's timing
models, then you should not specify file on the command line; use the build
command to read the file in after changing the models. The .sim file should have
been created by Mextra. If Mextra was run with the -o switch (thereby
generating “N" lines in the .sim file), then Crystal will know about parasitic
capacitances and resistances associated with wires. If the -o switch wasn't
specified to Mextra, then there will be ““C” lines in the .sim file instead of “N"
lines and Crystal will only know about parasitic capacitances. A .sim file
shouldn't contain both “N" and “C” lines. Note: Crystal will not work with .sim
files generated by Cifplot using its -x option.

Crystal reads its commands from standard input and writes its output to
standard output. Each input line consists of a command name followed by
arguments. The fields are separated by spaces or tabs. Any unique abbreviation
for a command name is acceptable. If the first character of a command line is an

«
E

320

Using Crystal for Timing Analysis November 17, 1985

exclamation point, then the whole line is treated as a comment and ignored.

Commands are divided into seven groups, which should appear in the
following order:

Model commands These commands modify the timing models that
Crystal uses to compute delays, and must appear
before the circuit is read in. The model commands
are model, parameter, and transistor. See
Section 14 for information on how the models work
and how to change them. .

Circuit commands Circuit commands are used to input the circuit and
provide additional information about it, such as
inputs and outputs. The circuit commands are
build, bus, capacitance, inputs, outputs, and
resistance.

Dynamic node command This group includes the single command
markdynamie, used to find and mark the dynamic
memory nodes in the circuit. Section 13 describes
how to use this command.

Check commands There are two commands in this group, check, and
ratio. They are used to examine the circuit’s
structure for suspicious looking electrical features,
and may be useful in pointing out places where you
need to provide extra information to Crystal. See
Section 12.

Setup commands Setup commands are used to restrict the paths that
Crystal can examine in any given delay analysis.
This group includes the flow, precharged,
predischarged, and set commands.

Delay command ' This group contains only a single command, delay,
which performs the actual delay analysis.

Miscellaneous commands These commands are used to set internal options and
print out results and statistics. They can be invoked
at any time. Commands in this group are: alias.
critical, dump, fillin, help, options,
preapacitance, prfets, prresistance, source.
statistics, and undump.

The only command outside these groups is the clear command, which resets
information that was set by setup and delay commands. After clear, input may
resume with anything except model commands. Clear is used to perform several
different timing analyses (for example, for different clock phases) without having
to read in the circuit again.

321

Using Crystal for Timing Analysis November 17, 1985

8. Simple Runs on Combinational Circuits

The simplest use of Crystal is for combinational (unclocked) circuits, where
you are interested in knowing how long it takes for a change in an input to
propagate throughout the circuit. Only four commands need be used: inputs,
outputs, delay, and critical. First, you must identify to Crystal the circuit
inputs (nodes that are driven by the outside world, such as input pads) and the
circuit outputs (nodes whose values are used by the outside world). This
information is used by Crystal in figuring out how signals can flow. For example,

inputs Bus<31:0> Select
outputs Overflow

identifies the 32 bus bits and the Select signal as inputs, and the Overflow
signal as an output. See Section 9 for more on the inputs and outputs
commands.

Delay commands are used to tell Crystal when input signals change value.
For example,

delay BusBit 0 2

indicates that the latest time when BusBit will rise is time Ons and the latest
time when BusBit will fall is time 2ns. Crystal will then examine the
consequences of this change to determine the latest possible rise and fall times for
all other nodes affected directly or indirectly by BusBit. A negative time in a
delay statement means that the transition never occurs:

delay Select -1 0

means that Select is initially 1, and will become 0 no later than time 0. Thus,
only the falling transition of Select will be considered in the delay analysis.
Many consecutive delay statements can be used where there are many inputs
that change at different times.

After the delay commands, all that is needed is to print out the critical path.
The eritical command can be used for this. It requires no arguments.

7. Simple Runs on Clocked Circuits

Clocked circuits are handled like combinational circuits, except that there is
a separate group of delay and critical commands for each clock phase.
Typically, things in the circuit happen in response to the rising edges of clocks.
and we'd like to know how long it takes for everything to stabilize once the clock
phase has begun. Thus, there is usually a delay command of the form

delay Phil 0 -1

in the group for each clock phase. If no other delay commands are given, it is
assumed that all other input signals stabilize long before the clock rises.

The command
clear

is used between the commands for the different clock phases; it clears out old

-6-

322

Using Crystal for Timing Analysis November 17, 1885

delay information. An alternate way to handle different clock phases is with a
completely separate Crystal run. However, for large chips it takes a long time to
read in the circuit so it is usually faster to process all clock phases in a single run.

Phasel Phase2 Phasel Phase?2 Phasel

Figure 2. If Crystal doesn’t know that Phase? is zero, then during Phasel analysis
it will consider a path from the left end of the shifter all the way to the right end.
If 2 set command is used to tell Crystal that Phase2 is zero, then Crystal won't
propagate delays through the pass transistors that are turned off.

