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Main Themes

e A continuum of optimal schemes for sending a Gaussian source
over the Gaussian channel.

e Shannon's source-channel separation approach and Goblick's
uncoded approach are but two extreme points.

e Below an SNR threshold, uncoded transmission is optimal for
sending a bi-variate Gaussian over a Gaussian MAC.



The Single-User Set-Up

e Source;

e Distortion

e Channel

e Noise

e Encoder

{Si} ~ 1ID N (0, %)
d(s,5) = (s — §)*
Yy = a1+ 74
{Z;} ~TID - N(0,N).

fn:R" — R"

s — (21(8), ..., z,(s)).



The Single-User Set-Up Contd.

e Constraint

e Reconstructor

e Performance



Some Shannon Theory

e Distortion-Rate function for a Gaussian source

D(R) = o*27*"

1 P
= —1 1+ —
C 5 og( - N)
e [he fundamental limit:

d(fué) = DR)|

_ 0_22—2R|

e Channel Capacity

R:% log(1+%>




(Asymptotically) Optimal Schemes

We say that {f,, ¢,} is asymptotically optimal if

lim d(f,, ¢n) = D*

n—aoo



Source-Channel Separation

e Describe s using nR(D*) bits.

e Send these nR(D*) bits using the channel n times with a good
blocklength-n codebook of rate C' — e.

e Decode bits.

e Reconstruct s.



Uncoded Transmission

e Just scale source symbols:

| P
o
| P
Y. = —QSk—l—Zk
o)

e Channel output

or

e Reconstruction




Linear MMSE Refresher

If
Y=S5S+W
where
S ~ N(O, 02)
and
W~ N(O, 772)

with 1 and S being independent, then
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Uncoded Transmission contd.
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so that the MMSE performance is




A Continuum of Optimal Schemes
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Here

0 < <11 1+P
J— O [
p=51% N

Is arbitrary.
e Uncoded (p = 0)
e Source-Channel Separation (p = 1/2-log(1 + P/N)).



Producing the Channel Input

Quantizer :

— 2" codewords
— drawn independently

— uniformly over a centered sphere in R"

1
—HuH2 ~ o’ — A
n

~ ol — g?2

= D(p).
'Q Output : With high probability
Ju* € C s.t. <S_:1 U >* ~ ()
Is — | - [
which implies
1

—|Is = u*||* = o%27%.
n
Set
u’ = argming.¢| (s —u,u) |.



Producing the Channel Input Contd.

Channel input is a linear combination of VQ-output and source
sequence:

X = as + fu”

= (a+ /)u" + a(s —u")

8(p) = \| g — alp), (1)

alp) =[NP N 2)

where

To satisfy power constraint,

(a+ B)[lu"[* + o®lls — u’||* = nP

(a4 B)*0%(1 —27%) + 0?27 % ~ P. (3)



Two step reconstruction

Channel output

Y=(a+p)u"+als—u’)+7Z
treat;gnoise

Step 1: Decode u* treating the quantization noise and the channel
noise as white Gaussian noise.

Ak

u = arginaxycc <Y7 u> :

This will succeed with high probability if

(a + B)%0%(1 — 27%)
a2022-20 + N

1
,0<§10g <1+

Setting this to hold with equality gives us the second equation in «, 3.



The Second Step in the Reconstruction

Step 2 Assume u* = u* so that
Y- (a+pf)u" =a(s—u’)+7Z

and estimate quantization noise:

Ss=u"+w

where

022 2F Y — (a+ p)u’
W —= . .
0272 + N/a? o



Correlated Sources over a Gaussian MAC

e Source:

{(S1k,S2k)} ~ 1ID N(0, Kgg)

2
K B 07 PO109
SS — 9
PO109 09

e Encoder 1: maps (S11,...,51,) to Xi1,...X1, using
fiR" — R".

where

e Encoder 2: maps (S91,...,52,) to Xa1,...Xs, using
fo :R" — R".

e Power Constraints:

1
~E[|l/, {Sus}i-) IP] < Py v =1,2



The Set-Up contd.

e The Channel:
Y. = Tij+ Top + Z

where
{Zp}i_; ~ 1ID N(O, N).

e Reconstructions:
gbl : <}/1, ce . ,Yn) — <;§1,1, Ceey g17n>
gbg : <}/1, ce ,Yn) — <;§2,1, Ceey g27n>

Which pairs (D1, D) are achievable?



