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Outline

 Cross-Layer Design and “Loose Coupling”

 Focus on congestion control and scheduling problem
 Model and formal formulation

 Optimal solution

 Difficulties with optimal solution

 Impact of imperfect scheduling
 Static system

 Dynamic system

 Ongoing work and open problems
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Cross-Layer Design

Network

MAC

Physical

Transport

 Layered architecture offers simplicity and modularity
 Optimizing within layers has reached the point of

diminishing returns.
 Future applications that will fuel the growth of wireless

require orders of magnitude increase in performance.
 Thesis: To satisfy the increasing demand for new wireless

services, a cross-layer perspective needs to be taken to
obtain significant improvements in wireless spectrum
efficiency



4

The Cross-layer Dilemma:
Efficiency vs. Modularity

 Cross-Layer design needed to improve
efficiency

 Layers are coupled
 Potential loss of modularity
 Could lead to complex and fragile overall

design
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Cross-Layer with “Loose
Coupling”

 Loose coupling idea:
 Minimal interaction between layers
 Imperfect measurements or decision at one layer

should not affect the entire system
 Overall cross-layer solution must ensure both

efficiency and modularity

 Appropriately designed cross-layer solutions do
exhibit a layered structure with minimal but
crucial interaction between the layers.
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The Cross-Layer Congestion-Control
and Scheduling Problem

 Congestion control: Determines end-to-end rate at which users should
transmit
 Maximize capacity and avoid excessive congestion
 Improve fairness of the service to different users

 Scheduling: Everything in MAC and Physical layer, e.g., power control,
link scheduling, adaptive modulation and coding

 Goal: To determine the maximum end-to-end rate at which users should
transmit and at the same time find the associated “scheduling policy” that
stabilizes the system --- a cross-layer problem

 For simplicity, we assume that routing is fixed. Results can be readily
extended to incorporate multi-path routing.

Network

MAC

Physical

Transport Congestion control (e.g. TCP)

Scheduling
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Related Work
 Congestion control in wireline networks [Kelly, Kunniyur and Srikant,

Mazumdar et al., Lapsy and Low, Towsley, Qiu and Shroff, and many others]
 Simple rate-power functions

 Rate of a link is a function of its own power assignment [Xiao et. al. 2002]
 Mapped to convex problems (the high-SINR case) [Johansson et. al. 2003, Chiang

2004]
 The node-exclusive interference model [Sarkar & Tassiulas 2003, Yi & Shakkottai

2004, Paschalidis et. al. 2005]
 The clique-based interference model [Xue et. al. 2003, Chen et. al., 2005]

 Offline cross-layer solution
 Column-Generation Approach [Johansson & Xiao 2004]

 On-Line Centralized cross-layer solutions [Lin & Shroff 2004, Neely et al.
2005, Eryilmaz and Srikant, 2005, Paschalidis et al. 2005, Chiang et  al. 06]
 Scheduling is still the bottleneck!

 Cross-Layer solutions with imperfect scheduling and distributed solution [Lin
& Shroff 2005]

 More recent work on distributed scheduling [Wu and Srikant, Charpokar et
al.] , joint congestion control and scheduling [Eryilmaz and Srikant, Bui et
al.] , complexity of scheduling [Sharma, Mazumdar and Shroff], random
access solutions [Lin and Rasool], [Joo and Shroff]
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The Network Model
 A multihop wireless network serving multiple users
 N nodes and L Links

 A link corresponds to a transmitter-receiver pair

 S users:
 Each user transmits from a source node to a destination node
 The path of each user s could traverse multiple wireless links
 H: routing matrix

User s
if path of user s
traverses link l,

otherwise0

1
    =

l

s
H

Dest d
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The User Model
 Us(xs): utility of user s if its end-to-end

rate is xs  (measures the level of satisfaction
of the user).
 Us(·): strictly concave, non-decreasing

 “Principle of diminishing return”
 Fairness

 Ms: the maximum data rate

User s
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The Link Model

 Pl: power assignment on link l
rl: data rate on link l

 Shared nature of the wireless medium
 The data rate on link l depends on the

interference due to power assignments on other
links.

 Assume (for now) no channel  variations due to
fading, etc.

 Hence, the link capacity                         is a
function of the global power assignment
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The Link Model

 Each link uses the appropriate modulation and coding
scheme to achieve data rate

                 :  the rate-power function

 :  feasible power assignments

User s
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Link Scheduling
 Interleaving different schedules over

time will typically increase capacity
                 : the schedule at time t
 Scheduling policy

 pick                   at each time

xs=2
4 4

xs=2
4
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The Capacity Region Λ
 The set of end-to-end rates that the network

can support

 The capacity region Λ is given by [Neely 03,
Cruz & Santhanam 03]

The set of feasible 
power assignment

The sum rate 
at each link

Rate-power 
function
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 The Cross-Layer Congestion
Control and Scheduling Problem

A Cross-Layer Problem:
 Find the user rate vector            that

maximizes the total system utility, i.e.,

 An end-to-end problem

 Find the associated scheduling policy that
stabilizes the system (i.e., keeps all queues
finite)
 A link-by-link problem
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The Optimal Cross-Layer Solution

 ql(t): the queue length of link l at time t (price)
 Congestion control component (max. net utility)

 Scheduling component (max. value of data)

 Two components are coupled by the queue
length (difference between demand & supply)
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The Optimal Cross-Layer Solution

 Above Theorem shows that our cross layer solution
converges to the optimal rate allocation provided the
chosen stepsizes are sufficiently small

 Proof techniques: optimization of non-differentiable
functions, convex analysis
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Extension: Dealing with
Channel Variations

 K: channel state, with stationary distribution πK
 The rate-power function:
 The capacity region:

 Only the scheduling component needs to change
slightly:

 Does not require prior knowledge of the
stationary distribution of the channel
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Comments on the Optimal
Cross-Layer Solution

 Achieves the full capacity region Λ
 Exhibits an aspect of loose-coupling property

Congestion 
Control

Scheduling
(MAC/Physical)

Queue Length

Distributed

Centralized

To obtain simple and potentially 
fully distributed solutions 

Imperfect
scheduling

Hard to solve even
in a centralized

fashion

Not convex
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Loose-Coupling Revisited

 Problem: Will our cross-layer solution break
down if the scheduling component is
imperfect?