In addition to the clear commands between clock phases, set commands will
be needed just before the delay commands for each phase. A set command
indicates that a particular node will always have a particular value during the
ensuing delay analysis. For example,

set 0 Phi<2:3>

indicates to Crystal that Phi2 and Phi3 will be 0 during the analysis. Crystal
uses set information to avoid delay paths that cannot occur, as illustrated in
Figure 2. The eclear command will erase information from previous set
commands; see Section 10 for more details on set.

Although the simple set of commands described above will work for many
circuits, there are other circuits where it won't work very well. In particular,
circuits with networks of transistors used for multiplexors or shifters require
additional information that is discussed in Section 1l. If only the simple
commands are used for these circuits, Crystal will either produce pessimistic
results or it will never finish. The sections below describe how to get more
information out of Crystal and how to feed additional information into Crystal to
produce more accurate results more quickly.

8. More on the Printing Commands

Besides the simple usage of the critical command, there are several
additional ways that Crystal can print information. All of the printing commands
are in the “miscellaneous” command group, so they can be invoked at any time.

8.1. Graphical Command Files

The printing commands will generate graphical command files if you wish.
The command files can be used to highlight nodes and transistors using layout
editors like Caesar, Magic, and Squid. The default for such files is Caesar format
(the options command can be used to change the format to Squid or Magic
style). The -g switch is used to generate the command files. For example,

critical -g dum

will generate in file dum a list of Caesar commands that will highlight the critical
path. To use a Caesar command file generated in this way, do the following: first,

-7-

323

Using Crystal for Timing Analysis November 17, 1985

edit the circuit in Caesar; second, select a view that contains the entire circuit
(using the v short command if necessary); third, use the :source long command
to process the command file. The commands will place splotches of the error
layer along with labels to identify ‘‘interesting points” on the circuit. Boxes are
pushed on the box stack so that you can step from one interesting point to
another using the :popbox long command. The interesting points and labels are
different for different Crystal commands. In the eritical command, for example,
the points are the gates of transistors along the worst-case timing path, and the
label for each point shows the delay to that point.

8.2. Critical Paths

The eritical command prints out delay paths through the circuit and has the
following form:

critical [-g graphicsFile] [-s spiceFile] [teztFile] number number ...

For each number given, information about the numberth slowest path in the
circuit is output (Crystal only records a small number of the slowest paths; to
change this number use the options command). If the -g switch is given,
graphics output is generated. If the -s switch is given, a SPICE deck is generated
for the critical path. If teztFile is given, a textual description of the critical path
is written to that file. If none of graphicsFile, spiceFile, or textFile is given, a
textual description is output on standard output.

SPICE decks generated by Crystal contain circuit description cards and
transient analysis cards, but no model cards; you should add your own model
cards to the beginning of the deck. The circuit contains all the transistors and
parasitic resistances and capacitances along the path, including gate-source and
gate-channel capacitances for transistors that aren’t part of the path but connect
to it. Node 0 is used for GND, node 1 for Vdd, and node 2 for the substrate
body. Crystal generates a card for Vdd, but it doesn't know what the body bias
voltage is, so you must add your own card to the deck to generate it.

Crystal actually records three separate lists of slow paths, corresponding to
different categories of nodes. The first list is for all nodes. The second list is for
paths leading to memory nodes, and the third list is for paths leading to nodes
that you have specially requested to be watched, using the watch command.
Normally the numbers in the critical command refer to the overall list.
However, if you end the number with the letter ‘‘m”, then the the numberth
slowest path to a memory node is printed. For example, “‘Im" refers to the
slowest path to a memory node. Similarly, the suffix “‘w” is used to refer to the
list for watched nodes: ‘“‘2w” refers to the next-to-slowest path leading to a
watched node. The lists for memory and watched nodes are explained in Section
13.

8.3. Capacitance and Resistance Information

Precapacitance and prresistance have similar syntax and are used to print
out nodes with large capacitances or resistances:

-8-

324

Using Crystal for Timing Aralysis : November 17, 1985

preapacitance [-g graphicsFile] [-t threshold] node node ...
prresistance [-g graphicsFile] [-t threshold] node node ...

For precapacitance the threshold is in picofarads, and for prresistance the
threshold is in ohms. The thresholds default to zero. If no nodes are specified,
then the entire circuit is searched for nodes whose capacitance or resistance is
greater than the threshold. If nodes are specified, then only those nodes are
considered. A line of output is generated for each node exceeding the threshold.
For example, preap abe will print out the capacitance at node abe, and prres
-t 10000 will print out all nodes with lumped resistance greater than 10 kohms.
The -g switch is used to generate a graphical command file. If Crystal encounters
several nodes with exactly the same resistance or capacitance, only the first is
printed. At the end of the printout, Crystal lists how many duplicate values were
discarded.