Some Remarks

1. Region depends on |p|. The sign of p is immaterial.
2. Distortion scales linearly with
(01,02)-
3. Region is convex.
4. We shall thus assume

N

oi=0s%20 p > 0.

We focus on the SYMMETRIC CASE where
P=P%=P



Achievability Results

e Uncoded Transmission
e Independent Gaussian Codebooks
e Time Sharing and Power Splitting = lower convex envelope

e Superposition of coded and uncoded transmission



Uncoded Transmission

| P
Xl,k: —2517145, k = 1,...,77,.
o
| P
XQ,]{ — —252,]5, k = ]., c.oey N
o
| P | P
Y. = _QSLk + _QSQ,k; + Z.
o o

Use a linear estimator for S;; and 5o :

P(1—p*)+ N
2P(1+p)+ N

D*(o*, p,P,N) < o*

Excellent for p = 1 but otherwise doesn’t tend to zero as P/N — oo



A Lower Bound on D*

For a memoryless bi-variate source and di(s1, 51), da(s2, $2) > 0 the pair
(D1, Ds) is achievable with powers P;, P, only if

min  [(S, So; S, §2>

P§132|51,52
such that E _(Sl — :9\1)2_ < Dy,
E _(52 — §2>2_ < Do,
does not exceed
1 P+ Py + 2pmax vV P1 P
Elog ]. -+ N ,

where puac = Pmax(S1, S2) is the Hirschfeld-Gebelein-Rényi maximal
correlation:

pmax = sup E[g(51)h(52)] (4)
where the supremum is over all functions f, g under which

Elg(S1)] = E[A(S2)] =0 E[9°(S1)] = E[R*(S2)] =1 ()



In the Symmetric Gaussian Case

For P, = P, = P we obtain

( 2
2 P(1—p*)+N P p
O 3P+p)+N for 7 € (07 1—,02}

2
02\/ g p)NN for L > 2
\

D*(a%, p, P,N) >«

2P(14p)+ N 1—p?



On the Optimality of Uncoded Transmission

For p
s P
N 1—p?
the bounds agree!
P(1—p)+N P p
D*(o*, p, P,N) = o* f— <

For P/N < p/(1 — p?) uncoded transmission is optimal!



Idea Behind the Proof

e Use the Hirschfeld-Gebelein-Rényi maximal correlation to upper
bound
](Xl + Xo; Y)

e Use the Data Processing Inequality to use this upper bound to
obtain an upper bound on

I(Sla 827 Sl) SQ)

e Use this upper bound and the distortion-rate function to obtain
a necessary condition on

(D1, Ds).



Deriving an upper bound on /(X; + X9 Y)

e By simple algebra

Var[ Xy i+ Xo ] = Var[X 4] + VarlXa ] + 20(X1 4 Xop)y/Var[X1 ] - /Var X))
< Var[ X 4] + Var[Xa ] + 2y Varl Xy 4] -/ Var[X,,]

where ppnax IS the maximum correlation between any functional
of (S1.1,...,S51,) and any functional of (Sa1,...,5,).

e Our bi-variate source is IID so pn.x i1s the maximum correlation
between any two functionals of S;; and Sy ; (Witsenhausen'75)

Var[ X + Xo i) < Var[XL/{]+Var[X2,/€]+2,0maX\/Var[XLk]-\/Var[ngk]

e Summing the variances we obtain using the Cauchy-Schwarz
inequality

1 n
- ZVar[Xl,k + Xop] < P+ P+ 2pnacV Pi P
k=1



e But IID Gaussians maximize differential entropy subject to sum
of variances, so

Lh(y) < Liog (2me(Py + P2+ 2puecy/PiPy)

n

DO

e and hence

1
—](Xl -+ XQ, Y)

(1 N Pi+ Py 4 2pmax vV P1P2>

1
2 N



Some Bounds for p = 0.4

D/o?
vector-quantized

0.
07+ / |
06

superimposed

uncoded

lower bound

P/N

A. Lapidoth and S. Tinguely, “Sending a Bi-Variate Gaussian Source
over a Gaussian MAC,” to be presented at ISIT’06.



Some High SNR Asymptotics

in the sense that the ratio of the two sides tends to one.



