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Multiterminal Data Compression




Multiterminal Data Compression

Multiple terminals observe separate but correlated signals, e.g., different noisy
versions of a common broadcast signal or measurements of a parameter of the

environment.
The terminals seek to attain omniscience, i.e., to learn all the signals.
To this end, the terminals then transmit to each other.

Such transmissions occur in a rate-efficient manner, and exploit the correlated

nature of the observed signals.

This problem does not involve any secrecy constraints.



The Model
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X1,...,Xm, are finite-valued random variables (rvs) with (known) joint
distribution Px, .. x,,..
Each terminal ¢, ¢ = 1,... ,m, observes a signal comprising n independent and

identically distributed versions (say, in time) of the rv X;, namely the sequence
X! = (X1, -, Xin).

The signal components observed by the different terminals at each time are

identically distributed according to Px, .. x

.
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Objective: Each terminal wishes to become “omniscient,” i.e., to reconstruct
(X7,..., X)) with probability = 1.

e The terminals are allowed to communicate over a noiseless channel, possibly

interactively in several rounds.
e The transmissions from any terminal are observed by all the other terminals.

e A transmission from a terminal is allowed to be any function of its own observed

signal, and of all previous transmissions.

No (explicit) rate constraints are imposed on the transmissions.

Let F denote collectively all the transmissions.



Communication for Omniscience
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Objective: Each terminal wishes to become “omniscient,” i.e., to reconstruct

(X7, ..., X)) with probability & 1, using communication F = F(n).

e What is the minimum number of bits of overall communication F = F(n) needed

for all the terminals to achieve omniscience?

e The smallest achievable rate of communication for omniscience (CO-rate):

1
R,in = inf lim —log, (cardinality of range of F).
n n



A Special Case: Two Terminals

Slepian-Wolf Data Compression (1973)

~H(X,[X5)

~H(X 2|X1)

Romin = H(X1|X2) + H(Xs|X1).



Minimum Communication for Omniscience
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Proposition [I. Csiszar - P. N., '04]: The smallest achievable CO-rate R,,;, is

m

Rmm = min E Ri,
(Rl,... ,Rm)ERSW i1

where Rgw = {(R1,* ,Rm) : > ;ep Bi > H(Xp|Xpe), VB C {1,... ,m}},

and can be achieved with noninteractive communication.



Secret Key Generation




Secret Key Generation

e Multiple terminals observe separate but correlated signals, e.g., different noisy
versions of a common broadcast signal or measurements of a parameter of the

environment.

e The terminals then transmit over a noiseless public channel in order to generate a

secret key, i.e.,

— random variables (rvs) generated at each terminal which agree with
probability = 1; and

— the rvs are effectively concealed from an eavesdropper with access to the

public transmissions.

e The key generation procedure exploits the correlated nature of the observed

signals.

e The secret key thereby generated can be used for secure encrypted

communication between the terminals.
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What is a Secret Key?

K,=K,(Xz,F)

K, =K. (X:,F) 1 | - F 1 3| Ks=Ks (X5,F)

Secret Key (SK): A function K of (X7',---, X)) is a SK, achievable with

communication F', if

e PriKk =K, =---=K,} =21 (“common randomness” )
e [[KNANF)=0 (“secrecy”)
e H(K) = log (cardinality of key space) . (“uniformity”)

Thus, a secret key is effectively concealed from an eavesdropper with access to F, and

is nearly uniformly distributed.



Secret Key Capacity

K,=K,(X;,F)

K.,=K:(X3,F) 1 [ -  F  — 3| Ks=Ks (X5,F)

Kn = K (Xm,F)

Objective: Determine the largest entropy rate of such a SK which can be achieved

with suitable communication:  SK-capacity Cgk.



The Connection




Special Case: Two Terminals

~H(X4[X5)

~H(X 2|X1)

e SK-capacity [Maurer 93, Ahlswede-Csiszar "93]:

Csr = I(X1 A X>).

e An interpretation:
Csx = I(X1 N X3)
= H(Xy, Xo) — [H(X1|X2) + H(X2|X1)]

= Entropy rate of omniscience — Smallest achievable CO-rate R, ;.



Secret Key Capacity

Theorem [I. Csiszar - P. N., '04]: The SK-capacity Csx for the terminals 1,... ,m

equals

Csxg = H(Xy,...,X,,)— Smallest achievable CO-rate, R, i.e., smallest
aggregate rate of communication which enables all the terminals to

become omniscient

and can be achieved with noninteractive communication.

e A (single-letter) characterization of R,,;,, thus, leads to the same for Csg.

e The SK-capacity is not increased by randomization at the terminals.

Note: R,,;, is obtained as a solution to a multiterminal data compression problem

not tnvolving any secrecy constraints.



Main Idea

Lemma [I. Csiszar - P. N., ’04]: If L represents “common randomness” for all the

terminals, achievable with communication F for some (signal) observation length n,
then +H(L|F) is an achievable SK-rate.

In particular, with L = omniscience = (X7{',...,X"), we get

1 1 1
“H(LIF) ~ —H(X},...,X"|F) = H(Xy,...,Xn) — —H(F).
n n n



Elementary Constructive Schemes for Secret Key Generation




How is a Secret Key Obtained?

e Step 1: Data compression: The terminals communicate over the public
channel using compressed data in order to generate “common randomness.”