8.4. Information about Transistors
The command

priets node node ...

will print out lots of information about each transistor whose gate attaches to one
of the nodes. If no node is given, then information is printed about all transistors.

9. Circuit Commands

Commands in the “‘circuit’” group are used to read in the circuit and give
Crystal additional information about it. Information from circuit commands lasts
for the entire Crystal run, and isn't affected by clear or any other commands.

9.1. Reading in the Circuit
The command

build file

is used to read in the circuit. File is the name of a file in .sim format. If you type
a filename on the command line when you invoke Crystal, then the build
command is automatically invoked. However, if you wish to modify the circuit
models, you must do so before reading in the circuit. In this case, don't give a
filename on the command line, but use build instead. See Section 14 for
information on changing the models.

If 2 node has been labelled several times, then Mextra picks one of those
labels to identify the node. The other names are recorded in an alias file but are
pot used in the .sim file. If you'd like to use one of the aliases to refer to a node,
rather than the name Mextra chose, you can use the command

alias file
to read in the “.al” file produced by Mextra and add the aliases to the Crystal's
L.

\

-9-

325

Using Crystal for Timing Analysis - November 17, 1985

name table.

L

— B
Input >¢

Figure 3. If Input isn’t marked as an input, Crystal will not realize that it is a
source of signals, and will mistakealy assume that a change at A bas no effect on B.

9.2. Inputs and Outputs
These two commands were introduced in Section 8. They have the form

inputs node node ...
outputs node node ...

Crystal uses information about inputs and outputs to determine how signals can
flow around the circuit: inputs and Vdd and GND are assumed to be sources of
either a logic one or logic zero, and outputs and gates are assumed to be signal
targets (places to which signals flow). If you forget to tell Crystal which nodes are
inputs and/or outputs, it may miss some signal flows and overlook the critical
path (see Figure 3). The check command can help to find nodes that should be
marked -as inputs.

Any input node that is not also an output node is assumed to be driven
entirely from off chip. Crystal assumes that nothing on the chip can affect the
value of the node, so if the node isn't used in a delay command, then Crystal will
assume that its value never changes during the timing analysis. However, if a
node is marked as both an input and an output, then Crystal will calculate delays
to the node from the rest of the circuit. Usually only pads are marked as inputs,
but this need not necessarily be the case. Marking a node as in input is roughly
equivalent to applying a probe to the circuit at that point.

9.3. Changing Parasitic Values

Two commands are available to override Crystal's computation of parasitic
capacitance and resistance:

resistance ohms node node ...
eapacitance pfs node node ...

These commands will replace Crystal's computed value for the parasitic resistance
or capacitance of one or more nodes with the specified value. There are at least
two situations where this may be useful. For pads, there is relatively little
capacitance on-chip, compared to the off-chip capacitance that must be driven.
The capacitance command can be used to simulate the presence of the off-chip
capacitance. The resistance command is used primarily to compensate for errors
in the way Crystal computes resistances.. To compute the internal resistance of a
node, Crystal sums all of the internal resistances of all the wires connected to the
node. All of the transistor gates attached to the node are assumed to be driven
through all of the resistance. If a node has no branches this will give an accurate

-10 -

326

Using Crystal for Timing Analysis November 17, 1885

result, but if the node has many branches then Crystal will substantially
overestimate the resistance (this happens commonly for clock lines). The
resistance command should be used to correct such situations. Since Crystal's
resistance calculation is conservative, I suggest that you not use the resistance
command until you discover that a bad resistance value is causing Crystal to
overestimate the critical path.

9.4. Bus

There are a few occasions where, without guidance from the user, Crystal
will chase around the circuit almost endlessly during a delay command without
getting anywhere. This section describes once such scenario, and Section 11
describes another one that is even more serious.

AR5 AS
-Sj 4§J £ ¥

Figure 4. Without any additional information, Crystal will make a separate
examination of every path from an output in one cell to an input in another cell. If
Crystal knows about the presence of the bus, it first examines all paths from outputs
to the bus, then examines paths from the bus to inputs. This makes the analysis
much faster.

One situation where Crystal works too hard is the case of a bus with many
elements attached to it. Figure 4 shows such a situation. During delay analysis,
Crystal will check separately each path from the output of each bus element to
the input of each other bus element, resulting in total work proportional to the
square of the number of elements on the bus. If Crystal is told that the
connecting node is a bus, then it breaks up the paths into separate stages from the
elements onto the bus and from the bus to the inputs of the elemepts. For N
elements on the bus, this results in 2N stages to examine instead of N°. The bus
command has the following syntax:

bus node node ...

Nodes marked as busses are treated both as signal sources and as signal targets.

