Multiterminal Data Compression and Secret Key Generation

Prakash Narayan

Joint work with Imre Csiszár and Chunxuan Ye

Multiterminal Data Compression

Multiterminal Data Compression

- Multiple terminals observe separate but correlated signals, e.g., different noisy versions of a common broadcast signal or measurements of a parameter of the environment.
- The terminals seek to attain omniscience, i.e., to learn *all* the signals.
- To this end, the terminals then transmit to each other.
- Such transmissions occur in a rate-efficient manner, and exploit the correlated nature of the observed signals.
- This problem does not involve any secrecy constraints.

- $m \ge 2$ terminals.
- X_1, \ldots, X_m , are finite-valued random variables (rvs) with (known) joint distribution P_{X_1, \ldots, X_m} .
- Each terminal i, i = 1, ..., m, observes a signal comprising n independent and identically distributed versions (say, in time) of the rv X_i , namely the sequence $X_i^n = (X_{i1}, ..., X_{in}).$
- The signal components observed by the different terminals at each time are identically distributed according to P_{X_1,\ldots,X_m} .

Objective: Each terminal wishes to become "omniscient," i.e., to reconstruct (X_1^n, \ldots, X_m^n) with probability $\cong 1$.

- The terminals are allowed to communicate over a *noiseless* channel, possibly interactively in several rounds.
- The transmissions from any terminal are observed by all the other terminals.
- A transmission from a terminal is allowed to be any function of its own observed signal, and of all previous transmissions.
- No (explicit) rate constraints are imposed on the transmissions.
- Let **F** denote collectively all the transmissions.

Communication for Omniscience

Objective: Each terminal wishes to become "omniscient," i.e., to reconstruct (X_1^n, \ldots, X_m^n) with probability $\cong 1$, using communication $\mathbf{F} = \mathbf{F}(n)$.

- What is the minimum number of bits of overall communication $\mathbf{F} = \mathbf{F}(n)$ needed for all the terminals to achieve omniscience?
- The smallest achievable rate of *communication for omniscience* (CO-rate):

$$R_{min} \stackrel{\triangle}{=} \inf \lim_{n} \frac{1}{n} \log_2 \left(\text{cardinality of range of } \mathbf{F} \right).$$

A Special Case: Two Terminals

Slepian-Wolf Data Compression (1973)

 $R_{min} = H(X_1|X_2) + H(X_2|X_1).$

Minimum Communication for Omniscience

Proposition [I. Csiszár - P. N., '04]: The smallest achievable CO-rate R_{min} is

$$R_{min} = \min_{(R_1,\ldots,R_m)\in\mathcal{R}_{SW}}\sum_{i=1}^m R_i,$$

where $\mathcal{R}_{SW} = \{ (R_1, \cdots, R_m) : \sum_{i \in B} R_i \ge H(X_B | X_{B^c}), \forall B \subset \{1, \ldots, m\} \},\$

and can be achieved with noninteractive communication.

Secret Key Generation

- Multiple terminals observe separate but correlated signals, e.g., different noisy versions of a common broadcast signal or measurements of a parameter of the environment.
- The terminals then transmit over a noiseless public channel in order to generate a secret key, i.e.,
 - random variables (rvs) generated at each terminal which agree with probability $\cong 1$; and
 - the rvs are effectively concealed from an eavesdropper with access to the public transmissions.
- The key generation procedure exploits the correlated nature of the observed signals.
- The secret key thereby generated can be used for secure encrypted communication between the terminals.

Some Related Work

- Maurer 1990, 1991, 1993, 1994, · · ·
- Ahlswede Csiszár 1993, 1994, 1998, \cdots
- Bennett, Brassard, Crépeau, Maurer 1995.
- Csiszár 1996.
- Maurer Wolf 1997, 2003, · · ·
- Venkatesan Anantharam 1995, 1997, 1998, 2000, · · ·
- Csiszár Narayan 2000, 2004, 2005.
- Renner Wolf 2003.
- Muramatsu 2004, 2005.
- Ye Narayan 2004, 2005.

Secret Key (SK): A function K of (X_1^n, \dots, X_m^n) is a SK, achievable with communication **F**, if

- $Pr\{K = K_1 = \dots = K_m\} \cong 1$ ("common randomness")
- $I(K \wedge \mathbf{F}) \cong 0$ ("secrecy")
- $H(K) \cong \log$ (cardinality of key space).

("uniformity")

Thus, a secret key is effectively concealed from an eavesdropper with access to \mathbf{F} , and is nearly uniformly distributed.

