Parity Forwarding for the Relay Network

Wei Yu

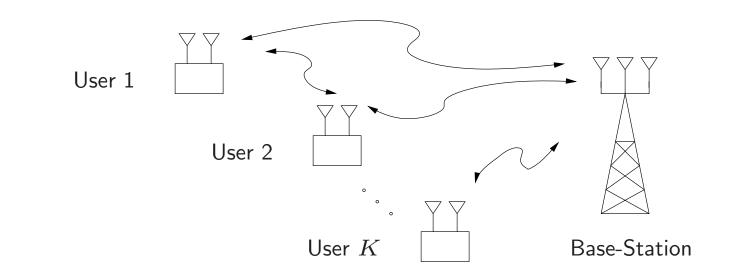
Joint work with Peyman Razaghi

Electrical and Computer Engineering Department University of Toronto

May 23, 2005

Wei Yu, CTW'06

Relay Network



- Information Theory: Cover and El Gamal ('79) Binning strategy
- Communication Strategies: Decode-and-forward, Amplify-and-forward.

Outline of This Talk

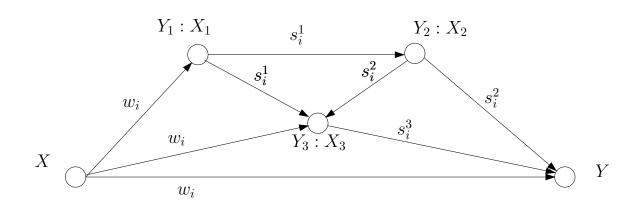
- Is binning practical for the relay channel?
 - Part I: LDPC code design to approach the DF capacity.
- How to generalize binning to multi-relay networks?
 - Part II: Binning schemes for multi-relay networks.

Outline of This Talk

- Is binning practical for the relay channel?
 - Part I: LDPC code design to approach the DF capacity.
- How to generalize binning to multi-relay networks?
 - Part II: Binning schemes for multi-relay networks.

Binning via "Parity Forwarding"

Information Flow in a Relay Network

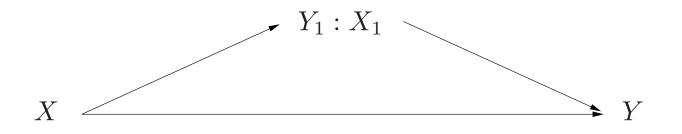


- Relay nodes help communication via decoding-and-retransmit-parities.
- Design challenges:
 - Routing of information in a network.
 - Efficient codes to facilitate decoding at the relays/destination.

Part I: Is binning practical for the relay channel?

Binning in Decode-and-Forward

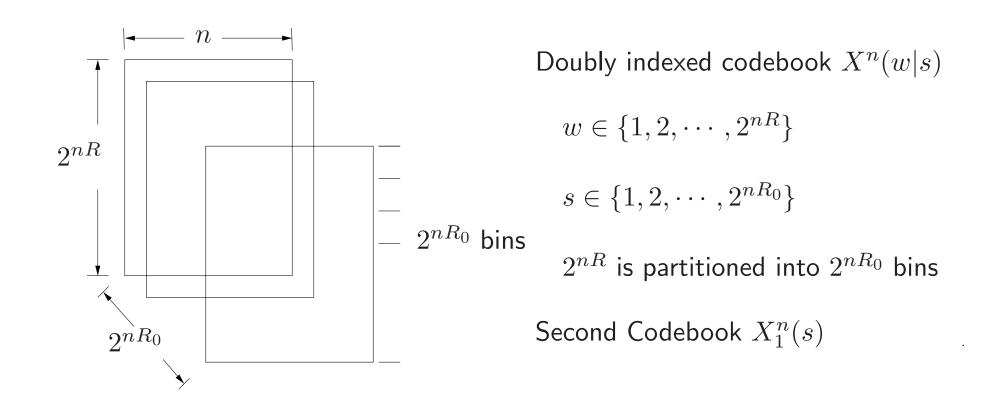
• Consider Cover and El Gamal's strategy for degraded relay channel:



- Two elements: Block-Markov coding and Binning
 - The relay provides a bin index of the transmitter codeword.

 $C = \sup_{p(x,x_1)} \min\{I(X,X_1;Y), I(X;Y_1|X_1)\}$

Code Construction



What is binning?

