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Abstract

We analyze the diversity-multiplexing tradeoff in a fading relay channel at finite signal-to-

noise ratios (SNRs) when the data rate increases with SNR. In this framework, the rate

adaptation policy is such that the target system data rate is a multiple of the capacity of an

additive white Gaussian noise (AWGN) channel. The proportionality constant determines

how aggressively the system scales the data rate and can be interpreted as a finite-SNR

multiplexing gain. The diversity gain is given by the negative slope of the outage probability

versus SNR curve. The finite-SNR diversity-multiplexing tradeoff is characterized for three

practical half-duplex cooperative protocols. We derive closed-form expressions and estimates

on the achievable diversity and multiplexing gains as a function of SNR under a system-

wide power constraint on the source and relay transmissions and quantify performance

improvement with relay cooperation over direct transmissions in terms of the diversity-

multiplexing tradeoff. Finally, we verify our analytical results by numerical simulations.

Channel and Signal Models
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-A fading relay channel. S is the source node, R is
the relay node, and D is the destination node.

Signal Statistics (assuming two system time slots):

E{xS,i} = 0
E{xR,i} = 0
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α + β = 1 and α, β ≥ 0

•α and β describe the power split between the relay and the
source terminals.

Channel input-output relations:

yR,i = hSRxS,i + nR,i

yD,i = hSDxS,i + hRDxR,i + nD,i

•nR,i ∼ CN (0, σ2
n) and nD ∼ CN (0, σ2

n).

Define the network SNR as: ρ = P
σ2

n

Half Duplex Decode and Forward Protocols
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Three half duplex decoded and forward protocols described in [1]
are considered:

Finite-SNR Diversity-Multiplexing Tradeoff

Finite SNR multiplexing gain [2–4]:

r = R
log2(1+ρ)

Finite SNR diversity is defined as the negative slope of outage
probability:

log SNR

Diversity Gain
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-Illustration of diversity gain at finite SNR.

d(r, ρ) = − ρ
Pout(r,ρ)

∂Pout(r,ρ)
∂ρ

Outage Probability

Consider the probability of outage for channels with mutual
information of the following form:

I = log2(1 + γ2
1ρX1 + γ2

2ρX2),

Where X1 and X2 are exponential random variables with mean
one.

Pout = P (I < R)

= 1 − 1
γ2ρ−γ1ρ

[

γ2ρ exp
(

−((1+ρ)r−1)
γ2ρ

)

− γ1ρ exp
(

−((1+ρ)r−1)
γ1ρ

)]

Where 2R = (1 + ρ)r.

Protocol Outage Probability

•E1: occurs if there is an outage between the source and the
relay.

•E2: occurs if there is an outage between the source / relay
and the destination.

•E3: occurs if there is an outage between the source and the
destination without the help of the relay.

Protocol outage probability: Pout = P ((E1 ∪ E2) ∩ E3).

Protocol Power Allocation
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Protocol II and III
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Protocol Performance
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-Protocol I. α = β = 1/2.
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-Protocol II. α = β = 1/2.
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-Protocol III. α = β = 1/2.

We can compute a lower bound on P (E2) using the optimization
technique described in [3, 5] and use this to estimate d.

Protocol Comparisons and Numerical Results
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-Finite-SNR diversity-multiplexing comparison.
α = β = 1/2 and SNR values of 0 dB (low SNR) and

50 dB (high SNR) are shown.
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SISO Simulation
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-Comparison of analytical forms and bounds
verses simulated performance. r = 0.25 and

α = β = 1/2.
The analytical results are verified through Monte Carlo simulations at a multiplexing gain
of r = 0.25.

• All three protocols have superior diversity performance over that of the SISO system.

• Protocol I is superior to Protocol II, as the source in Protocol II must share power over
two time slots.

• Protocol III is superior to Protocols I and II at high SNR due to the utilization of both
time slots for the source to communicate with the destination.

• Notice that the lower bound for Protocol III is very close to the simulation performance.

Further details are discussed in [5].
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