A formal model for MOS clocking disciplines
Kevin Karplus

Abstract

This paper presents a formalization of clocking disciplines used to
prevent race conditions in VLSI circuits. A signal-labeling scheme for the
two-phase clocking discipline informally described in Mead and Conway
[MC] is presented. The correct labeling of a circuit consisting of
combinatorial logic and memory elements can be checked mechanically.
The signal-labeling conventions are based in part on those of Noice,
Mathews, and Newkirk [NMN].

A formal basis is presented for constructing signal-labeling schemes for
multi-phase clocks (both overlapping and non-overlapping) from a
definiton of the master timing signals. Both two-phase non-overlapping
and four-phase overlapping clocks are used to illustrate the formalism.

introduction

Timing errors are a major source of design flaws in integrated circuits.
Race conditions (situations where the operation of a circuit depends on
the relative speeds of multiple paths through the circuit) are difficult to
~ diagnose and eliminate. Timing simulation is not an adequate tool for
detecting race conditions, as there are far tco many paths through the
circuitry on VLSI chips to simulate even a small fraction of them.
Furthermore, the delays in MOS circuitry vary enormously with small
changes in the fabrication process, so simulations would have to be done
repeatedly with different parameters.

Clocking disciplines attempt to eiiniina;e race conditions by making the
times at which events occur discrete. A master clock provides a periodic
signal defining the discrete time events. If the order in which two signals
arrive at some subcircuit is important, then they must be associated with
different events in the timing system. As long as the master clock is slow
enough, no race conditions can occur. Timing analysis can be used to
determine how fast the master clock can run, and what paths in the circuit
are responsible for limiting the speed. TV [J]I and Crystal {01, 02] are
examples of timing analysis programs based on two-phase clocking.

This paper discusses synchronous systems, in which time can be viewed
as periodic. The formalism is not intended to cover asynchronous or
self-timed systems. - ~

Draft of Technical Report 84-632, Department of Computer
Science, Comell University, August 1984.

Clocking Disciplines -2 - . Kevin Karplus

Discrete, periodic time

Although physicists and circuit designers usually view time as
continuous, it is convenient when designing digital systems to view time as
a sequence of distinct events.

Different levels of design call for different types of events. A scheduler
for an operating system may view execution of a complete program as a
single event; a state-machine controller takes each input as a separate
event; a flip-flop may take each clock edge as a separate event. This
paper examines time at the finer grain of the flip-flop or state machine, not
the coarser grain of an operating system or communications protocol.

To describe an infinite sequence of events in finite space, it is necessary
to impose some structure on the events. The simplest such structure is a
periodic one, in which a short sequence of events is repeated over and
over. '

Single-phase clocking

A square-wave or pulse train is easily described as a periodic repetition
of the two events (high and low). Note that the events correspond to
intervals of time, not’ single points. This simple description of a square
wave does not cover all of time. In any real system, some time is required
to go from the high state to the low state and vice versa. A better
description of a square wave is as a periodic repetition of four events (rise,
high, fall, low). During the high and low events, the signal does not
change.

Single-phase clock schemes generally use the rise and fall events to
provide timing information for circuits. Many circuits use only one of the
two events for timing. This edge-triggering is very popular with TTL
designers, but is rarely seen in nMOS or ¢cMOS design. '

There are two problems with edge-triggering. First, the rise and fall
events must be glitch-free to avoid false triggering. If the signal rings too
much, an edge-triggered circuit may see multiple rise and fall events
where only one was intended. Second, the widely varying delays of MOS
circuits make rise and fall events arrive at different parts of the circuit at
unpredictable times. With edge-triggering, it is hard to avoid situations in
which the order of arrival of signals over different paths affects the
operation of the circuit. :

Clocking Disciplines -3 - Kevin Karplus

datein__|p g D Q dats out
FF1 FF2
clock
delay 1 ek l—)cu:
delay2 .

The figure shows a simple race condition. Two D flip-flops are connected
in series to act as a shift register. When the clock line rises, data is
supposed to be transfered from FF1 to FF2, and from the input to FF1. If
the clock pulse arrives at FF2 sufficiently after it arrives at FF1, the input
will be transfered to both FF1 and FF2. The difference in arrival time of
supposedly simultaneous events is called ¢/ock stew,

Two-phase clocking

The standard solution to the problems of edge-triggering in MOS is to use
only level-sensitive, not edge-sensitive, circuitry. To a level-sensitive
circuit, the periodic repetition of a single event appears the same as the
continuation of the event. At least two distinct event types are needed to
distinguish one event from the next.