- Binning is ubiquitous in multiuser information theory
 - Writing on dirty paper (Gel'fand-Pinsker)
 - Source coding with encoder side information (Wyner-Ziv)
 - Relay communication (Cover-El-Gamal)
- Binning is a way of conveying "partial" information.

What is binning?

- Binning is ubiquitous in multiuser information theory
 - Writing on dirty paper (Gel'fand-Pinsker)
 - Source coding with encoder side information (Wyner-Ziv)
 - Relay communication (Cover-El-Gamal)
- Binning is a way of conveying "partial" information.

Bin index is equivalent to parity-checks

Bin Index as Parity-Checks

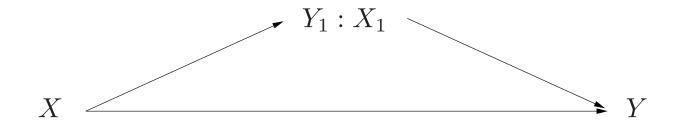
How do we partition a codebook of size 2^{nR} into 2^{nR_0} bins?

... by forming nR_0 parity check bits, and using the parity check bits as bin indices.

Same idea as DISCUS for Slepian-Wolf coding (Pradhan-Ramchandran) or structured binning (Zamir-Shamai-Erez)

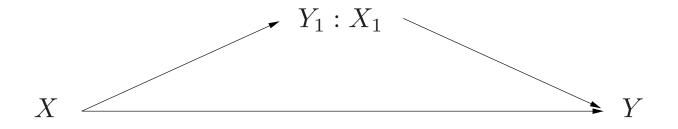
Decode and Forward

• X_1 decodes X and re-encodes parities (or a bin index) of X.



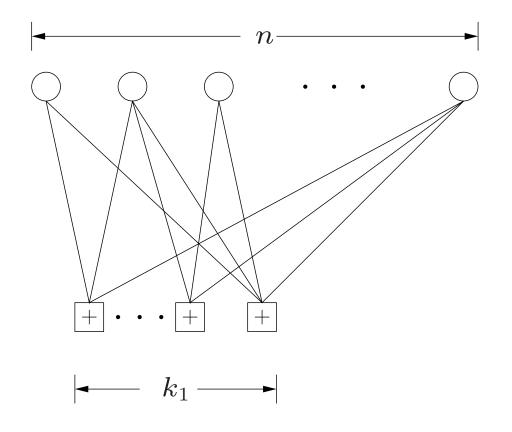
Decode and Forward

• X_1 decodes X and re-encodes parities (or a bin index) of X.



- A good code for the relay channel must be capacity-approaching
 - for the $X Y_1$ link at R;
 - for the X Y link at $R R_0$ with extra parities!

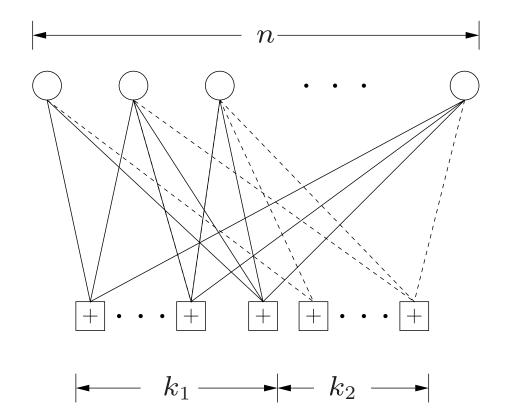
Bi-Layer LDPC Code for the Relay Channel



 (n, k_1) must be capacity

approaching for $X - Y_1$

Bi-Layer LDPC Code for the Relay Channel



 (n, k_1) must be capacity approaching for $X - Y_1$

 $(n, k_1 + k_2)$ is capacity approaching for X - Y

Bi-Layer LDPC Code

Code Design Problem for the Relay Channel

Design a single LDPC code so that:

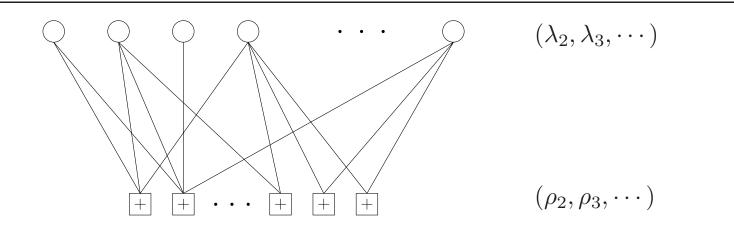
- The entire graph is capacity-achieving at $R R_0$ with SNR_{low}.
- The sub-graph is capacity-achieving at R with SNR_{high} .