 Will it get stuck into local sub-optimal solutions?
 Will it lead to excessive inefficiency?
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Imperfect Scheduling Policies Sγ

 Sγ policies:

 Compute a schedule r(t) that achieves a queue-
weighted rate sum of at least  γ times the optimal.

hardereasier γ =1γ =0
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The Impact of Imperfect Scheduling

 One naturally hopes:  If we were to use an Sγ
scheduling policy that the data rate allocation
of each user would be around γ times the
optimal rate allocation (γ reduced problem)

 Not true! The rates of some users can be
significantly worse
 Weak fairness property: Rates cannot be arbitrarily

worse.

 Question: does such sub-optimality in static
system matter when considering the more
realistic dynamic case?
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Connection Between the Static
Setting and the Dynamic Setting

 Question: How much of Λ can we utilize?
 Previous results on stability for wireline networks [Bonald & Mossoulie 01, De

Veciana et al. 01, Fayolle et al. 01, Ye 03]

 Fairness                   largest stability region (largest set of 
                     offered loads & maintain finite queues) = Λ

 Unfairness                significantly reduced stability region.

 Fairness is not just an aesthetic property but also carries a strong performance
implication

 Is weak fairness enough?

Fairness Stability

Static Setting Dynamic Setting
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[Theorem]

If

then the stability region of the system is no smaller
than γΛ, where
                         denotes the maximum number of
                           classes going through any link, and
                         denotes the maximum number of
                           links used by any class.

Main Result
 

Local sub-optimality in the
 static setting does not matter

Loose-coupling

Best we can hope to achieve
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Example Scenario: Node
Exclusive Model

 Thus far: Results applicable to general interference models
 Focus on Node Exclusive Model [Sarkar & Tassiulas 2003, Yi &

Shakkottai 2004]
 Each node can communicate with one other node at any given time

 The data rate of each active link is fixed at some cl
 Applicable for Blue-tooth networks and approximates FH-CDMA
 Provides insights on distributed algorithms for other models.

 First to develop a fully distributed algorithm Maximal Matching that
 Provably achieves a stability region of at least Λ/2

 Empirically, achieves much better performance
 Significantly outperforms layered solutions

allowed not allowed
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Performance Comparison

 The Λ/2 guarantee is in fact quite conservative
 Cross-Layer (Imperfect)>> Layered (Perfect)

Cross-Layer solution 
With MWM (optimal)
or GMM (Greedy S1/2)

Layered solution 
With MWM (optimal)

Layered solution 
With GMM

Cross-Layer solution 
With MM (distributed)

GMM: Greedy Maximal Matching     MM: Maximal Matching (Distributed)
MWM: Maximum-Weighted Matching (Optimal)
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Recent Related Works
 [Wu and Srikant, INFOCOM 2006]

 2-hop interference model
 Prove that “greedy scheduling” (maximal matching) achieves a throughput

within a factor of Nε of the optimal, where

 [Chaporkar Sarkar, and Kar, Allerton 2005]
 Bi-directional equal power model and a general interference model
 Prove that “maximal scheduling” achieves a throughput within a factor of

KN of the optimal, where KN is the maximum number of non-conflicting
links that can interfere with any given link in the network

 [Bui, Eryilmaz, and Srikant INFOCOM 2006]
 Asynchronous congestion control and scheduling under node-exclusive

interference model
 Algorithm that supports at least 1/3 of the maximum achievable

throughput
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Recent Related Works
 [Sharma, Mazumdar, and Shroff, FAWN 2006]

 Studied a family of  K-hop interference model (links within K hops cannot
simultaneously transmit)

 Hardness and approximability of scheduling: K>1, problem is NP-hard and
not approximable within a large factor.

 PTAS solutions for disk (geometric) graphs
 PTAS guarantees performance within 1+ε  factor for any ε  greater than zero.
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Ongoing/Future Work
 Developing distributed solutions for more general interference

models with provable performance bounds
 Use of maximal scheduling results in low γ.
 Need to improve performance by sharing local queue length

information.
 Developing cross-layer solutions for

 Random access MAC [Lin and Rasool, Joo and Shroff]
 Multi-carrier OFDM types of systems
 Minimal feedback (e.g., binary feedback as in TCP)

 Experimentation on Purdue Mesh Network (with Profs. Hu and Lin:
Mesh@Purdue)
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Open Problems
 Tightness of throughput-loss bounds

 Bounds on loss of throughput are based on worse-case analysis
 Simulations suggest that average performance could be quite good
 Open Problem: characterizing the average perceived performance?

 Incorporating the effects of delay in the feedback for general
interference models

 Determining the performance limits of distributed algorithms.
 Study the tradeoffs between performance and overhead
 Development of constant/low overhead solutions

 Cross-Layer design with fairness under session-level dynamics
 Non-concave utility functions

 Inelastic traffic
 Non-convexity appears in both the rate-power function and the

objective function.
 Impact of mobility on overall solution
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Concluding Remarks

 Potential: Cross-layer gains are
multiplicative

 Key to Success:
 Cross-layer solutions should be loosely

coupled across the layers such that high
performance gains are achieved without a
significant loss of modularity.
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