BER PERFORMANCE EVALUATION OF A CONTINUOUS TRANSMISSION COOPERATIVE RELAYING PROTOCOL

Peter Rost and Gerhard Fettweis

Cooperative Relaying

Pros	Cons	
• Usage of energy savings due to nonlin- ear pathloss	• Increase of necessary spectral efficiency due to orthogonality constraint	
• Exploitation of large scale spatial diver- sity	• Poor performance in low SNR/high rate regime	
• Simple (adaptive) protocols available with low complexity		

BER Analysis

The basic idea of the derivation is to devide the set of all constellation points S into the subsets S_i whereas each element $x \in S_i$ has equal energy $\Gamma(S_i)$ and $\Gamma(S) = \overline{\gamma} \log_2 M$. The BER for a link which is interfered by another one is averaged over all sets (of the interfering link) whereas the interference of one set can be seen as additional AWGN.

FIGURE 2: The three different energy radi of a 16-QAM.

Let R_k denote the event that the currently receiving relay decodes message $x_s[k]$ and D_{k-1} the event

System and Protocol Description

System model

• All channels are modeled as Rayleigh fading channels $(h_{i,j}[n] \text{ is } \mathcal{CN}(0, \sigma_{i,j}^2))$ • The effective E_b/N_0 is $\gamma[n] = |h_{i,j}|^2 \overline{\gamma} \ (\overline{\gamma} \text{ is the average } E_b/N_0 \text{ of direct transmission})$ • Evaluation considers M-QAM with an approximated BER of $aQ(\sqrt{b\overline{\gamma}})$. • Interference cancellation is modeled by $0 < \eta \leq 1$ ($\eta \cdot E_b/N_0$ cannot be canceled out) • Only a fraction $0 < \kappa_s \leq 1$ of the overall energy is assigned to the source (comparability)

$\hat{x}_s[k-1] \neq x_r[k]$ where $\hat{x}[n]$ is the destination's estimation of x[n]. Using the definition of both events and the AWGN approximation of the interference we can divide the BER in four cases:

1. $\overline{\mathbf{R}}_{\mathbf{k}} \wedge \overline{\mathbf{D}}_{\mathbf{k}-1}$: Since $\hat{x}_s[k-1] = x_r[k], x_r[k]$ can be perfectly canceled out using the (perfect) knowledge of $h_{r,d}[k]$. The BER for this case is given by $p_e^1 = p_{e,1}\left(\kappa_s \sigma_{s,d}^2, 0\right)$ with

$$p_{e,1}(\sigma^2, \sigma_0^2) = a \cdot Q\left(\sqrt{b\sigma_0^2 \overline{\gamma}}\right) - a \cdot \exp\left(\frac{\sigma_0^2}{\sigma^2}\right) \sqrt{\frac{1}{\frac{2}{b\overline{\gamma}\sigma^2} + 1}} Q\left(\sqrt{2\left(\frac{1}{\sigma^2} + \frac{b}{2}\overline{\gamma}\right)\sigma_0^2}\right)$$

where $\sigma_0^2 = 0$ denotes the decoding threshold (used in case 3) for the definition of $p_{e,R}$).

2.
$$\overline{\mathbf{R}}_{\mathbf{k}} \wedge \mathbf{D}_{\mathbf{k}-1}$$
: as 1) but $x_r[k]$ cannot be canceled out: $p_e^2 = \sum_i \frac{|\mathcal{S}_i|}{M} p_{e,1} \left(\frac{\kappa_s \sigma_{s,d}^2 \overline{\gamma}}{1 + \eta \kappa_r \sigma_{r,d}^2 \Gamma(\mathcal{S}_i)}, 0 \right).$

3. $\mathbf{R}_{\mathbf{k}} \wedge \overline{\mathbf{D}}_{\mathbf{k-1}}$: In this case we receive the relayed version of $x_s[k]$ at time instance n = k + 1. Since we have no knowledge of $x_s[k+1]$ it must be considered as interference for $x_r[k+1]$:

$$p_{e}^{3} = \left(1 - p_{e,R}\right) p_{e,2,i} + p_{e,R} p_{ex,2,i},$$

$$p_{e,R} = \sum_{i} \frac{|\mathcal{S}_{i}|}{M} p_{e,1} \left(\frac{\kappa_{s} \sigma_{s,r}^{2} \overline{\gamma}}{1 + \eta \kappa_{r} \sigma_{r,r}^{2} \Gamma\left(\mathcal{S}_{i}\right)}, \epsilon\right), \ \kappa_{r} = 1 - \kappa_{s}$$

 $p_{e,2,i} = p'_{e,2,i}(-1), \ p_{ex,2,i} = p'_{e,2,i}(1)$ denote the BER for two-path diversity with one interfered path and $p_{e,R}$ defines the error at the decoding relay. $p_{ex,2,i}$ considers the MRC of two contradicting signals (in the case of a decoding error at the relay). Both probabilities are defined using

Protocol description

FIGURE 1: Example situation for YARP (assuming r_2 and r_1 successfully decoded).

