Cross-Layer Design of Multi-hop Wireless Networks: A Loose Coupling Perspective

Ness B. Shroff

Center for Wireless Systems and Applications (CWSA) School of Electrical and Computer Engineering Purdue University, West Lafayette E-mail: shroff@ecn.purdue.edu URL: www.ece.purdue.edu/~shroff

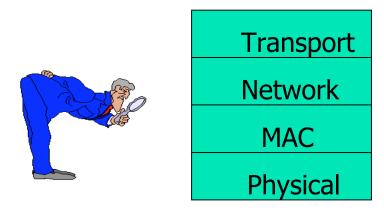
Joint work with Xiaojun Lin

Outline

- Cross-Layer Design and "Loose Coupling"
- Focus on congestion control and scheduling problem
 - Model and formal formulation
 - Optimal solution
- Difficulties with optimal solution
- Impact of imperfect scheduling
 - Static system
 - Dynamic system
- Ongoing work and open problems

Cross-Layer Design

- Layered architecture offers simplicity and modularity
- Optimizing within layers has reached the point of diminishing returns.
- Future applications that will fuel the growth of wireless require orders of magnitude increase in performance.
- Thesis: To satisfy the increasing demand for new wireless services, a cross-layer perspective needs to be taken to obtain significant improvements in wireless spectrum efficiency



The Cross-layer Dilemma: Efficiency vs. Modularity

- Cross-Layer design needed to improve *efficiency*
- Layers are coupled
 - Potential loss of modularity
 - Could lead to complex and fragile overall design

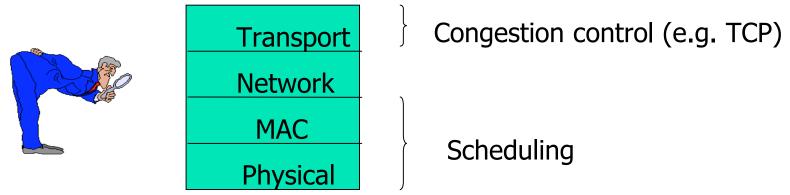
Cross-Layer with "Loose Coupling"

Loose coupling idea:

- Minimal interaction between layers
- Imperfect measurements or decision at one layer should not affect the entire system
- Overall cross-layer solution must ensure both efficiency and modularity
- Appropriately designed cross-layer solutions do exhibit a layered structure with minimal but crucial interaction between the layers.

The Cross-Layer Congestion-Control and Scheduling Problem

- Congestion control: Determines end-to-end rate at which users should transmit
 - Maximize capacity and avoid excessive congestion
 - Improve fairness of the service to different users
- Scheduling: Everything in MAC and Physical layer, e.g., power control, link scheduling, adaptive modulation and coding
- Goal: To determine the maximum end-to-end rate at which users should transmit and at the same time find the associated "scheduling policy" that stabilizes the system --- a cross-layer problem



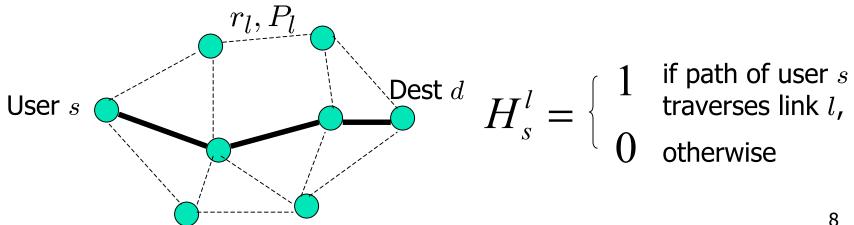
 For simplicity, we assume that *routing is fixed*. Results can be readily extended to incorporate multi-path routing.

Related Work

- Congestion control in wireline networks [Kelly, Kunniyur and Srikant, Mazumdar et al., Lapsy and Low, Towsley, Qiu and Shroff, and many others]
- Simple rate-power functions
 - Rate of a link is a function of its own power assignment [Xiao et. al. 2002]
 - Mapped to convex problems (the high-SINR case) [Johansson et. al. 2003, Chiang 2004]
 - The node-exclusive interference model [Sarkar & Tassiulas 2003, Yi & Shakkottai 2004, Paschalidis *et. al.* 2005]
 - The clique-based interference model [Xue *et. al.* 2003, Chen *et. al.*, 2005]
- Offline cross-layer solution
 - Column-Generation Approach [Johansson & Xiao 2004]
- On-Line Centralized cross-layer solutions [Lin & Shroff 2004, Neely *et al.* 2005, Eryilmaz and Srikant, 2005, Paschalidis *et al.* 2005, Chiang *et al.* 06]
 - Scheduling is still the bottleneck!
- Cross-Layer solutions with imperfect scheduling and distributed solution [Lin & Shroff 2005]
- More recent work on distributed scheduling [Wu and Srikant, Charpokar et al.], joint congestion control and scheduling [Eryilmaz and Srikant, Bui et al.], complexity of scheduling [Sharma, Mazumdar and Shroff], random access solutions [Lin and Rasool], [Joo and Shroff]