Objective of this part of the talk:

Design degree sequence for an LDPC code to achieve the above.

Universal coding problem!

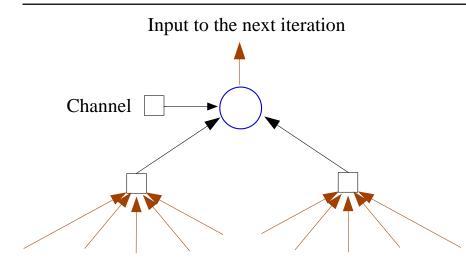
Irregular Low-Density Parity-Check Codes



An ensemble of irregular LDPC codes is defined by its variable-degree distribution {λ₂, λ₃,...} and its check-degree distribution {ρ₂, ρ₃,...}.

• Degree distribution is related to rate by:
$$R = 1 - \frac{\sum_{i} \frac{\rho_{i}}{i}}{\sum_{i} \frac{\lambda_{i}}{i}}$$

Iterative Decoding Algorithm

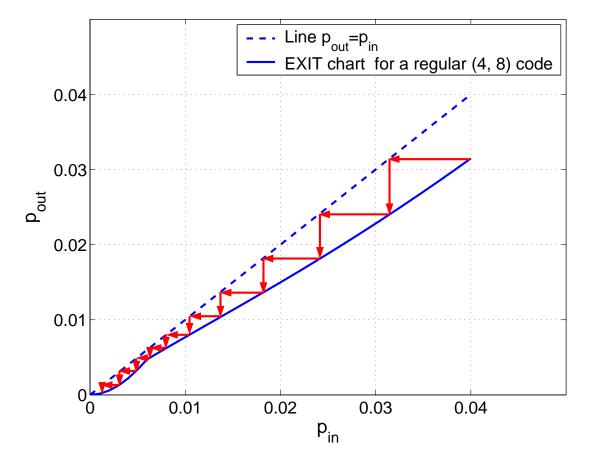


Output from the previous iteration

- A message is a belief about the incident variable node
- Decoder passes messages between check and variable nodes iteratively.

- Analysis Tool: Density Evolution (Urbanke-Richardson)
- This talk: Extrinsic Information Transfer (EXIT) charts (ten Brink)

Tracking Extrinsic Probability of Error



EXIT Chart for BSC with $\epsilon=0.04$

- Mutual Inform.
 EXIT Chart (ten Brink '01)
- Prob. of Error EXIT Chart (Ardakani, Kschischang '04)

Shaping the EXIT Chart

- For an irregular LDPC code, *P*_{out} at the output of variable nodes is computed using Bayes's rule.
- Assume a fixed check degree distribution, the resulting P_{out} is equivalent to a linear combination of corresponding P_{out} of regular codes
- Therefore, the EXIT chart of an irregular code is a linear combination of elementary EXIT charts of regular codes, making P_e -EXIT chart a powerful design tool.

$$f(p) = \sum_{i} \lambda_i f_i(p)$$

Linear Programming Approach to LDPC Code Design

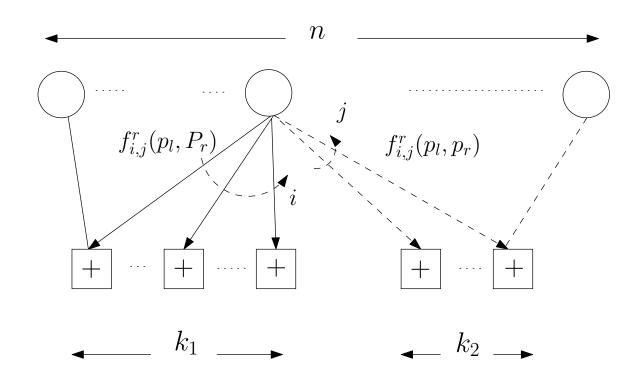
- Consider a code design problem for a standard BSC or AWGN channel:
 - Fix check degree sequence ρ_i .

maximize
$$1 - \frac{\sum \rho_i/i}{\sum \lambda_i/i}$$

subject to $\sum \lambda_i f_i(p) < p$

- Choose variable degree sequence λ_i to maximize rate, subject to decodability constraints, by solving a *linear programming* problem.
- This talk: Generalizing this approach to design *bi-layer* codes.

