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Motivation(1)

L]

| Downlink(BC) >
— Uplink(MAC) |
Getting an exact estimate of channel state is
very hard
Feedback : expensive, hard to implement & noisy
TDD : correlation between channels is not
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Motivation (2)

Easier to get relative channel information

Relative channel information defined as which
channel is stronger

For a downlink, relative information obtained
from uplink

Relative information is related to distance
(path loss)

Error probability in determining relative information
IS much less than that in exact channel estimate
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System Model
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y1 = hy1-x+ng

y2 = ho - & + no
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Assumptions

MISO : multiple antennas at Tx, single
antenna at Rxs, two receivers
Assumption

|h;i]|’s are known to receiver i where ||| is
Frobenius Norm. (though a general norm works)

S =1{||h1]| > ||h2]|} is known to Tx.
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MIMO BC Capacity

Perfect channel state knowledge at Tx
Non-degraded channel

No channel knowledge at Tx
Non-degraded in general

Degraded for special cases
p(h1) = p(hy)wWhere p is p.d.f

h1 > h (> in the semi-definite sense) for all (A1, h2)
pairs
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MIMO BC with Relative Info(1)

Relative information S known to Tx
Degraded if #1 and b2 are such that

(1) = (0
plr—=—]|=P| =
[l [h2]
where p is p.d.f

Scalar channel with relative info is always
degraded

since p(Zi) =p<22> =p(1) .
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MIMO BC with Relative Info (2)

Vector channel case

h h n
/ 1 | / 2 - | 2
Hh1\| thﬂ , | ol | ol

If S=1, then in the capacity sense this channel has
same capacity region as

y’lzz_i-f' n_,l yé’:ﬁ-fl n_,l - n3
1Rl [Pl

where n3~N<O,Var< o1 >—Var< 2 ))
[ [
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Achievability and Converse

Achievability: One code book per state S = {0,1}. Super
position coding in each state
Converse: Gallager’s approach when S=1”"
nRy = HWq|S"=1") < I(W1y;Y{, H"|S" =1")
< I(Wq, Y{', Wh|S"™ = 1", H")

def
hih
1(Wy; Y{'|S™ = 17", H", W>) R

n .
S I(Wq; Yy H™, 8™ = 1™ Wo, Y~ h)
=1 /

n / . -
Y1, =h1 -+ nq
= > I(Wy;Yy|H", Uy) XpHi .
= = 1y, T -1, Y, U
mn —
< Y (h(Y14H;, U;) — h(Y14|H;, Uy, W1, X5))
]
Zn
= Y I(Y1;; Xi|H;, Up)
i—=1
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Converse Continued

nRy = H(Wa|S™ = 1") < I(Wa; Y4, H"|S" = 1)
= I(Wy; Y2S™ = 1™ H™)
n .
= > I(Wa; You|S™ = 17, H", Y3~ 1)
1=1
n . .
= Y (h(Y2lS™ = 1" H", Y37 1) = h(Yoy|S™ = 1", H", Y3~ 1, Wp))
1=1
n . .
< > (h(Yasl H™) — h(Yoi H™, 8™ = 17, Y3~ W, Y 1))
=1
Zn »
= Z (R(Yos|H™) — h(Yo;| H", S™ = 17 W2, Y ))
Zj -
< Y (h(Yoi|Hy) — h(Yoi| Hy, Uy))
i=1 AN
n A 1—1 n
= > I(Y2i;; Uj|Hy) Y2i L AT i
1=1
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The Capacity Region

Results (we can apply similar method when 5$=0)
S=1 S5=0

I(Y1; X|HU)=111(H) | R
I(Y2,U|H) = I 1(H) R>

Ry
R

Ergodic capacity region

I(Y1, VIH) = I o(H)
I(Yo, X|V,H) = I o(H)

IAIA

<
<

R1 < Eglh] = Eg[Ey[I1]S]]
= aBpyg=1111,1(H)] + aBpig=oll1,0(H)]
Ry < Egllp] = Eg[Ey[I2]S]]

B s=12,1(H)] + aEgg=oll2,0(H)]

where p(S=1)=qa,p(S=0)=1—-a=a
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(Gaussian inputs

Conventional EPI techniques do not work
Rate region for Gaussian inputs

hi=1(0)hy' ]

Ri < aBpy llog(1+mEi W) +&Em =S
- 1+ h132(0)hy

log (1 +

Ry

IA

Iy o(0)n' )
T

OZEH’]_ |Og (1 + = =
! 1+ h23>1(0)ho

+ @80 [log(1 + mT2(0)3 )]

such that @Tr(Z1(1)+3>2(1))+aTr(x1(0)+2x2(0)) < P
where HE [h1ho]
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Rate Readion
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Conclusion and future work

1 bit of information enough to

Achieve rates as if channel norm was known
but power allocation fixed at transmitter

Allow for single letter capacity characterization

Future Work: Are Gaussian inputs
optimal?
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