Secret Key Capacity

Objective: Determine the *largest entropy rate of such a* SK which can be achieved with suitable communication: SK-capacity C_{SK} .

The Connection

Special Case: Two Terminals

• SK-capacity [Maurer '93, Ahlswede-Csiszár '93]:

$$C_{SK} = I(X_1 \wedge X_2).$$

• An interpretation:

 $C_{SK} = I(X_1 \land X_2)$ = $H(X_1, X_2) - [H(X_1|X_2) + H(X_2|X_1)]$

= Entropy rate of omniscience – Smallest achievable CO-rate R_{min} .

Secret Key Capacity

Theorem [I. Csiszár - P. N., '04]: The SK-capacity C_{SK} for the terminals $1, \ldots, m$ equals

 $C_{SK} = H(X_1, \ldots, X_m) -$ Smallest achievable CO-rate, R_{min} , i.e., smallest aggregate rate of communication which enables all the terminals to become omniscient

and can be achieved with noninteractive communication.

- A (single-letter) characterization of R_{min} , thus, leads to the same for C_{SK} .
- The SK-capacity is not increased by randomization at the terminals.

Note: R_{min} is obtained as a solution to a multiterminal data compression problem not involving any secrecy constraints.

Main Idea

Lemma [I. Csiszár - P. N., '04]: If L represents "common randomness" for all the terminals, achievable with communication \mathbf{F} for some (signal) observation length n, then $\frac{1}{n}H(L|\mathbf{F})$ is an achievable SK-rate.

In particular, with $L \cong$ omniscience = (X_1^n, \ldots, X_m^n) , we get

$$\frac{1}{n}H(L|\mathbf{F}) \cong \frac{1}{n}H(X_1^n,\ldots,X_m^n|\mathbf{F}) = H(X_1,\ldots,X_m) - \frac{1}{n}H(\mathbf{F}).$$

Elementary Constructive Schemes for Secret Key Generation

How is a Secret Key Obtained?

- Step 1: Data compression: The terminals communicate over the public channel using compressed data in order to generate "common randomness." These public transmissions are observed by the eavesdropper.
- Step 2: Secret key construction: The terminals then process this "common randomness" to extract a secret key of which the eavesdropper has provably little or no knowledge.

Model 1: Two Terminals with Symmetrically Correlated Signals

- Terminals 1 and 2 observe, respectively, n i.i.d. repetitions of the correlated rvs X_1 and X_2 , where
- X_1, X_2 are $\{0, 1\}$ -valued rvs that are "symmetrically" connected by a *virtual* BSC $(p), p < \frac{1}{2}$.

- Have seen that: $C_{SK} = I(X_1 \wedge X_2) = 1 h_b(p)$ bit/symbol.
- Can assume: $X_1^n = X_2^n \oplus V^n$, where $V^n = (V_1, \dots, V_n)$ is independent of X_2^n , and is a Bernoulli(p) sequence of rvs.

A Useful Fact

P. Elias, 1955

For a BSC $P_{X_1|X_2}$ with 0 , there exists a binary*linear*block code with parity check matrix**P**and codewords of blocklength <math>n, and with

- rate \cong channel capacity = $1 h_b(p)$; and
- average error probability of ML decoding

$$1 - \Pr\{f_{\mathbf{P}}(\mathbf{P}V^n) = V^n\}$$

vanishing exponentially rapidly with increasing blocklength n, where $f_{\mathbf{P}}(\mathbf{P}V^n)$ is the most likely noise sequence V^n with syndrome $\mathbf{P}V^n$.

Step 1: Slepian-Wolf Data Compression

A.D. Wyner, 1974: Scheme for reconstructing x_1^n at terminal 2

• Standard array for (n, n - m) linear channel code with parity check matrix **P**:

- Terminal 1 transmits \mathbf{F} = the syndrome $\mathbf{P}x_1^n (= \mathbf{P}(x_1^n)^t)$ to terminal 2.
- Terminal 2 computes the ML estimate $\widehat{x}_1^n = \widehat{x}_1^n(x_2^n, \mathbf{F})$ as:

$$\widehat{x}_1^n = x_2^n \oplus f_{\mathbf{P}}(\mathbf{P}x_1^n \oplus \mathbf{P}x_2^n),$$

where $f_{\mathbf{P}}(\mathbf{P}x_1^n \oplus \mathbf{P}x_2^n) = \text{most likely noise sequence } v^n$ with syndrome

$$\mathbf{P}v^n = \mathbf{P}x_1^n \oplus \mathbf{P}x_2^n.$$

• Thus, terminal 2 reconstructs x_1^n with

$$\Pr\{\widehat{X}_1^n = X_1^n\} = \dots = \Pr\{f_{\mathbf{P}}(\mathbf{P}V^n) = V^n\} \cong 1.$$

C. Ye - P.N., '05

• Secret key for terminals 1 and 2

Terminal 1 sets K_1 = numerical index of x_1^n in coset containing x_1^n ;

Terminal 2 sets K_2 = numerical index of \hat{x}_1^n in coset containing x_1^n .