With a single clock line and standard 2-level logic, the possible events to
use are high and low. A simple pulse train alternates between the two
events. Unless the rise and fall times are large, a small clock skew can
present high to one part of the circuit, while presenting low to another.
Large rise and fall times are undesirable, because the intermediate signal
levels can propagate through a circuit resulting in non-digital behavior of
supposediy digital circuits.

To separate events, we may either depart from two level-logic, or have
at least two signals for timing. In some special cases (such as RAM design),
multiple logic levels are appropriate, despite the more complex cxrcuxt
design. In general, multiple signal lines are easier to design with.

Mead and Conway's two-phase non-overlapping clock scheme uses two
lines which are high alternately. The periodic sequence is (risel, midl,
falll, rise2, midZ, fall2). The midl and mid2 events are used for timing. .
All phase 1 timing signals rise sometime during risel and fall sometime
‘during falll. By making the rise and fall events long enough, clock skew
can be hidden in them. The mid events need only be long enough for
actions that are to occur during them.

Clocking Disciplines - 4 - Kevin Karplus

Derived clock signals

A complex circuit uses many different signals for timing functions.
Because these contrcl signals are usually derived from a master clock, they
are often called derived clock signals or qualified clock signals. They.are
divided into four disjoint classes (Q1, Q/! (pronounced Q-bar-1), Q2 and
Q/2). QI and Q2 are active high, Q/1 and Q/2 are active low. Ql and Q/1
are active only during phase 1, Q2 and Q/2 are active only during phase 2.
(Phase | refers to the three events risel, mid], and falll, and phase 2
refers to events rise2, mid2, and fall2.)

A signal is Q1 if it is always low during phase 2, does not change value
during midl, and if low during mid1 is low throughout phase 1. Notice that
a Q1 signal must be low during phase 2, but may be either high or low
during phase 1, and is carrying stable information only during the mid1
event. A signal is Q/1 if it is high throughout phase 2, doesa't change in
midl, and if high in midl is high throughout phasel. (Q2 and Q/2 are
similarly defined). Glitches can occur at the rising and falling edges of a
Q-labeled signal, but no glitches are allowed when the signal is supposed to
be inactive. The timing diagram below gives examples of each of the signal
types.

Jisel K midl falll | rise2 mid2 fel12 _ risel _ mid! . falll |

L/ A\t [/ __\

W\ /7
[/ A\ Q2

A\ [/ 0/2

If the timing signals of a chip are labeled by class, the intervals for the
six events can be found by simulation. Rise! begins when the [irst Q1
signal rises (or Q/1 signal falls), midl begins when all the Q1 and Q/1
signals stabilize, and falll begins when the first Q1 signal falls or Q/1 rises.
(Similarly for phase 2 signals.) The main speed limitation is that midl be
long enough for all relevant data signals to propagate.

Clocking Disciplines -5 - Kevin Karplus

Two-phase labeling for data signals

Not all signals in a system are timing signals. The majority are used for
storing or transmitting data. For these signals a different labéling scheme
is needed, to identily the times when the signals have valid data. The
following table gives the signal labels for data signals in a two-phase
system:

label read means

Vi valid-1 signal doesn't change during faltl

S1 stable-1 signal doesn't change during risel, mid1, and falil

vis2 v-1-s-2 signal doesn't change during falll, rise2, mid2, and
fall2

LH1 low-high-1 signal is constant low during rise!, mid1, and falll,
or is constant high during falll

HL1 high-low-1 signal is constant high during risel, mid1, and falll,
or is constant low during falll

Viva v-1-v-2 signal is both V1 and V2.

(Labels V2, S2, V2S1, LH2, and HL2 are defined similarly.)

Some labels are si/ronger than other labels. For example, any signal
that is S1 doesn't change during falll, so is also V1, and can be used where
a V1 signal is needed. The labels can be arranged in a lattice as follows:

Q12 Q2 V2Sl V1°2 1

7N N

viv2

un mz " mz

/

When the input to a circuit requires a signal labeled z, a signal with any
label above r along the lines of the diagram may be used. However, note
that Q2 and Q/2 carry no information in phase 1, and are Sl only because
they are guaranteed inactive throughout phase 1. Using a Q1 signal where
an 52 or Y2 signal would normally be used is probably an error, since no
data is carried during phase two.

