Estimation Diversity in Distributed Sensing

Shuguang Cui, University of Arizona Andrea Goldsmith, Stanford University Jinjun Xiao, Zhi-quan Luo, University of Minnesota H. Vincent Poor, Princeton University

May, 2006

Joint Estimation With Slow Fading Channels (Othorgonal MAC)

Best Linear Unbiased Estimator (BLUE)

Why BLUE?

- Universal (for any joint distribution)
- Simple processing
- Optimal in Gaussian case
- With ideal channels:
 - Infinite bandwidth (no need for lossy quantization)
 - Infinite power (or no channel distortion)
 - BLUE gives:

$$\overline{\theta}_K = \left(\sum_{k=1}^K \frac{1}{\sigma_k^2}\right)^{-1} \sum_{k=1}^K \frac{x_k}{\sigma_k^2}$$

$$\mathbf{E}\left(|\overline{\theta}_K - \theta|^2\right) = \left(\sum_{k=1}^K \frac{1}{\sigma_k^2}\right)^{-1}$$

Joint Estimation in Fading Environment

- Channel gain with exponential distribution $g_k = \frac{G_0}{d_L^2} |r_k|^2$
- Slow fading: random but static within each observation period
- Multiple nodes (say, K nodes):
 - Reduce observation noise by linear combination
 - Diversity over independent fading channels
- To compare the performance for different K's
 Let us fix the total power budget
 Each pade also has an individual power limit (later
 - Each node also has an individual power limit (later)

Average vs. Outage Performance

Average distortion in fast fading channels:

$$E\{Var[\hat{\theta}]\} = \int Var[\hat{\theta}]f_{\mathbf{g}}(\mathbf{g})d\mathbf{g}$$

Distortion outage probability in slow fading channels:

$$\mathcal{P}_{D_0} = \operatorname{Prob}\{\operatorname{Var}[\hat{\theta}] > D_0\}$$

Equal Power Allocation

- We may not know the channel at Tx side
- We may just be lazy
- We may just want to investigate the performance lower bound

Observation SNR: $\gamma_k = W^2 / \sigma_k^2$ Channel SNR: $s_k = g_k / \xi_k^2$

$$\operatorname{Var}[\hat{\theta}] = W^2 \left(\sum_{k=1}^{K} \frac{Ps_k}{\gamma_k^{-1} Ps_k + K} \right)^{-1}$$

Outage Performance

With a distortion target D₀

Theorem:
$$\mathcal{P}_{D_0} \sim \exp(-KI_s(a))$$

where $I_s(a)$ is the rate function of s_k

Proof based on Large Deviation Theorem: for i.i.d. β_k

Prob
$$\left\{ \frac{1}{K} \sum_{k=1}^{K} \beta_k < a \right\} \le \exp(-KI_{\beta}(a))$$

Where $I_{\beta}(a) = \sup_{\theta \in \mathbb{R}} (\theta a - \log M_{\beta}(\theta))$

Estimation Diversity With Rayleigh Fading

pdf of channel SNR:
$$f_s(x) = \frac{1}{2\eta^2} \exp\left\{-\frac{x}{2\eta^2}\right\}$$

$$I(a) \sim \log P$$
 When P is large

Outage Probability:

$$\log \mathcal{P}_{D_0} \sim -K \log P$$

K is the slope of the probability curve at high P: Diversity order

Average Performance

Outage Performance

Minimizing Distortion with Sum Power Constraint

Closed-form Solution

Assume:
$$s_1 \ge s_2 \ge \ldots \ge s_K$$
$$\alpha_k^{opt} = \begin{cases} 0, & k > K_1 \\ \frac{1}{s_k \sigma_k^2} \left(\sqrt{s_k} \eta_0 - 1 \right), & k \le K_1 \end{cases}$$
$$\operatorname{Var}[\hat{\theta}] = \left(\sum_{k=1}^{K_1} \frac{1}{\sigma_k^2} \left(1 - \frac{1}{\eta_0} \sqrt{\frac{1}{s_k}} \right) \right)^{-1}$$

Bad Sensors Won't Help

Outage Performance with Adaptive Power Gain

Performance Loss with Additional Individual Power Constraint

Conclusions

 Joint design of the application layer and the link layer is beneficial
 Achievable estimation diversity gain + power gain in slow fading environment

Bad sensors won't help