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Multiterminal Data Compression



Multiterminal Data Compression

• Multiple terminals observe separate but correlated signals, e.g., different noisy

versions of a common broadcast signal or measurements of a parameter of the

environment.

• The terminals seek to attain omniscience, i.e., to learn all the signals.

• To this end, the terminals then transmit to each other.

• Such transmissions occur in a rate-efficient manner, and exploit the correlated

nature of the observed signals.

• This problem does not involve any secrecy constraints.



The Model
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• m ≥ 2 terminals.

• X1, . . . , Xm, are finite-valued random variables (rvs) with (known) joint

distribution PX1,... ,Xm
.

• Each terminal i, i = 1, . . . , m, observes a signal comprising n independent and

identically distributed versions (say, in time) of the rv Xi, namely the sequence

Xn
i = (Xi1, . . . , Xin).

• The signal components observed by the different terminals at each time are

identically distributed according to PX1,... ,Xm
.



The Model
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Objective: Each terminal wishes to become “omniscient,” i.e., to reconstruct

(Xn
1 , . . . , Xn

m) with probability ∼= 1.

• The terminals are allowed to communicate over a noiseless channel, possibly

interactively in several rounds.

• The transmissions from any terminal are observed by all the other terminals.

• A transmission from a terminal is allowed to be any function of its own observed

signal, and of all previous transmissions.

• No (explicit) rate constraints are imposed on the transmissions.

• Let F denote collectively all the transmissions.



Communication for Omniscience
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Objective: Each terminal wishes to become “omniscient,” i.e., to reconstruct

(Xn
1 , . . . , Xn

m) with probability ∼= 1, using communication F = F(n).

• What is the minimum number of bits of overall communication F = F(n) needed

for all the terminals to achieve omniscience?

• The smallest achievable rate of communication for omniscience (CO-rate):

Rmin
△
= inf lim

n

1

n
log2 (cardinality of range of F) .



A Special Case: Two Terminals

Slepian-Wolf Data Compression (1973)
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Rmin = H(X1|X2) + H(X2|X1).



Minimum Communication for Omniscience
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Proposition [I. Csiszár - P. N., ’04]: The smallest achievable CO-rate Rmin is

Rmin = min
(R1,... ,Rm)∈RSW

m∑

i=1

Ri,

where RSW =
{
(R1, · · · , Rm) :

∑
i∈B Ri ≥ H(XB|XBc), ∀B ⊂ {1, . . . , m}

}
,

and can be achieved with noninteractive communication.



Secret Key Generation



Secret Key Generation

• Multiple terminals observe separate but correlated signals, e.g., different noisy

versions of a common broadcast signal or measurements of a parameter of the

environment.

• The terminals then transmit over a noiseless public channel in order to generate a

secret key, i.e.,

– random variables (rvs) generated at each terminal which agree with

probability ∼= 1; and

– the rvs are effectively concealed from an eavesdropper with access to the

public transmissions.

• The key generation procedure exploits the correlated nature of the observed

signals.

• The secret key thereby generated can be used for secure encrypted

communication between the terminals.
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What is a Secret Key?
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Secret Key (SK): A function K of (Xn
1 , · · · , Xn

m) is a SK, achievable with

communication F, if

• Pr{K = K1 = · · · = Km} ∼= 1 (“common randomness”)

• I(K ∧ F) ∼= 0 (“secrecy”)

• H(K) ∼= log (cardinality of key space) . (“uniformity”)

Thus, a secret key is effectively concealed from an eavesdropper with access to F, and

is nearly uniformly distributed.



Secret Key Capacity
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Objective: Determine the largest entropy rate of such a SK which can be achieved

with suitable communication: SK-capacity CSK .



The Connection



Special Case: Two Terminals
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• SK-capacity [Maurer ’93, Ahlswede-Csiszár ’93]:

CSK = I(X1 ∧ X2).

• An interpretation:

CSK = I(X1 ∧ X2)

= H(X1, X2) − [H(X1|X2) + H(X2|X1)]

= Entropy rate of omniscience− Smallest achievable CO-rate Rmin.



Secret Key Capacity

Theorem [I. Csiszár - P. N., ’04]: The SK-capacity CSK for the terminals 1, . . . , m

equals

CSK = H(X1, . . . , Xm) − Smallest achievable CO-rate, Rmin, i.e., smallest

aggregate rate of communication which enables all the terminals to

become omniscient

and can be achieved with noninteractive communication.

• A (single-letter) characterization of Rmin, thus, leads to the same for CSK .

• The SK-capacity is not increased by randomization at the terminals.

Note: Rmin is obtained as a solution to a multiterminal data compression problem

not involving any secrecy constraints.



Main Idea

Lemma [I. Csiszár - P. N., ’04]: If L represents “common randomness” for all the

terminals, achievable with communication F for some (signal) observation length n,

then 1
n
H(L|F) is an achievable SK-rate.

In particular, with L ∼= omniscience = (Xn
1 , . . . , Xn

m), we get

1

n
H(L|F) ∼=

1

n
H(Xn

1 , . . . , Xn
m|F) = H(X1, . . . , Xm) −

1

n
H(F).



Elementary Constructive Schemes for Secret Key Generation



How is a Secret Key Obtained?

• Step 1: Data compression: The terminals communicate over the public

channel using compressed data in order to generate “common randomness.”

These public transmissions are observed by the eavesdropper.

• Step 2: Secret key construction: The terminals then process this “common

randomness” to extract a secret key of which the eavesdropper has provably little

or no knowledge.