As a general rule, input signals are labeled with the weakest condition
necesszry for the circuit to work (usually V1 or V2) and output signals are

Clocking Disciplines -6 - Kevin Karplus

labeled with the strongest statement that can be made about the signal
(usually S1, S2, V1S2, or V2S1). The LHI and HL! labels are useful for
precharged circuits, particularly cMOS domino logic.

The results of boolean operations on labeled signals can be derived from
the definitions. Most labels are unchanged by negation, since negating a
constant signal results in a constant signal. Only the Q, HL, and LH signals
say anything about the logic level of a signal.

A not A - A not A
Q1 Q/1 Q2 Q/2

Vi \'A! V2 V2

St S1 S2 S2
Vis2 Vvis2 V2s1- V2si1
LH! HL1 LH2 HL2
HL!1 LHI HL2 LH2
VIV2 VIV2

A AND B

A B- 0/] Q1 V! LHf HL1 SI V2S1VIV2 ViS2 S2 HL2 LH2 V2 Q2 Q/2
1 Q/1 '

Q! Qt Q! Q!

Vi VIVLE VI VIVI VI VI

LH1 VI LHI VI LHILHI VI VI

HL1 Vi VI HL! HLIHLI VI VI

s Q! VI LHIHLI S1 SI VI VI

vasi Q! VI LHI HL1 SI V2S1VIV2VIV2 V2 V2 V2 V2
viv2 VI VI VI VIVIV2VIV2VIV2 V2 V2 V2 V2
Yis2 YI YI Vi YIVIV2VIV2YIS2 S2 HL2 LH2 V2 Q2
$2 V2 V2 S2 $2 HL2LH2 V2 Q2
HL2 V2 V2 HL2 HL2 HL2 V2 V2
LH2 V2 V2 LH2 LH2 V2 LH2 V2

v2 V2 V2 V2 V2 V2 V2 V2

Q2 , Q2 Q2 Q2
Q/2 Q/2

Blanks in the table indicate illegal operations.

The tables for other boolean operations can be derived from the above
tables. For example, OR looks the same as AND, with Q1 and Q/1 swapped,
and Q2 and Q/2 swapped.

Clocking Disciplines -7 - Kevin Karplus

Memory elements in a two-phase system

Boolean operations only provide ways to move down the lattice of timing
labels. A strictly combinatorial circuit cannot change a V1 input to an St or
S2 output. To do any movement up the lattice, storage elements are

needed.
) S l[:
R

The figure shows a standard dynamic storage element for aMOS. The
data input is D, latch control is L, and the storage node is S. A similar
circuit can be used for dynamic storage in cMOS:

I
p [1 1% |

| - |

Here is the table for determining the labeling of S from D and L. The
same table applies to both the nMOS and ¢MOS circuits. In fact, any
memory element will exhibit this behavior. Note that the latch signal is
always a Q-labeled timing signal, and the data must be stable during the
event in which the latch signal turns off. The blanks in the following table
are the cases in which the data is not stable at the right time.

D= L= O1 02

Q/1 constant-|
Q1 constant-0
vt Yi1S2

LH1 Y1s2

HL1 vVis2

St Y182

¥2s1 - Y182 Y2s1
Yiv2 Yis2 v2si
vis2 vis2 Vst

2 vasi

HL2 Y2si

LH2 Yasi

V2 Y2si

Q2 constant-0

Q/2 constant- |

Clocking Disciplines -8 - Kevin Karplus

_R__l

D s| ™~ [> Out

__J |/’°"
"I': Out/

This figure shows a standard nMOS pseduo-static transparent latch. The
labeling for S is the same as in the dynamic latch. New data is latched
when L is high, and the old data is refreshed when R is high. Both L and R
should have the same Q label (both Q1 or both Q2), but the signals are
mutually exclusive, that is, L and R must never be high at the same time.