Bi-Layer Density Evolution



Keep track of the probability of error in left and right graphs (p_l, p_r) . Define left and right elementary EXIT charts $f_{i,j}^l(p_l, p_r)$ and $f_{i,j}^r(p_l, p_r)$.

Designing Bi-Layer LDPC Codes for the Relay Channel

maximize
$$1 - \frac{\sum_{i} \rho_{i}/i}{\sum_{i} \nu_{i}/i}$$

subject to
$$\nu_{i} = \frac{1}{\eta} \sum_{j} \frac{i}{i+j} \lambda_{i,j}$$

$$\sum_{i} \nu_{i} f_{i}^{s}(p) < p$$

$$\sum_{i,j} \lambda_{i,j} \frac{f_{i,j}^{l}(p_{l}, p_{r})i + f_{i,j}^{r}(p_{l}, p_{r})j}{i+j} < \eta p_{l} + (1-\eta)p_{r}$$

The design variables are left and right degree sequences $\lambda_{i,j}$.

Performance

Optimal $\lambda_{i,j}$ (left degree *i* and right degree *j*) for a relay channel with $R_{source-relay} = 0.7520$ and $R_{source-destination} = 0.6280$.

(i,j)	j = 0	j = 1	j=2	j = 3
i=2	0.1153	0.0623	0	0
i = 3	0.1220	0.0921	0	0
i=5	0	0.1897	0	0
i = 8	0	0	0.0591	0
i=9	0	0	0.0166	0
i = 20	0	0	0.3296	0.0132

Gap to capacity: **0.19dB** for source-relay, **0.34dB** for source-destination.

Comparing with Other Work

- For fading relay channel, previously reported gap is about 1-1.5dB
 - Zhao-Valenti '03
 - Zhang-Bahceci-Duman '04
 - Khojastepour-Ahmed-Aazhang '04
- After the workshop, we also become aware of very recent independent work based on density evolution:
 - Chakrabarti, de Baynast, Sabharwal, Aazhang '06

How Hard is Binning?

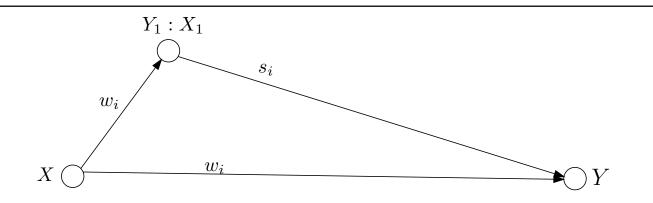
- Implementing binning:
 - Binning for quantization is hard. (e.g. Gel'fand-Pinsker, Wyner-Ziv)
 - Binning for error-correcting is practical! (e.g. DF in relay channel)
- Main message:

Binning for Relay Channel = Parity Forwarding

• The coding problem \Rightarrow Designing a *universal* code.

Part II: Parity-Forwarding for Multi-Relay Networks

Parity Forwarding for One-Relay Network

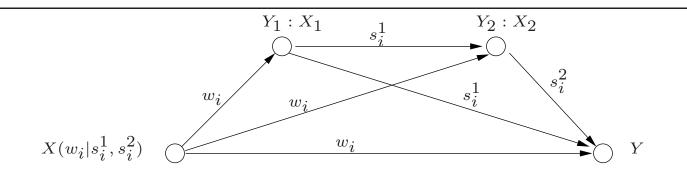


Key equations for Cover-El-Gamal strategy:

 $R < I(X;Y_1|X_1)$ decodability at the relay $R_0 < I(X_1;Y)$ parity-forwarding from relay to destination $R - R_0 < I(X;Y|X_1)$ final decoding at the destination

"Degraded" means that relay is able to decode the source message.

Two-Relay Network

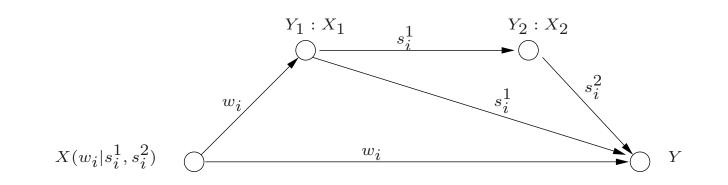


- What does degradedness mean for multi-relay networks?
 - Both relays are capable of decoding the source message. Proof via regular encoding. (Xie-Kumar'05, Kramer-Gastpar-Gupta'05)