- For a systematic channel code: K_1 (resp. K_2) = first (n m) bits of x_1^n (resp. \hat{x}_1^n).
- K_1 or K_2 forms an optimal secret key, since:
 - $-\Pr\{K_1 = K_2\} = \Pr\{\widehat{X}_1^n = X_1^n\} \cong 1; \qquad \text{(common randomness)}$
 - $I(K_1 \wedge \mathbf{F}) = 0; \qquad (\text{secrecy})$

as K_1 conditioned on $\mathbf{F} = \mathbf{P} X_1^n \sim \text{uniform } \{1, \cdots, 2^{n-m}\};$

- $K_1 \sim \text{uniform } \{1, \cdots, 2^{n-m}\};$ (uniformity)

$$- \frac{1}{n}H(K_1) = \frac{n-m}{n} \cong 1 - h_b(p).$$
 (SK-capacity)

Model 2: Markov Chain on a Tree

- Connected graph G with vertex set = $\{1, \dots, m\}$, edge set E, no circuits (tree).
- X_1, \dots, X_m are assigned to the vertices $1, \dots, m$.
- Conditional independence structure determined by G.

- If G is a chain, concept reduces to that of a standard Markov chain.
- X_1, \dots, X_m are $\{0, 1\}$ -valued rvs with joint pmf $P_{X_1 \dots X_m}$ satisfying: for $(i, j) \in E$: the rvs X_i, X_j are "symmetrically" connected by a *virtual* $BSC(p_{ij}), p_{ij} < \frac{1}{2}$.

Model 2: Markov Chain on a Tree

I. Csiszár - P.N., '04

$$C_{SK} = \min_{(i,j)\in E} I(X_i \wedge X_j)$$

= $I(X_{i^*} \wedge X_{j^*}) = 1 - h_b(p_{max})$ bit/symbol,

where

$$p_{max} \stackrel{\triangle}{=} p_{i^*j^*} = \max_{(i,j)\in E} p_{ij}.$$

Step 1: Slepian-Wolf Scheme for Reconstructing $x_{i^*}^n$ at All Terminals

C. Ye - P.N., '05

- Consider a linear code of blocklength n with parity check matrix \mathbf{P} for the BSC $P_{X_{i^*}|X_{j^*}} = BSC(p_{max})$, of rate $\cong 1 h_b(p_{max})$ and small decoding error probability.
- Each terminal $i = 1, \dots, m$ transmits the syndrome $\mathbf{P}x_i^n$.
- Each terminal $i \neq i^*$ reconstructs $x_{i^*}^n$ as follows:

• Can show: $\Pr{\{\widehat{X}_{i^*}^n = X_{i^*}^n \text{ at every terminal}\}} \cong 1.$

Step 2: Secret Key Construction

• Secret key for terminals $1, \cdots, m$

Terminal i^* sets K_{i^*} = numerical index of $x_{i^*}^n$ in coset containing $x_{i^*}^n$.

Each terminal $i \neq i^*$ sets K_i = numerical index of its estimate $\hat{x}_{i^*}^n$ in coset containing $x_{i^*}^n$.

(uniformity)

- Any of K_1, \dots, K_m forms an optimal secret key, since:
 - $\Pr\{K_1 = \dots = K_m\} \cong 1;$ (common randomness)
 - $I(K_1 \wedge \mathbf{F}) = 0; \qquad (\text{secrecy})$
 - $H(K_1) = \log (\text{cardinality of key space});$
 - $\frac{1}{n}H(K_1) \cong 1 h_b(p_{max}).$ (SK-capacity)

Open Problems and Work in Progress

- Model with eavesdropper possessing wiretapped side information.
- Secret key constructions

:

- "Good" Slepian-Wolf data compression codes for terminals with arbitrarily correlated signals??
- Secret key extraction techniques (S. Nitinawarat)
- Models for the simultaneous generation of multiple secret keys. (C. Ye)
- Models with real-valued signals observed by the terminals. (S. Nitinawarat)