This figure shows a static SET-RESET latch. SET and RESET must be
mutually exclusive (otherwise both OUT and OUT/ are low). If SET and
RESET are both Q1 signals, then the outputs are V1S2. If SET and RESET
have differing Q labels, then the outputs are only V1V2. Using a SET-RESET
latch with non-Q-labeled signals will almost certainly cause race conditions.

latch/ ‘
—i
Qs E

n
Vi

Above is a static D-latch based on the SET-RESET latch of the previous
figure. The latch/ signal is labeled Q/1, so the data input must be V1, and
the outputs are V1S2. The labels for reset and set can't be assigned,
leading us to suspect that the circuit has a race condition. Indeed, if the
path from latch/ through A and B to set is faster than the path from
latch/ through B to set, then the flip-flop could get set instead of reset
with an input of 0. Luckily, in almost any design for the circuit, this race
is never lost. The behavior of the D latch as a unit can be described in the
clocking discipline, even though the internals of the circuit do not follow
the discipline. :

ulocking visciplines -9 - Kevin Karpius

Generating two-phase clocks from single phase

Although most nMOS circuits use two-phase clocking internally, systems
designers are reluctant to dedicate two pins to clock signals. Many designs
are limited by the number of pins available in a package, and off-chip
wiring is fairly expensive. Designers commonly use an external single
phase clocking scheme, and convert it internally to a two-phase system.

The simplest scheme for converting single-phase to two-phase clocks
uses the input clock as one of the master clocks, and inverts it to form the
other. Unfortunately, such a system is almost guaranteed to have some
overlap between the master clock signals, so is unusable.

Phi 1
Clock in Phi2
it - /N /
0 e IS e B
Adding a pair of cross-coupled NOR gates to the inverter yields a
non-overlapping pair of clock signals. However, the timing signals derived

from the clock signals will be delayed by varying amounts, and may
overlap with timing signals from the other phase.

s
Clock in L"/ _Ph“

Clock in r—l r——l
mir /N /
SN
j .
The' ‘non-overlap period must be long enough that all timing signals

derived from the master clocks properly follow the two-phase discipline.
There are several methods for ensuring this. The simplest is to make the

Clocking Disciplines - 10- Kevin Karplus

capacitive load on the Phil and Phi2 lines large enough that the delay in
the clock generator dominates the delay in other parts of the circuit. This
method is used in the clock generator pad in [NM]. Unfortunately, it
produces timing signals with slowly rising and falling edges. Since the
speed of MOS circuits is dependent on the slope of the rising and falling
edges, a system with this simple clock generator is slower than the same
circuitry with a sharper clock.

Another simple technique for clock generation is to introduce a
sufficiently large delay in the feedback paths of the cross-coupled NOR
gates. The clock signals can be kept crisp, and still not overlap. The delay
should be larger than the delay of the slowest signal for each clock phase.
Choosing the appropriate delay time requires timing analysis of the rest of
the circuit. Too small a delay can cause failures from clocks overlapping,
too large slows the system down unnecessarily.

A more complex, but more reliable, method feeds back all the Q-labeled
signals. A typical QI signal is generated with a NOR gate from the Phi2/
master cleck and an S2 control signal (usually from a ROM or PLA state
machine). All the Q! (and negations of the Q/1) signals are fed back to a
giant NOR gate in the clock generator. No timing analysis is needed to
ensure correct operation, since all Q1 are guaranteed not to overlap Q2
signals. By breaking one metal line, the clock generator pad in [NM] can be
used for this generation scheme.

» $2
—<
Q1 signals DT_ | 2
ypica
—-D°—< " Phi2/
Clock in

] : PRIt/
[—r__-g} D_lg_pical a1t

Q2 signals sTd

/

For prototypes and student projects, external two-phase clock generation
is usually better than converting single-phase internally. The cost of an
extra pin is irrelevant, and eXxternal clock generation adds testing
flexibility. Errors in timing analysis can be more easﬂy detected and
compensated for with external clocks.

WlVLALLLE VIDW YISO I Y AL VLU Aal Pius

Domino Logic

Domino logic is a ¢cMOS logic family that uses precharging to reduce the
size and complexity of cMOS circuits [KLL]. Here is a representative circuit

Precharqe/ f

-
1,

Enable '

implementing the following function:

The intermediate node is charged during one clock phase and evaluated
during the other. For example, if the circuit is to be active during phase 1,
£nabl/e should be Q1 and Prectarge/ should be Q/2. The inputs and
output are all LH1. During clock phase 2, the intermediate point is
pre-charged high and is either left high or pulled low during phase 1. This
behavior is best described with the HL1 signal label, resulting in the LH1
label for the output of the inverter stage. If the inputs are high at any
point during phase 1, the intermediate point could be discharged.
Therefore, if the inputs are to be correctly interpreted as low values, they
must remain low throughout phase 1. This puts the LH1 restriction on the
inputs.