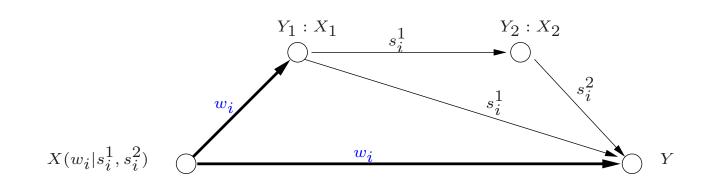
 $C = \max_{p(x,x_1,x_2)} \min\{I(X;Y_1|X_1,X_2), I(X,X_1;Y_2|X_2), I(X,X_1,X_2,Y)\}$

- We call the above *serially degraded* relay channel.

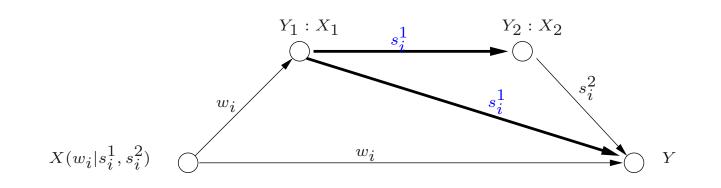
Another Case: Doubly Degraded Two-Relay Network



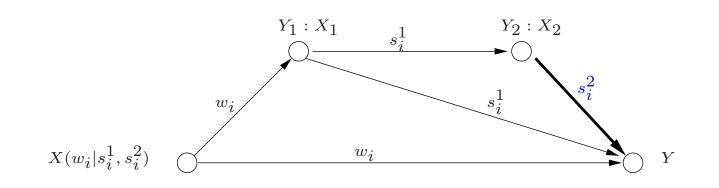
- Suppose that the link from source to the second relay is weak:
 - We do not require the second relay to decode the source message.
 - But, we use the second relay to help the first relay transmit the help-message to the destination.
- We call this a *doubly degraded* relay network.



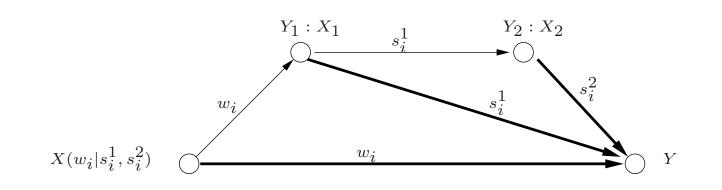
- Four-step block-Markov coding:
 - Source transmits w_i to both Y_1 and Y.
 - First relay decodes w_i and transmits s_i^1 (parities of w_{i-1}) to Y_2 , Y_1 .
 - Second relay decodes s_i^1 and transmits s_i^2 (parities of s_{i-1}^1) to Y.
 - Destination decodes s_i^2 first, then s_{i-1}^1 , finally w_{i-2} .



- Four-step block-Markov coding:
 - Source transmits w_i to both Y_1 and Y.
 - First relay decodes w_i and transmits s_i^1 (parities of w_{i-1}) to Y_2 , Y.
 - Second relay decodes s_i^1 and transmits s_i^2 (parities of s_{i-1}^1) to Y.
 - Destination decodes s_i^2 first, then s_{i-1}^1 , finally w_{i-2} .



- Four-step block-Markov coding:
 - Source transmits w_i to both Y_1 and Y.
 - First relay decodes w_i and transmits s_i^1 (parities of w_{i-1}) to Y_2 , Y.
 - Second relay decodes s_i^1 and transmits s_i^2 (parities of s_{i-1}^1) to Y.
 - Destination decodes s_i^2 first, then s_{i-1}^1 , finally w_{i-2} .



- Four-step block-Markov coding:
 - Source transmits w_i to both Y_1 and Y.
 - First relay decodes w_i and transmits s_i^1 (parities of w_{i-1}) to Y_2 , Y_1 .
 - Second relay decodes s_i^1 and transmits s_i^2 (parities of s_{i-1}^1) to Y.
 - Destination decodes s_i^2 first, then s_{i-1}^1 , finally w_{i-2} .

Capacity for Doubly Degraded Two-Relay Network

Definition 1. A doubly degraded two-relay network is defined by $p(y, y_1, y_2 | x, x_1, x_2)$, where $X - (X_1, X_2, Y_1) - (Y_2, Y)$, $X_1 - (X_2, Y_2) - Y$ and $X - (X_1, X_2, Y) - Y_2$ form Markov chains.