It is only safe to mark a node as a bus if its capacitance is much greater than
the internal capacitances of its elements. If this is not the case, then delays
through the supposed bus will be underestimated. Crystal automatically marks
all nodes with more than 2 pf of capacitance as busses (the threshold value can be
changed with the options command; to prevent Crystal from automatically
marking busses, use a very high threshold).

-11-

327

Using Crystal for Timing Analysis November 17, 19885

10. Setup Commands

Commands in the ‘‘setup” group are used to give Crystal additional
information to restrict the paths it examines in delay commands. The clear
command will erase any information provided by setup comands.

10.1. Set
The set command indicates that a node is fixed in value. Its syntax is

set 0/1 node node ...

When you tell Crystal that a node is fixed in value, Crystal performs a simple
logic simulation to see if that fixed value causes other nodes to be fixed as well.
For example, if an input of a NAND gate is set to 0, Crystal will deduce that the
output is fixed at 1. If an input of a NOR gate is fixed at 1, then the output must
be 0, and so on. See Section 14 for a description of how Crystal does the logic
simulation. When processing delays, Crystal checks transistors to see if their
gates are fixed in value. If a transistor's gate is forced to the value that turns the
transistor off, then no signals can flow through the transistor.

If 2 node is forced to a value by a set command, then Crystal assumes that
its value can never change during the timing analysis; that node will never
appear in a critical path. Because of this, you should use set sparingly, lest you
accidentally mask the critical path. Normally, set is used only to turn off all
clock phases but one and to disable diagnostic circuitry such as scan-in-scan-out
loops.

10.2. Precharging
The commands

precharged node node ...
predischarged node node ...

indicate to Crystal that the nodes are precharged to 1 or 0, respectively. When a
node is precharged, Crystal assumes that it has an initial value of 1 and can only
change to 0. Delays that would pull the node to 1 are ignored. When a node is
predischarged, Crystal assumes that it has an initial value of 0 and can only
change to 1. Delays that would pull the node to 0 are ignored. Precharged nodes
are assumed to be highly capacitive, so they are treated like busses.

11. Pass Transistor Flow

As mentioned in Section 9.4, there are a few situations where Crystal can end
up doing more work than necessary. The most severe examples of this concern
pass transistors. Because Crystal does not genmerally have information about
specific data values, it may examine impossible paths through pass transistors.
Figures 5 and 6 show two cases. In Figure 5, Crystal will produce a pessimistic
delay to Output2 by examining a path that passes forward and backward through

-12-

-

328

- Using Crystal for Timing Analysis November 17, 1985

Select Select
L
Inputl Inputl
Tect Outputl SEn —— Outputl
i A
lnput2 = So—tT bt Input2 = >o— |
.......................... outp“t2 outp“t2
(a) (b)

Figure 5. If Crystal doesn't know about pass transistor flow, it will consider the
impossible path shown in (a). If the pass trausistor flow is labelled with attributes,
as in (b), then Crystal will consider paths from Inputl to Outputl and from
Input2 to both outputs, but it will not copsider the path from Inputl to
Output?2.
the multiplexor. In Figure 6, there is an enormous number of contorted paths
through the shifter array. Crystal will attempt to examine every distinct path,
even though the values on the control lines will prevent most of the paths from
occurring in the actual circuit.

putt o S S«

Outl Out2 Out3 duM

Figure 0. Crystal will consider long snake-like paths through this barrel shifter
structure unless pass transistor flow information is provided.

To keep Crystal from chasing impossible paths, you must give it additional
information about which way signals flow through pass trapsistors. Flow is
indicated using transistor attributes in the CIF files that are input to Mextra. A
transistor attribute is a label (CIF “94" construct, or a standard Caesar label)
that touches the gate region of a transistor and ends in the character “$".
Crystal ignores all attributes unless their first characters are either Cr: or
Crystal:. To indicate the direction of signal flow, attach an attribute to a
transistor's source or drain; this is done by placing the label exactly on the line
between the gate and the source or drain (attributes placed entirely within the
gate region are attached to the gate of the transistor and are used to identify the
type of the transistor; see Section 14 for details).

faain

329

-13-

Using Crystal for Timing Analysis November 17, 1985

For pass transistors that are unidirectional, two special attributes, In and
Out, may be used. To use the In attribute, place a label of the form Cr:In$ or
Crystal:In$ on the source or drain edge of a transistor gate. This indicates that
whenever a 0 or 1 signal passes through the transistor, the source of the 0 or lis
on the same side of the transistor as the In attribute (i.e. the 0 or 1 flows into the
transistor from that side). The Out attribute indicates just the opposite, namely
that 0's and 1's flow out of the transistor at that side.

_ﬁ_l_ {1—
c@ _____ d
':I_—'_ %_-‘—T

Figure 7. Named attributes can be used to control flow in bidirectional structures.
In this case, paths from a to b and from e to d will be considered, but the path
from a to e to d will not be considered (Bow must be unidirectional with respect to
tags of a given name).