£nable and Precharge are usually connected directly to the master
clock, so the gate evaluates its output on every clock cycle. The main
requirement on them is that they must not be simultaneously active (to
avoid shorting power and ground). In actual implementations, both are
usually connected to the same clock signal. With only one clock, domino
logic is easy to route, and can be interfaced with circuits following almost
any timing discipline.

Clocking Disciplines -12- Kevin Karplus

-

Clocking domino logic with a single clock raises the possibility of a glitch ,
due to a difference in switching speed of the transistors. Glitches could
cccur at the beginning or end of phase 1. At the beginning of phase 1,
there could be a brief connection between power and ground. Although
this would raise power consumption slightly, it would not change any of
the signals. At the end of phase 1, the intermediate node could get pulled
high when it should remain low. Since the two control signals are normally
tied together with a short metal connection, the skewing is slight and the
glitch is short or non-existent. With normal circuit design, the capacitance
of the intermediate node is large enough that the glitch is filtered out.

The main limitation of Domino logic is that the gates are non-inverting
(they can't compute a function that is high when the inputs are low). An
inverting gate can easily be created, but would have an HL1 output, which
is not acceptable as input to another Domino logic gate.

Domino logic is full compatible with standard CMOS, since any S1 signal
may be used as an input (S1 => LH1) and any gate that accepts V1 may be
connected to the outputs (LH1=>V1). Of course, if a V1 signal is sufficient
for the output, the inverter stage can be omitted, and the precharged signal
used directly (HL1=>V1). '

AR ALA S AUV ALAY W 3 J AW Y il Dl pYivue

Multi-phase clocking schemes

To discuss a given multi-phase clocking scheme, a set of signal labels is
needed like the ones presented for two-phase clocking. Rather than
cobbling together a unique set of labels for each new clocking discipline,
we can use the following method to generate the labels of any
multi-phase clocking scheme.

An 'a-phase clocking scheme has a periodic time scheme consisting of
31 events, a rise, mid t_ and fall , for each phase £ A signal can be

labeled as a vector of 3.2 symbols, one for each event. The event label

symbols are:

symbol behavior of signal during event

L signal is low

H signal is high

C signal is constant

L+ signal is constant low or ends high

H- signal is constant high or ends low

+L signal is constant low or starts high
- -H. signal is constant high or starts low

blank behavior unspecified in this event

We can put a partiai order on the event labelé :

We say that a label is sfronger than another if it is above it in the
partial order. A vector of labels is stronger than another vector, if the
labels for all events are the same as or stronger than the corresponding
labels in the other vector.

- Since the discrete event labels are a model for a continuous process, the
signal cannot change instantaneously between events. Thus, vectors in
which H and L are adjacent do not correspond to realizable signals. There
must be an intervening event in which the signal can change (blank, L+,
H-, -H, or-+L). For example, H, H-, L is a legal sequence, but H,-H, L is

Clocking Disciplines -14 - Kevin Karplus

not, since in the second event the signal doesn't start low, it must be
constant high through the second event and change instantaneously to
constant low for the third event.

For the same reasons, a C label adjacent to an L [or H] can be replaced
by an L [or Hl. When two labels have equivalent meaning for an event,
the stronger is generally used. For completeness, here is a table of the
strongest equivalent labels for pairs of adjacent labels:

first secend label

1abel H L (4 Ls H- sL -H Slank
H * HH HH

L : LL ' LL

o HH LL ’

L+ LL

H- HH

+L

-H

biaak

Empty entries mean that no equivalent labeling stronger than the initial
pair of labels exists. The * indicates an unrealizable signal. Some extra
information can be deduced in the blank cases (for example, the pair HL+
will not be constant low for the second event, so must end high), but no
more concise labeling has been created for these cases.