- YARP \mathbf{Y} ARP is an \mathbf{A} dvanced \mathbf{R} elaying \mathbf{P} rotocol
- At even time instances k:

avoidance of shadowed areas

- -Source broadcasts $x_s[k]$ to destination and currently receiving relay $\mathbf{r_1}$
- -Relay r_2 broadcasts $x_r[k] = f(x_s[k-1])$ if $|h_{s,r}[k-1]|^2 > \epsilon$
- $-x_r[k]$ is considered as interference at currently receiving r_1
- At odd time instances k + 1:
- -Source broadcasts $x_s[k+1]$ to destination and currently receiving relay $\mathbf{r_2}$
- -Relay $\mathbf{r_1}$ now broadcasts $x_r[k+1] = f(x_s[k])$ depending on $|h_{s,r}[k]|^2$
- -Using $x_r[k+1]$ and $x_s[k]$ the destination now decodes $x_s[k]$
- The information about $x_s[k]$ is used to cancel $x_r[k+1]$ out of $y_d[k+1]$

4. $\mathbf{R_k} \wedge \mathbf{D_{k-1}}$: As 3) but $x_r[k]$ is considered as interference: $p_e^4 = (1 - p_{e,R}) p_{e,2,i_2} + p_{e,R} p_{ex,2,i_2}$ where $p_{e,2,i_2} = p'_{e,2,i_2}(-1)$ and $p_{ex,2,i_2} = p'_{e,2,i_2}(1)$ denote the BER for two-path diversity with two interfered paths but $p_{ex,2,i_2}$ defines the BER for a MRC of two contradicting signals. Both probabilities utilize

$$p_{e,2,i_2}(\nu) \approx \sum_{i} \frac{|\mathcal{S}_i|}{M} p_{e,2} \left(\kappa_s \sigma_{s,d}^2 \overline{\gamma}', \frac{\kappa_r \sigma_{r,d}^2 \overline{\gamma}'}{(1 + \eta \psi \Gamma(\mathcal{S}_i))^2}, \nu \right),$$
$$\overline{\gamma}' = \frac{\overline{\gamma}}{1 + \eta \psi \Gamma(\mathcal{S}_i)} \text{ and } \psi = \max\left(\kappa_s \sigma_{s,d}^2, \kappa_r \sigma_{r,d}^2 \right).$$

Using $\Pr(D_k) = (1 - p_e) p_{e,R} + p_e (1 - p_{e,R})$, the decoding probability $p_R = \exp(-\epsilon/(\kappa_s \sigma_{s,r}^2))$ and $p_{e,\overline{R}} = 1 - p_{e,R}$ the overall BER can easily shown to be

 $p_e = \frac{p_{e,\overline{R}} \left(p_e^1 + p_R \left(p_e^3 - p_e^1 \right) \right) + p_{e,R} \left(p_e^2 + p_R \left(p_e^4 - p_e^2 \right) \right)}{1 - \left[\left(2p_{e,R} - 1 \right) \left[\left(1 - p_R \right) \left(p_e^1 - p_e^2 \right) + p_R \left(p_e^3 - p_e^4 \right) \right] \right]}.$

	Results, Conclusions and Further	Work
Conclusions	Further Work	10 ⁰ -▲ - Direct Transmission -▼ - Transmit Diversity -♦ - Conventional Relaying -■ - Selection Relaying w/o feedback -♥ - YARP
+ Reduced BER at low SNR	• Application on (MC-)CDMA based system	

- + RN-interference can be canceled using last decoded message
- + No 'fancy' signaling/initialization necessary \rightarrow adaptive behavior
- Interference limited (noise floor)
- Increased BER at high SNR
- Additional relay necessary

- Application on different coding schemes (LDPC, CC, ...) and usage of their FEC ability instead of a SNR
- Investigation of YARP with (Hybrid-)ARQ
- System Level analysis, e.g. regarding increased interference, existence of suitable relays, ...
- Routing/Scheduling

threshold

FIGURE 3: End-to-end BER. Lines denote analytical results and symbols denote simulation results for $\epsilon = \frac{M-1}{\Gamma(S)} \left(1 + \kappa_r \sigma_{r,r}^2 \eta \Gamma(S) \right).$

Vodafone Chair Mobile Communications Systems www.vodafone-chair.com Peter.Rost@ifn.et.tu-dresden.de