Bidirectional pass transistors cause special problems. To handle bidirectional
structures, one terminal of each pass transistor in the structure should be labelled
with an attribute other than In or Out. See Figure 7. These attributes limit the
way that signals may flow through the array: Crystal only allows signals to flow
unidirectionally with respect to the attributes. This means that Crystal will
consider any path through the array as long as the signal either a) flows into each
transistor from the labelled side, or b) flows out of each transistor from the
labelled side. A path will be ignored if a signal enters one transistor from the
labelled side and leaves another from the labelled side. This allows signals to
cross the structure in either direction, but will not allow them to criss-cross back
and forth.

If different bidirectional structures are labelled with different attributes, then
they are treated independently by Crystal. For example, Crystal will consider a
path that enters at one transistor at a side labelled Cr:A8$, and leaves another
transistor at a side labelled Cr:BS3. However, if the attribute Cr:A$ is used for
both transistors then the path is ignored.

Only a small number of transistors in any design should need to have flow
attributes. These transistors can be identified in either of two ways. The easiest
way is to use the check command, described in Section 12 below, to identify
candidates for flow tagging. The hard way is just to run Crystal: if you haven't
placed enough tags, then either Crystal will suggest impossible critical paths, or it
will abort the delay analysis because it found too many paths. In the first case, it
will be easy to identify the transistors that need flow tagging by looking at the
critical path. In the second case, you'll have to examine the backtrace
information printed after the abort to try to identify the transistors that need
tagging (see Section 18).

-14-

Using Crystal for Timing Analysis November 17, 1985

11.1. Flow

The flow command allows you to restrict flow through named attributes, and
has the form

flow direction attribute attribute ...

Direction must be one of in, out, off, ignore, or normal. If direction is in then
Crystal treats each of the attributes as if it was an In attribute, and if direction is
out then the attributes are treated as if they were Out. If off is specified then no
flow is allowed through any transistors with the given attributes. If ignore is
specified, Crystal will pretend that the attributes don't exist. If normal is given,
the flow is reset to do the normal thing. All flow attributes are reset to normal
by the clear command. The flow command has no effect on attributes In or
Out.

12. Checking Commands

Two commands are provided by Crystal to perform a static electrical analysis
of the circuit. They are only indirectly related to timing analysis, but are useful
to find problems such as improper ratios, nodes that aren’t marked as inputs, and
transistors that should have flow attributes.

12.1. Check
The command

check

makes a series of static electrical checks on the circuit. It prints out information
about nodes with no tramsistors connected to them, nodes that are not driven
from anywhere, nodes that don’t drive anything, transistors that are permanently
forced off, and transistors connecting Vdd and GND directly. Each of these
situations is probably an error. The check command also identifies transistors
that are bidirectional (each side of the transistor has both a signal source and a
signal target), but do not have any flow attributes attached. In most cases,
bidirectional transistors should have flow attributes to keep Crystal from
examining impossible paths.

12.2. Ratio
The ratio command has the form

ratio [limit value] [limit value] ...

and may be used for nMOS circuits to detect improper pullup/pulldown ratios.
Normal logic gates are expected to have pullup/pulldown ratios between 3.8 and
4.2, while logic gates driven through pass transistors must have ratios between 7.8
and 8.2. Any ratios outside this range are printed out. If the same erroneous
ratio occurs more than 20 times, only the first 20 are printed. The acceptable
range may be changed using limit-value pairs. Limit is one of normalhi,

7
£
N

-15-

331

Using Crystal for Timing Analysis November 17, 1985

normallow, passhi, or passiow.

13. Multi-phase Signals, Memory Nodes, and Watched Nodes

Crystal treats clock phases in a very simple fashion: each clock phase is
assumed to be long enough for the circuit to completely settle. The eritical
command indicates how long this takes. Although this approach will produce
correct circuits, it is an overly pessimistic view of how clocks are used. In most
clocked designs, some signals will settle over more than one clock phase. For
example, the input latch for an ALU might be loaded during phase 1, and the
output of the ALU might not be used until phase 2. .In situations like this,
Crystal will normally charge the ALU delay entirely to phase 1, leading to a
pessimistic timing estimate.

Phasel Phase?2

> A=A B o€ .0 =5
Figure 8. Because node A is 2 memory node, Phasel must be long enough for A
to settle. Nodes B, C, and D need not settle during Phasel: they can settle
anytime during Phasel or Phase2. However, if they don't settle during Phasel,

enough time must be allowed during Phase3 for them to settle and for the value at
E to settle also.

For a circuit to function correctly, it isn't really necessary for everything to
stabilize during each clock phase. All that matters is that clock phases are long
enough for memory cells to be loaded correctly. This means that there can be
some tradeoff between the lengths of the various clock phases: see Figure 8 for an
example. Ideally, Crystal should deal only with memory nodes: when analyzing
clock phase 1, Crystal should compute delays to memory cells loaded in phase 1,
memory cells loaded in phase 2, and so on. Then, instead of outputting a single
time and critical path, there would be separate times and critical paths for delays
between the leading edge of phase 1 and the trailing edges of phase 1, phase 2,
and so on. Unfortunately, Crystal doesn’t provide this much detail. Instead, it
uses memory nodes to provide a first-order approximation to this.