Theorem 1. The following rate maximized over $p(x, x_1, x_2)$ is achievable

$$R < I(X; Y_1 | X_1, X_2).$$

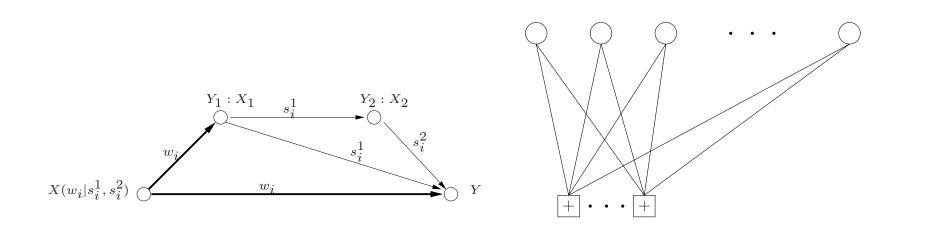
$$R < I(X; Y | X_1, X_2) + I(X_1; Y_2 | X_2)$$

$$R < I(X; Y | X_1, X_2) + I(X_1; Y | X_2) + I(X_2; Y_1)$$

$$= I(X, X_1, X_2; Y).$$

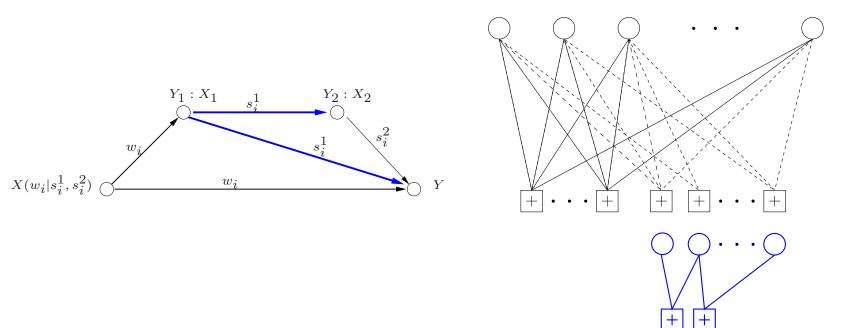
It is also the capacity if the two-relay network is doubly degraded.

Coding for Doubly Degraded Relay Network



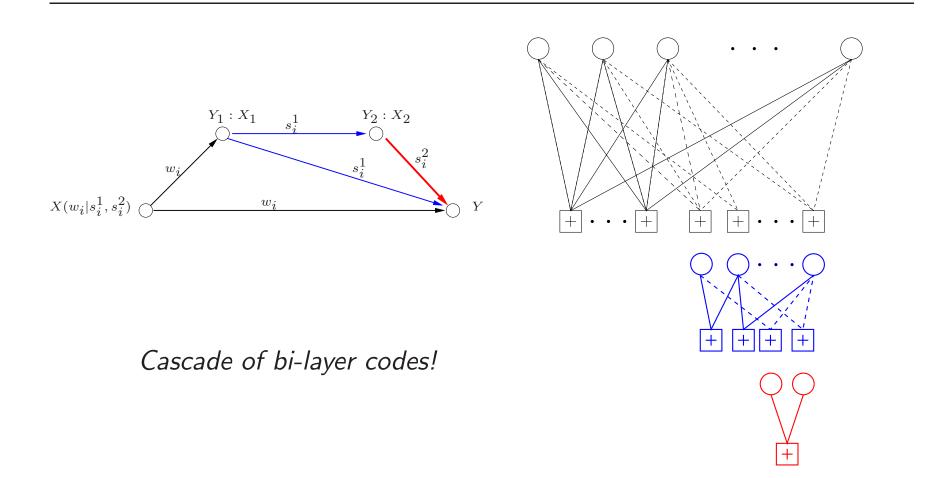
Cascade of bi-layer codes!

Coding for Doubly Degraded Relay Network

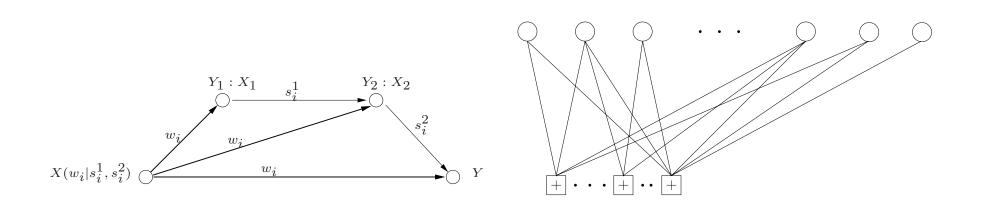


Cascade of bi-layer codes!