The results of boolean operations on event labels are easily stated.
ORing anything with H resuits in H, and ANDing with L results in L. In all
other AND and OR operations, the result is the highest label that is as low
or lower than the input labels. Negation swaps H with L and + with -,
leaving all other labels unchanged. Each component of a multi-event
vector of labels can be computed independently. To illustrate the boolean
operations, here is the table for the NAND operation:

NAND operation on event labels

H L (o L+ H- L -H blank
H L H C H- - L+ -H +L
L H H H H H H H H
C C H C H- L+ -H +L
L+ H- H H- H-
H- L+ H L+ L+
+L -H H -H -H
-H +L H +L ' +L

H

LIOCK IR viscipunes -1)- Kevin Karpius

Several of the positions that evaluate to A/anf actually have some
information known about them. For example, H- NAND -H is either
constant low, or both starts and ends high. We could introduce a label (+L+)
for this, and another label (-H-) for a signal which is constant high or starts
and ends low. However, there seems to be no need for these extra labels.

The vectors of labels for each event make a convenient algebra for

computing, but are a little unwieldy to write. For labeling circuit diagrams, -

we need 2 more easily written set of labels. Ideally, it should convert the
vectors of length six to the labels already chosen for two-phase clocking.
There are 8%=262,144 vectors of length six. Even after removing the illegal
vectors, and the ones for which a stronger equivalent vector exists, there
are far too many possible signal labels.

Let's examine the vectors for the signal labels of two-phase clocking.
The vectors are given in the order (risel, midl, f alll, tisez, midz, fallz).

Q1 (L+C+LLLL) Q2 (LLLL+CsL)
Q/1 (H-,C,-H,H H H) Q/2 (HHHH-C,-H)
Vi (,.C..) : v2 (,.0

S1 (CcCcC.) S2 (,,C.CC)

LH!I (L+L+C,) LH2 (,L+L+C)

HL1 (H-H-C,) . HL2 (,H-H-C)
Vis2 (,C.CCC) v2st (CC.C,.C)
viv2 (,C.C)

Ideally, all the vectors should be derived from the basic ones defining
the clock (Q1 and Q2). The vector for a basic timing signal consists of an L+,
followed by one or more C's, followed by +L, with the rest of the events
labeled L. For the clock to be useful, there must be at least one event
labeled L. We can complete the set of timing signals by adding the
negations of the basic ones (Q/1 and Q/2).

If a timing signal is used to control a storage element, the data input to
the storage element must be stable every time the timing signal makes a
transition from active to inactive. Thus we need a vector with a C in each

place where the timing signal has a +L [or -H]. This creates the V1 and V2
{abels.

The output of a storage element does not change from the time its
control goes inactive to the time it goes active again. Such a signal can be
labeled with a vector that has a C everywhere the timing signal has an L or
+L [or H or -H]. This creates the V1S2 and V2S1 labels.

Clocking Disciplines -16 - Kevin Karplus

We want to control timing signals, turning them on and off. We are most
interested in control signals that are not strongly synchronized with the
timing signals. What vectors can be ANDed with a basic timing vector
which would still result in a basic timing vector? Each event label must be
as strong or stronger than the ones in the timing vector, except where the
timing vector has an L. Vectors with an L+ or +L imply fairly strong
synchronization with the timing signal. The only interesting vectors left for
control signals are those that have a C wherever the timing signal has L+, C,
or +L. This creates the S1 and S2 {abels. Looking at all boolean operations

combining a control signal with a timing signal does not reveal any other
useful vectors for control signals.

Precharged circuits are similar to memory elements, except that two
timing signals are usually involved. One timing signal stores a constant
value, and the other modifies it. For definiteness, assume that the two
timing signals are active high. The vectors then look like this:

precharge timing L+ C +L L. L L L L.

evaluate timing L L L L.. L+ C +L L.
precharged high H H. H- H- (C
precharged low L L. L+ L+ C

In a multi-phase clock system, a pair of precharge vectors could be
generated for each pair of timing signals. The two-phase system does not
include these vectors. Instead, the precharge timing signal is ignored and
only the part of the vector relevant to the evaluation is included. These
are the HL1, LH1, HL2, and LH2 signal labels.

After constructing the basic data vectors from the basic clock vectors,
add any vectors that result from boolean operations on vectors that
already exist. Doing this until no more new vectors are needed is the
boolean closure of the data vectors. The label V1V2 was created by
ANDing V1S2 and V2S1.

The simplification of the precharge labels does more than reduce their
number from 2122 to 2n. When we take the boolean closure of the event

vectors for data signals, the simplified set generates no new vectors, but
the complete set of vectors generates many useless signal labels.