During the delay command, Crystal keeps three separate records of worst-
case delays: one for all nodes, one just for memory nodes, and one for watched
nodes. In the eritical command, you can use the ‘‘m’ suffix to print out memory
nodes. For example, eritical 1m will print out the path to the slowest memory
node. This simple facility allows you to ignore signals that need not settle during
the current clock phase. However, if a signal starts settling in one clock phase
and is loaded into a memory cell in the next clock phase, Crystal will not check
that the sum of the two phases is enough for this to happen safely. I suggest that
you examine critical paths both for memory nodes and for all nodes: check to see
that memory nodes will settle before the end of the current clock phase, and that
all nodes will settle before the end of the next clock phase.

There are two kinds of memory nodes in a MOS circuit, static and dynamic
(see Figure 9). Static memory nodes are those like cross-coupled NAND gates

-16 -

332

Using Crystal for Timing Analysis November 17, 1685

L_ False

Phase 1
L .

—e—

(s) (b)

Figure 9. In (3), nodes False and True are static memory nodes. In (b), Ais a
dynamic memory node.

where there is an ever-present feedback path. Crystal detects such feedback
paths during delay analysis and marks the memory nodes. However, Crystal
cannot identify dynamic memory nodes without help from the user. At the
beginning of analysis, you should use the markdynamic command to tell Crystal
which nodes are dynamic memory. The command has the form

markdynamic node value node value ...

During the markdynamie command, Crystal sets each node to the given value
just as if the set command had been used. Any nodes that are electrically
isolated by these settings (i.e. all transistors connecting to them are forced off) are
marked as dynamic memory. Normally, markdynamic is used by turning off all
of the clock phases. .

If Crystal's memory mechanism isn't discriminating enough to pick out all
the important paths, there is one more mechanism available as a last resort. You
can indicate certain nodes to be handled specially. These nodes are called
“watched nodes” because you select them with the command

watch node node ...

A special third list of slow memory nodes will be used to record the slowest delays
to watched nodes. This allows you to select key nodes and see the delays to those
nodes, even if those delays aren’t great enough to make the nodes appear on the
overall list or the memory list. The danger of the watch mechanism is that it
forces you to pick out the key nodes. If you forget a key node then you may end
up missing the critical path. I recommend that you work as much as possible
with the overall and memory lists, and only use the watch mechanism as a last
resort. '

14. The Models

Crystal’s model of circuit behavior has two parts: one part is used to do
logic simulation during the set command, and the other part is used to do delay
calculations during the delay command. Both the simulation and delay models
are based on transistor types: there are several types of transistors in the circuit,
and each is parameterized by several values. The man page lists the predefined
transistor types and the fields associated with each type. The subsections below
tell how this information is used by Crystal, how to change the predefined

-17-

333

Using Crystal for Timing Analysis November 17, 1085

information, and how to define new transistor types.

14.1. Simulation

In order to do logic simulation, each type of transistor is given two integer
strength values: histrength tells how strongly the transistor can pull to logic 1,
and lostrength tells how strongly the transistor can pull to logic zero. The
strength values are the same for all tramsistors of a given type, and are
independent of the geometry of the tranmsistor. For example, all aMOS
enhancement transistors have a lostrength greater than the histrength of all
nMOS depletion pullups.

During the set command, the nodes listed in the command are forced to a
given value. Then Crystal sees if these settings cause any transistors to be forced
on or off. If this happens, nodes on either side of the forced-on or forced-off
transistors may be forced to a value. The strength values are used to see if this is
the case. For a node to be forced to 1 in this way, two conditions must be met.
First, there must be a path from the node to a source of logic level 1, all of whose
transistors are forced on. Second, all paths from the node to sources of logic 0
must either contain a forced-off transistor or be weaker than the path to logic 1.
The strength of a path is the strength of its weakest transistor.

This simple simulation model is powerful enough to handle a variety of
nMOS and CMOS structures. Its weakness is that it doesn't take account of the
sizes of transistors, so it may behave incorrectly if improper ratios are used.

N2 ,-—-I—l N3
T3 Iﬁ“
[tz

N1

—[m

Filgure 10. To calcuiate the delay along this path with transistor T2 as the trigger
device, the resistances from T1, N1, T2, N2, T3, and N3 will be summed, and the
capacitances from N2, T3, N3, anad T4 will be summed. The delay will be the
product of the two sums.