Coding for Doubly Degraded Relay Network

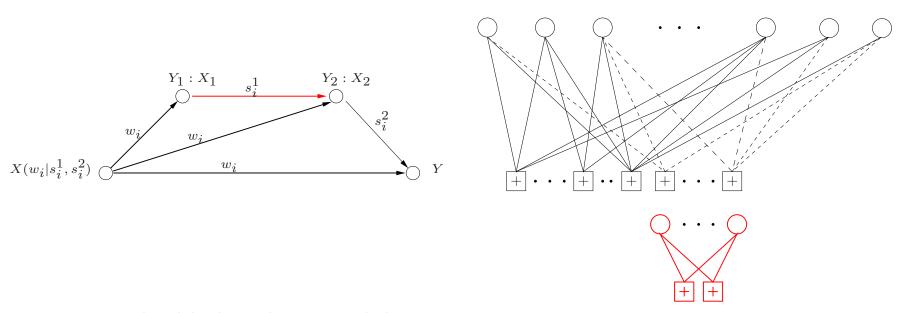


Another Case: Tri-Layer LDPC Codes



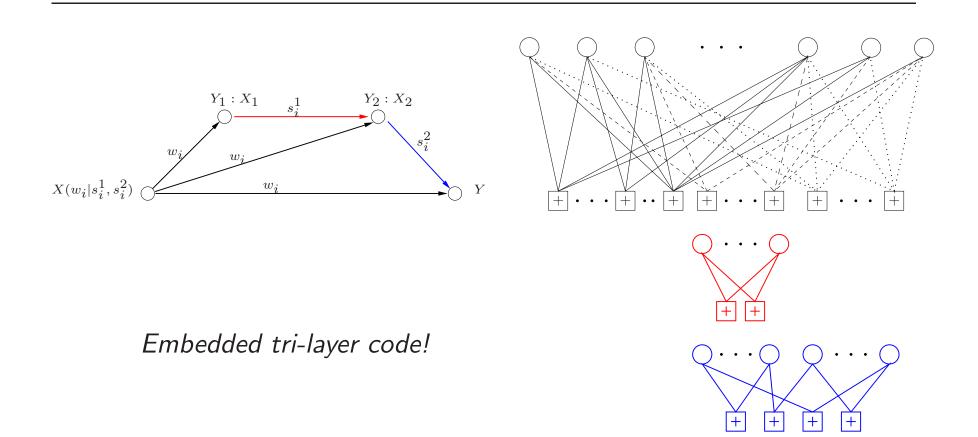
Embedded tri-layer code!

Another Case: Tri-Layer LDPC Codes

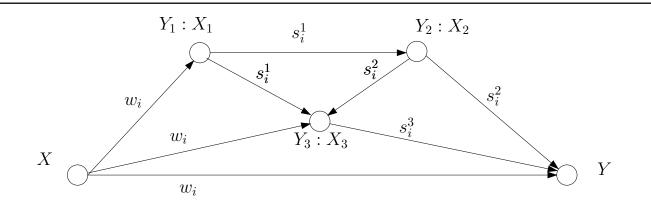


Embedded tri-layer code!

Another Case: Tri-Layer LDPC Codes



General Relay Networks



- The order at which different nodes help each other can be visualized:
 - Node X_1 helps Node Y_3 to decode w_i by sending s_i^1 .
 - Node X_2 helps Node Y_3 to decode s_i^1 by sending s_i^2 .
 - Node X_3 helps the destination in decoding both s_i^2 and w_i .
- This is like a routing protocol! Coding problem: *universal* codes!

Concluding Remarks

- This talk gives new interpretation and insights on relay strategies:
 - Existing relay protocols can be interpreted as parity-forwarding.
 - Parity-forwarding can be efficiently implemented using LDPC codes.
 - Multi-relay networks can be degraded in more than one way; parity-forwarding is capacity-achieving in degraded networks.
- Connection with Fountain codes and Network coding:
 - Parity-generation achieves universal coding in an erasure network.
 - Parity-formation achieves maximum single-source multicast throughput in network coding.
 - Parity-forwarding achieves decode-and-forward rate in relay networks!