These public transmissions are observed by the eavesdropper.

e Step 2: Secret key construction: The terminals then process this “common
randomness” to extract a secret key of which the eavesdropper has provably little

or no knowledge.



Model 1: Two Terminals with Symmetrically Correlated Signals

e Terminals 1 and 2 observe, respectively, n i.i.d. repetitions of the correlated rvs
X1 and X5, where

e Xy, X5 are {0, 1}-valued rvs that are “symmetrically” connected by a wvirtual
BSC(p), p < 3.

BSC R

X1 X1 X, X,
(3) o = o (2)
p
1
(3) 1° - 1 (3)

e Have seen that: Cgx = I(X1 A X3) =1 — hy(p) bit/symbol.

e Can assume: X{' = X7 @ V", where V" = (Vq,---,V,) is independent of X7,

and is a Bernoulli(p) sequence of rvs.



A Useful Fact

P. Elias, 1955

For a BSC Py, |x, with 0 <p < %, there exists a binary linear block code with parity
check matrix P and codewords of blocklength n, and with

e rate = channel capacity = 1 — hy(p); and

e average error probability of ML decoding

1 — Pr{fp(PV”) - Vn}

vanishing exponentially rapidly with increasing blocklength n, where fp(PV™) is

the most likely noise sequence V" with syndrome PV™.



Step 1: Slepian-Wolf Data Compression

A.D. Wyner, 1974: Scheme for reconstructing =" at terminal 2

e Standard array for (n,n — m) linear channel code with parity check matrix P:

Cn Cn ................. Cn -------------- dn—m

1 2 ] 2

& &°C &+C] &+ G

e Terminal 1 transmits F = the syndrome Pz} (= P(z7)") to terminal 2.
e Terminal 2 computes the ML estimate 27 = 7 (x5, F) as:
Ty =y @ fe(Pry @ Pry),
where fp(Px] @ Pxl) = most likely noise sequence v™ with syndrome
Pv" = Pax] © Pxy.
e Thus, terminal 2 reconstructs =} with

Pr{X}=X"} = = Pr{fp(PV") = V"} 1



Step 2: Secret Key Construction

C. Ye - P.N., '05

e Secret key for terminals 1 and 2
Terminal 1 sets K; = numerical index of ] in coset containing x7;

Terminal 2 sets Ko = numerical index of 7 in coset containing x7.

e For a systematic channel code: K; (resp. K3) = first (n —m) bits of ¥

(resp. x).

e K, or Ky forms an optimal secret key, since:

- Pr{K; = Ky} = Pr{)?? = X7} =1, (common randomness)
— I(K1 ANF) =0; (secrecy)

as K; conditioned on F = PX] ~ uniform {1,--. 2"~ "™};
— K; ~ uniform {1,--.,2"7"™}; (uniformity)

— LTH(K;) =221 — hy(p). (SK-capacity)

n



Model 2: Markov Chain on a Tree

e Connected graph G with vertex set = {1,--- ,m}, edge set E, no circuits (tree).
e X, ---,X,, are assigned to the vertices 1,--- ,m.

e Conditional independence structure determined by G.
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e If (7 is a chain, concept reduces to that of a standard Markov chain.

o X1, --,X,, are {0, 1}-valued rvs with joint pmf Px,...x, satisfying:

for (¢,7) € E: the rvs X, X; are “symmetrically” connected by a wvirtual
BSC(pij), pij < %



Model 2: Markov Chain on a Tree

I. Csiszar - P.N., 04
C = min I(X; ANX;
o (g L i)
= I(X;« AN Xj+) =1 — hy(pmas) bit/symbol,

where

Pmax = Pixj* = 1MaX Pij.
(1,J)€EE



Step 1: Slepian-Wolf Scheme for Reconstructing z!. at All Terminals

C. Ye - P.N., '05

e Consider a linear code of blocklength n with parity check matrix P for the BSC
Px..\x,. = BSC(pmaz), of rate 2 1 — hy(Pmaz) and small decoding error
probability.

e Fach terminal ¢ = 1,--- ,m transmits the syndrome Pz}".

e Each terminal ¢ # ¢* reconstructs zl%. as follows:

I

T = xld fe(Pzxl @ Pa:ﬁ'fl)
Ty, = z; @ fp(Px} ©Px})

o Can show: Pr{X" = X" at every terminal} = 1.



Step 2: Secret Key Construction

e Secret key for terminals 1,---,m
Terminal ¢* sets K;« = numerical index of z% in coset containing .

Each terminal i # i* sets K; = numerical index of its estimate ZI% in coset

containing x%.

e Any of Ky, .-, K,, forms an optimal secret key, since:
- Pr{Ky=---=K,} =1, (common randomness)
— I(K1 ANF) =0; (secrecy)

— H(K;) = log (cardinality of key space);  (uniformity)
- LH(K1) 21— hy(Pmag)- (SK-capacity)



Open Problems and Work in Progress

e Model with eavesdropper possessing wiretapped side information.
e Secret key constructions

— “Good” Slepian-Wolf data compression codes for terminals with arbitrarily
correlated signals??

— Secret key extraction techniques ..... (S. Nitinawarat)

e Models for the simultaneous generation of multiple secret keys. (C. Ye)

e Models with real-valued signals observed by the terminals. (S. Nitinawarat)