14.2. Delay Calculation: the RC Model

Crystal has been designed to include several different delay models and to
permit the user to switch between them. At present, there are two delay models.
rc and slope. In the rc model each transistor type is characterized by two
resistances, rup and rdown. The transistor is assumed to have a fixed resistance
value rup per square whenever it is used to transmit a 1 signal, and rdown per
square whenever it is used to transmit a 0 signal.

- 18-

334

Using Crystal for Timing Analysis November 17, 1685

To calculate the delay in a stage, the RC model divides the stage into two
portions, separated by the transistor that turned on or off to activate the stage
(this transistor is called the trigger for the stage). See Figure 10. All the
resistances along the stage are summed, including rup or rdown for each
transistor, plus the resistance of the interconnect. All the capacitances between
the trigger and the target are also summed, including the gate-channel
capacitance of each transistor along the stage, the parasitic capacitances of the
interconnect, and the gate-source or gate-drain capacitances of unrelated
transistors that connect to nodes along the stage. Crystal assumes that the
trigger is the last transistor in the stage to turn on or off, so that all the charge
between the trigger and the signal source has already been drained. The total
delay for the stage is computed by multiplying the total capacitance by total
resistance.

14.3. Delay Calculation: the Slope Model

The RC model is simple and efficient, but it often produces optimistic delay
estimates. It assumes that the effective resistance of a transistor is independent of
the waveform on the transistor's gate, and this simply isn't true in reality. If the
gate voltage of a transistor rises or falls very slowly, the transistor has a much
higher effective resistance than if the gate voltage changes instantaneously. The
same transistor may vary in effective resistance by an order of magnitude or
more, depending on the exact waveform on its input.

In the RC model, the waveform at a node is characterized solely by the time
at which it rises or falls. In the slope model, an additional parameter is added:
the rate at which the signal rises or falls. This is called the edge speed, and is
measured in ns/volt at the instant in time when the signal crosses its logic
threshold voltage (the logic threshold voltage is a model parameter and can be
changed with the parameter command). Although this is only a first-order
approximation to the actual waveforms, in Mead-Conway style digital circuits the
waveforms tend to have about the same shape except for slope, so this
characterization is fairly accurate.

The slope model characterizes the effective resistance of a particular type of
transistor in terms of the ratio of two edge speeds: the input edge speed, and the
output native edge speed. The output native edge speed is the edge speed that
would occur on the output if the input rose or fell infinitely fast (edge speed 0). If
the edge speed ratios are small (inputs much faster than output), or if they are
uniform across the whole circuit, then the RC model is accurate.

Two tables are used to characterize each transistor type. One table is used
when the transistor is pulling up, and the other is used when the transistor is
pulling down (these are the slopeparmsup and slopeparmsdown fields in the
transistor models). Each table consist of several triplets. Each triplet contains
three values: an edge speed ratio, the transistor’s effective resistance per square
when that edge speed ratio occurs, and the output edge speed (per pf of
capacitance driven and per square of tramsistor), when that edge speed ratio
occurs. The table entries must be in increasing order of edge speed, and the first

-19-

335

Using Crystal for Timing Analysis November 17, 1985

entry must have a zero edge speed ratio. If Crystal ever encounters a ratio larger
than the largest in the table, it issues a warning message and extrapolates from
the largest values. To simplify the task of gathering all this model information,
use the Mkcp (‘‘make Crystal parameters’) program.

Delay calculation in the slope model proceeds in much the same way as for
the RC model, except that for the trigger transistor, Crystal interpolates in the
tables to find the effective resistance. For transistors other than the trigger, the
pative resistance is used. In addition, the slope model computes an output edge
speed contribution from each component slong the path (transistor or node
resistance), and sums these to compute the edge speed at the target. The edge
speed contributions are computed for each componenet as if that component were
driving the capacitance all by itself.

The slope model appears to be fairly accurate. Initial measurements suggest
that it is usually within 5% of the times that SPICE predicts for the same
circuits, and is rarely worse than 20% off. In contrast, the rc model often
produces estimates that are optimistic by 40% or more. The slope model is
almost as fast as the rc model, so there is little reason to use the rc model
anymore, except for comparison.

14.4. Changing the Models

Crystal provides three commands that you can use to change its internal
models. The command

model [name]

will set the current delay model to name, if it is specified. If name is omitted.
then the command will print out the valid model names with two stars next to the
current model.

The command
transistor [name |field value(s)| [field value(s) ...]

is used to see and modify the values used to characterize each transistor. If
transistor is invoked with no arguments, all the transistor types and their
current values are printed. If only name is supplied with no fields or values, all
the transistor type information for name is printed. Otherwise, fields for
transistor type name are changed to the given values. The man page lists the
predefined transistor types and the field names. If name isn’t one of the
predefined transistor types, then a new transistor type is created with the given
field values.

