
 under Nakagami-m $(\mathrm{m}=4)$ fading Rx Cluster $\quad \theta=\pi / 4$

1. Decode and forward system performs better than direct link under Rayleigh fading
2. DF system with lower threshold level performs better at lower E_{T} / N_{o} values
3. Higher threshold level performs better at higher E_{T} / N_{o} values
4. Effect of wrongful combining dominates at high SNR
5. Best performance when the relay is situated in the middle
6. At SNR threshold of 10 dB relay in Tx cluster performs better than relay in Rx Cluster
7. At SNR threshold of $\mathbf{- 1 0} \mathrm{dB}$ relay in Tx cluster performs better than relay in $\mathbf{R x}$ Cluster only at high $\mathrm{E}_{\mathrm{T}} / \mathrm{N}_{\mathrm{o}}$
8. In Nakagami-m ($m=4$) channels due to better links performance is better than Rayleigh
9. Performance trends similar to Rayleigh

Variation of ASEPC terms under powe allocated $\begin{gathered}\text { Frading }\end{gathered}$

SNR Threshold and Power Allocation

Contour plot for BPSK ABER performance under Rayleigh fading with relay in Rx cluster, $\theta=\pi / 4 \quad E_{T} / N_{0}=15 \mathrm{~dB}$

Contour plot for BPSK ABER performance under Rayleigh fading with relay in Rx cluster, $\theta=\pi / 4 \quad E_{T} / N_{0}=30 \mathrm{~dB}$

[^0]The contour plots show regions with minimum ABER

$>$ A set of values of SNR threshold satisfy this condition

> A set of values of fractional power allocated satisfy this condition

Choosing higher SNR threshold will not only minimize wrongful combining but also improve rate (symbols per channel used)

$$
R_{e f f}=\operatorname{Pr}\left(\gamma_{S R}>\gamma^{*}\right) \frac{R}{2}+\operatorname{Pr}\left(\gamma_{S R}<\gamma^{*}\right) R \quad R / 2<R_{e f f}<R
$$

Heuristic power allocation:
> Closed form solutions exist for optimum power allocation for transmit diversity systems in Rayleigh [Cavers 99] and Nakagami-m [Alouini 03] and approximate solution for Rice [Annamalai 04]
> Depends on fading parameter " m " estimation for Nakagami-m channels
$P_{l}^{*}=m_{l} \max \left(\frac{E_{T} / N_{0}}{\sum_{j=1}^{L} m_{j}}+\frac{\sum_{j=1}^{L} \frac{m_{j}}{\sigma_{j}^{2}}}{b \sum_{j=1}^{L} m_{j}}-\frac{1}{b \sigma_{l}^{2}}, 0\right)$
Water filling method

1. Use the above method to set the fractional power δ
2. Now plot ABER performance by varying SNR threshold
> Using fractional power allocation by Heuristic method provides performance comparable to the best possible power allocation seen in the contour plots
$>$ However it is more important to find optimum SNR threshold that minimizes ABER
$>$ Future effort will investigate methods to find optimum SNR threshold for practical use and upper bounds for performance

[^0]: BPSK ABER performance with Heuristic Power allocatio