UIUCA LY VISUIPLUES i W AC YU AAl PIUD

Major and minor cycles

Many systems perform actions that take longer than one cycle of the
two-phase clock. If each possible action takes the same number of cycles,
designers often talk about ma/or and m/nor cycles. A minor cycle is the
two-phase cycle we've just discussed. A major cycle is the sequence of
minor cycles that allows one action to be done.

The two-phase clocking labels are easily extended to a major/minor
cycle scheme. If there are », minor cycles in a major cycle, label the basic
timing signals Q1a, Q1b, Q2a, Q2b, .. ., Qza, and Qzb. Allow ORing the
timing labels, as long as they are not from adjacent phases. For example,
Qla2a is acceptable, but Q1b2a is not, and Qla2b is only acceptable if 2 is
three or more. From this expanded set of basic timing signals, generate the
full set of labels. It will include labels like V1bS2a2b3a and V1bV3a

Some of the labels are quite long (particularly if a signal is stable for
many minor cycles in a row). To shorten the labels, use a range indication
instead of listing sequences of adjacent phases. Also, merge the sizb/e
phases after a va/id phase into the V sequence. For example,
VibS2a2b3a could be abbreviated to Vib-3a, and S2a2b3a3b to S2a-3b.
- Only the V labels can be merged with subsequent S labels, as they are the
only labels that refer to single events, rather than sequences of events. A
label like LH1a-2b means (L+,L+ L+, L+L+ L+, L+L+L+, L+L+C), which is not
the same as LH1aS1b-2b = (L+,L+,C, CCC, CCC, CCC).

Timing Analysis

The techniques of worst-case timing analysis used in TV [J] and Crystal
[01 and 02] are easily applied to the event-vector model of clocking
disciplines. Each signal must stabilize in less time than the sum of the
durations of the events between the inputs becoming stable and the signal
needing 1o be stable. The time taken for any particular signal to stabilize
can be computed with any of the standard methods [}, 02, N]. Each signal
results in an inequality of the form

ts(eyptept..te,
where tg4 is the time needed for the signal to stabilize, and ey, ..., e, are

the durations of the events during which the signal is computed. The

minimum event durations can be found by standard techniques from
numerical analysis.

Clocking Disciplines - 18 - - Kevin Karplus

Four phase overlapping clocks

As an example of the multi-phase clocking scheme, let's consider a
scheme that invelves four overlapping clock signals, rather than two
non-overlapping ones. This scheme has been used with cMOS circuits. The
events defining periodic time are the standard ones for multi-phase
clocking (rise 4, mid 4, fall ,for £=12,3,4). The four basic timing signals are

labeled Q12, Q23, Q34, and Q41. Each is active for two adjacent phases.
Here is a timing diagram for them:

phasel phase2 phose3 phased phase! phase2 phaseS phased
{ R i L J4 b} L JL) 3

SN2 N\ /
S S N 7 T Neee——

prr——— 34 S\

— o _ —

Noie that Q12 and Q34 together form a non-overlapping two phase
system, as do Q23 and Q41.

The vectors for the basic timing signals are:

Q12 (L+CC CCoL, LLL, LLL)
Q23 (LLL, L+,CC, CC+L, . LLL)
Q34 (LLL, LLL, L+CC, CC+L)
Q41 (CC.-L, LLL LLL, L+,CC)

By negation we generate: _

Q/12 (H-CC, C.C,-H, HHH, HHH)
Q/23 (HHH, H-CC, CC.-H, HHH)
Q/34 (HHH, HHH, -~ H-CC C.C-H)
Q741 {CC-H, HHH HHH, H-.C,C)

From the inputs to storage elements we generate:

V2 (. o o)
v (. WG,)
V4 (,, o +C)
Vi (.G W)

Clocking Disciplines - 19 - Kevin Karplus

From the outputs of storage elements we generate:

V2534 (,, WwC ccce CCQ
V3s41 (CCC, " C C.CC)
V4512 (CCC, Cce - .C)

vis23(,C, = CCC CCC w)

As an illustration, here is a timing diagram for a storage element clocked
with a Q12 signal:

Lphused . phaseZ phase3 . phased nphasel . phase2 1phose3 . phased .