The third command is used to see and set the model parameters that don't
have to do with specific transistor types. At present, these parameters are used
only for computing the parasitic resistance and capacitance of interconnect. The
command has the form

parameter [rame| [value]

If both name and value are specified, then the selected parameter is set to the
given value. If value is omitted, then the value of the parameter is printed. If

-90-

336

Using Crystal for Timing Analysis November 17, 1985

peither value or name is given, then the values of all parameters for the current
model are printed. See the man page for a listing of the parameter names.

14.5. Defining New Transistor Types

The transistor command can be used to define new transistor types besides
the standard ones. To get Crystal to treat transistors in your circuit as one of the
new ones you've defined, use transistor attributes. Normally, Crystal decides the
type of each transistor based on its type in the .sim file (enhancement, depletion,
p-channel, etc) and how it is used in the circuit. For example, depletion
transistors with source or drain connected to Vdd and the other two terminals
connected together are given type mload. If you want Crystal to use a type of
your choosing for s transistor, place an attribute inside the gate area of the
transistor. The name of the attribute will be taken by Crystal as the type of that
transistor. For example, if you have defined a new transistor type bootstrap,
then each of these devices should have an attribute Cr:bootstrap$ on its gate.

15. Miscellaneous Commands

The help command prints out a list of the commands and their parameters.
For information on the commands that is more detailed than help, and more
eoncise than this document, see the man page.

The command
source file

will cause Crystal to read commands from file until its end is reached. Upon
end-of-file, Crystal continues reading from the standard input. Source files may
be nested.

The options command is provided so that you can change internal
thresholds and switch settings used by Crystal. For example, one of the options is
the threshold capacitance value at which Crystal automatically marks nodes as
busses. Normal users shouldn't need to use this command very frequently. See
the man page for details on its syntax and on the available options.

The statistics command prints out a variety of statistics gathered by
Crystal as it runs. This information is probably not useful except to system
maintainers.

The quit command causes Crystal to return to the shell.

16. Deciphering Crystal's messages

Crystal outputs a huge variety of error messages, bug messages and hints.
Most of them are in response to syntax errors in the .sim file or errors in
commands: these are relatively easy to understand. You should never see a
message beginning with the words “‘Crystal bug:”. If you do, report it to me or to
your local Crystal wizard. There are several other messages whose meaning is not
obvious. They generally indicate that something not-quite-right happened and

!
3

-92]-

337

Using Crystal for Timing Analysis November 17, 1985

are hints that either you are not issuing the right commands or you need to use
flow tags or set commands to restrict Crystal's analysis. Each of the following
subsections describes one such message.

16.1. Aborting: no solution after examining 200000 stages

Crystal has a limit on how many stages it will examine in delay calculations.
If the limit is reached, Crystal gives up in despair. When it gives up, it usually
means that you need to add more flow control to pass transistors to restrict the
set of paths Crystal has to analyze. Occasionally, the built-in limit isn’t sufficient
for a particular clock phase, even after all the necessary flow control has been
added. In this case, use the options command to increase the limit.

When the limit is reached, Crystal outputs many messages, the first of which
is the “Aborting:"" message. Following this will be many messages of two forms:
“ChaseVG giving up at xyz"”, and “‘ChaseGates giving up at abc”. ChaseVG and
ChaseGates are the two internal routines that trace out paths through the circuit
during delay analysis. The messages indicate the path Crystal was examining
when it gave up in despair, in backwards order from the node where it gave up to
the node in the delay command. Often, the node names in the messages will
identify the area where more flow control is needed.

If Crystal aborts a delay calculation, then the information in critical and
similar commands may not be accurate, since the delay analysis wasn't completed.
However, the path provided by critical may indicate the place where more flow
control is needed. Another way to locate transistors that need flow tagging is to
use the check command.

16.2. More than 8 transistors in series

During delay analaysis, if Crystal finds a single stage containing more than a
certain number of transistors in series, it prints this message. The stage is also
ignored (usually such stages cannot occur in practice anyway). A typical place
where this might occur is in carry-chain precharging schemes where there are
both parallel and serial paths to each node in the chain.

Phil Phi2

L |

Busin . J , BusOut
32 32

Figure 11. A simple circuit with two non-overlapping clock phases, 32 data inputs,
and 32 data outputs.

N

-9292.

338

Using Crystal for Timing Analysis November 17, 1985

17. An Example

For the circuit of Figure 11, the following Crystal commands might be used to do
timing analysis, assuming that data is read into the circuit only during Phil and
that it stabilizes no later than 20ms into the clock cycle. The Busln signals are
unidirectional (if they could also be driven from on-chip then it would not be
necessary to specify them in the inputs command). As a result of this set of
commands, two Caesar command files will be created: philemds and phi2cmds.

inputs Busln <0:31> Phil Phi2
outputs BusOut<31:0>

set Phi2 0

delay Phil 0 -1

delay BusIn<0:31> 20 20
critical -g philemds

clear

set Phil 0

delay Phi2 0 -1
critical -g phi2emds

-23-

339