Model 1: Two Terminals with Symmetrically Correlated Signals

• Terminals 1 and 2 observe, respectively, n i.i.d. repetitions of the correlated rvs

X1 and X2, where

• X1, X2 are {0, 1}-valued rvs that are “symmetrically” connected by a virtual

BSC(p), p < 1
2 .
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• Have seen that: CSK = I(X1 ∧ X2) = 1 − hb(p) bit/symbol.

• Can assume: Xn
1 = Xn

2 ⊕ V n, where V n = (V1, · · · , Vn) is independent of Xn
2 ,

and is a Bernoulli(p) sequence of rvs.



A Useful Fact

P. Elias, 1955

For a BSC PX1|X2
with 0 < p < 1

2 , there exists a binary linear block code with parity

check matrix P and codewords of blocklength n, and with

• rate ∼= channel capacity = 1 − hb(p); and

• average error probability of ML decoding

1 − Pr{fP(PV n) = V n}

vanishing exponentially rapidly with increasing blocklength n, where fP(PV n) is

the most likely noise sequence V n with syndrome PV n.



Step 1: Slepian-Wolf Data Compression

A.D. Wyner, 1974: Scheme for reconstructing xn
1 at terminal 2

• Standard array for (n, n − m) linear channel code with parity check matrix P:
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• Terminal 1 transmits F = the syndrome Pxn
1 (= P(xn

1 )t) to terminal 2.

• Terminal 2 computes the ML estimate x̂n
1 = x̂n

1 (xn
2 , F) as:

x̂n
1 = xn

2 ⊕ fP(Pxn
1 ⊕Pxn

2 ),

where fP(Pxn
1 ⊕ Pxn

2 ) = most likely noise sequence vn with syndrome

Pvn = Pxn
1 ⊕Pxn

2 .

• Thus, terminal 2 reconstructs xn
1 with

Pr{X̂n
1 = Xn

1 } = · · · = Pr{fP(PV n) = V n} ∼= 1.



Step 2: Secret Key Construction

C. Ye - P.N., ’05

• Secret key for terminals 1 and 2

Terminal 1 sets K1 = numerical index of xn
1 in coset containing xn

1 ;

Terminal 2 sets K2 = numerical index of x̂n
1 in coset containing xn

1 .

• For a systematic channel code: K1 (resp. K2) = first (n − m) bits of xn
1

(resp. x̂n
1 ).

• K1 or K2 forms an optimal secret key, since:

– Pr{K1 = K2} = Pr{X̂n
1 = Xn

1 }
∼= 1; (common randomness)

– I(K1 ∧ F) = 0; (secrecy)

as K1 conditioned on F = PXn
1 ∼ uniform {1, · · · , 2n−m};

– K1 ∼ uniform {1, · · · , 2n−m}; (uniformity)

– 1
n
H(K1) = n−m

n
∼= 1 − hb(p). (SK-capacity)



Model 2: Markov Chain on a Tree

• Connected graph G with vertex set = {1, · · · , m}, edge set E, no circuits (tree).

• X1, · · · , Xm are assigned to the vertices 1, · · · , m.

• Conditional independence structure determined by G.
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• If G is a chain, concept reduces to that of a standard Markov chain.

• X1, · · · , Xm are {0, 1}-valued rvs with joint pmf PX1···Xm
satisfying:

for (i, j) ∈ E: the rvs Xi, Xj are “symmetrically” connected by a virtual

BSC(pij), pij < 1
2 .



Model 2: Markov Chain on a Tree
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I. Csiszár - P.N., ’04

CSK = min
(i,j)∈E

I(Xi ∧ Xj)

= I(Xi∗ ∧ Xj∗) = 1 − hb(pmax) bit/symbol,

where

pmax
△
= pi∗j∗ = max

(i,j)∈E
pij .



Step 1: Slepian-Wolf Scheme for Reconstructing xn
i∗ at All Terminals

C. Ye - P.N., ’05

• Consider a linear code of blocklength n with parity check matrix P for the BSC

PXi∗ |Xj∗
= BSC(pmax), of rate ∼= 1 − hb(pmax) and small decoding error

probability.

• Each terminal i = 1, · · · , m transmits the syndrome Pxn
i .

• Each terminal i 6= i∗ reconstructs xn
i∗ as follows:
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i ⊕ fP(Pxn
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i1

)
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i1
⊕Pxn

i2
)

...

x̂n
i∗ = x̂n

ir
⊕ fP(Pxn

ir
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i∗)

• Can show: Pr{X̂n
i∗ = Xn

i∗ at every terminal} ∼= 1.



Step 2: Secret Key Construction

• Secret key for terminals 1, · · · , m

Terminal i∗ sets Ki∗ = numerical index of xn
i∗ in coset containing xn

i∗ .

Each terminal i 6= i∗ sets Ki = numerical index of its estimate x̂n
i∗ in coset

containing xn
i∗ .

• Any of K1, · · · , Km forms an optimal secret key, since:

– Pr{K1 = · · · = Km} ∼= 1; (common randomness)

– I(K1 ∧ F) = 0; (secrecy)

– H(K1) = log (cardinality of key space); (uniformity)

– 1
n
H(K1) ∼= 1 − hb(pmax). (SK-capacity)



Open Problems and Work in Progress

• Model with eavesdropper possessing wiretapped side information.

• Secret key constructions

– “Good” Slepian-Wolf data compression codes for terminals with arbitrarily

correlated signals??

– Secret key extraction techniques ..... (S. Nitinawarat)

...

• Models for the simultaneous generation of multiple secret keys. (C. Ye)

• Models with real-valued signals observed by the terminals. (S. Nitinawarat)