/ _Q12 /. \

SRR v BN

The control signals needed for changing timing signals yield:

S12 (CCC, C.CC, s w)
S23 (.. CCC CCC,)
s34 (.. " CCC, Ccceo)
S41 (CCC, C.C.C)
Taking the boolean closure of the data vectors adds:
vis2 (.C CCC -)
v2s3 «.. WC CCC)
V3s4 (.. L - CCQC
V4st (CCC, - +C)
VIV3-(.C ok W)
v2v4 (,, G, .C)
Sl (ol ot o :)

S2 (e CCC,)

S3 (. w C.CC, W)

S4 (.. C.CC)

For the two-phase labeling scheme, more labels were introduced for
pre-charged nodes. These HL labels are very useful for domino logic, but
are generally not needed in four-phase systems. Although precharging is
frequently used, the inputs to a precharged gate are always stable when
they are being evaluated.

Clocking Disciplines - 20 - Kevin Karplus

Examples of four phase circuits

Now we're ready to look at some examples of four-phase circuits. The
following function:

So—

is implemented wiih this pre-charged circuit:

pass/ Q/23
Precharge/
Q/12 ,_1—*1'-— Out=RB+CD
I

Enable l
Q34

-
k4

The intermediate node is precharged high on phases 1 and 2, and the
outputl node is precharged high on phase 2. The inputs are evaluated
during phase 3, after which the output holds its value until the next phase
2. The output may be labeled V3S41. The inputs must be S3, so the gate is
called a phase-3 gate. The identical circuitry with different labeling can
make a phase-1, 2, 3 or 4 gate. The output of a phase- 2 gate can only be
used by a phase-n2+/ or n+2 gate, S0 each gate introduces one or two
phases of delay.

The precharge, evaluadte, and pass signals are usually connected directly
to the master clock. Dynamic and pseudo-static memory elements can be
constructed by using a latch control signal for the pass signal (instead of
the master clock). Ordinary cMOS (not precharged) gates must be used for
generating timing signals from the master clocks, since the precharged
circuits cannot have a Q labeled output.

As in the domino logic examples, the precharge signal is often connected
directly to the enable signal and {abeled Q34. The potential race conditions

____are not dangerous. Problems will onlv arise when both switches are on. -

~arrt

which can only occur between phases 2 and 3 or between 4 and 1. With
both switches on between phases 2 and 3, a momentary short of power and
ground occurs, raising power consumption, but not affecting the signals.
Between phases 4 and 1, having both precharge and evaluate on may affect
the intermediate node, but not the output. Therefore, the substitution of a
Q34 signal for Q/12 on precharge is even less likely to cause problems in
four-phase clocking than it is in domino logic. Unfortunately, the same is
not true of the signals on the transmission gate, so both pass and pass/
signals are needed.

w3
| T
(7]

Clocking Disciplines - 22 - Kevin Karplu

REFERENCES

(J} Norman P. Jouppi. "Timing Analysis for nM0S VLSI” 20”’ Design
Automation Conference. Miami Beach, Florida. June 1983. pp. 411--418.

[KLL] RH. Krambeck, Charles M. Lee, and Hung-Fai Stephen Law.
“Hi-Speed Compact Circuits with CMOS" /ZE5 Journal of Solid-State
Circuits. SC-17(3). June 1982 (614--618).

[MC] Carver Mead and Lynn Conway. /mniroduction to VLSI] Systems.
Addison-Wesley, 1980.

[N] L. S. Nagel. SP/CE2: A Computer Program to Simulate
Semiconductor Circuits. ERL Memo ERL-M520. University of California,
Berkeley, May 1975.

[NM] John Newkirk and Rob Mathews. 74e VLS/ Designer's Library.
Addison-Wesley (reading, Massachusetts) 1983.

[NEIN] David Noice, Rob Mathews, and John Newkirk. "A Clocking
Discipline for Two-Phase Digital Systems"” [EEE [nternational
Conferences on Circuits and Compulers September 1982. pp.
108--111. : ' '

(O1] John K. Qusterhout. “Crystal: a Timing Analyzer for aMOS VLSI
Circuits” Proceedings of the 3 d Caftect Conference on VLSI.
Bryant (editor), Computer Science Press, 1983. pp. 57-70. '

(02] John K. Ousterhout. "Switch—levei Delay Models for Digital MOS
vLSI® 2/5¢ Design Auvlomation Conference. Albuquerque, New Mexico
June 1984. pp. 542--548.