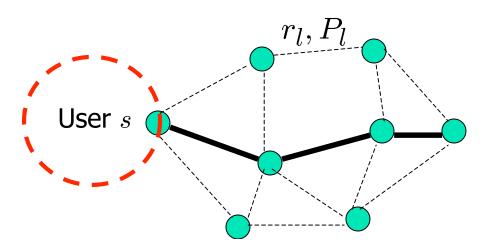
The Network Model

- A multihop wireless network serving multiple users
- N nodes and L Links
 - A link corresponds to a transmitter-receiver pair
- *S* users:
 - Each user transmits from a source node to a destination node
 - The path of each user *s* could traverse multiple wireless links
 - *H*: routing matrix

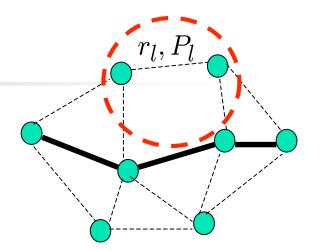


The User Model

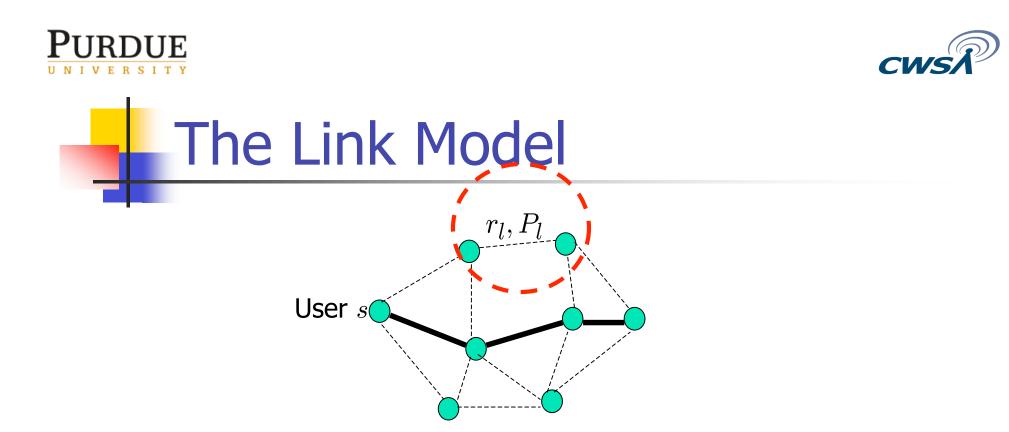
- U_s(x_s): utility of user s if its end-to-end rate is x_s (measures the level of satisfaction of the user).
 - $U_s(\cdot)$: strictly concave, non-decreasing
 - "Principle of diminishing return"
 - Fairness
 - *M_s*: the maximum data rate



P_l: power assignment on link *l r_l*: data rate on link *l*



- Shared nature of the wireless medium
 - The data rate on link *l* depends on the interference due to power assignments on other links.
 - Assume (for now) no channel variations due to fading, etc.
 - Hence, the link capacity $\vec{r} = [r_1, ..., r_L]$ is a function of the global power assignment $\vec{P} = [P_1, ..., P_L]$



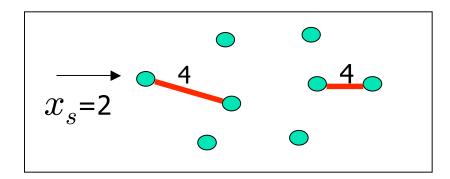
- Each link uses the appropriate modulation and coding scheme to achieve data rate $\vec{r} = g(\vec{P})$
- $\vec{r} = g(\vec{P}), \vec{P} \in \Pi$: the rate-power function

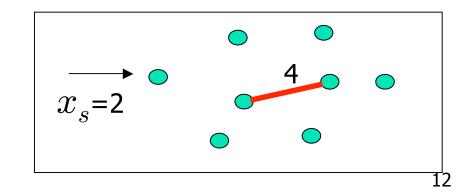
• $\vec{P} \in \Pi$

: feasible power assignments

Link Scheduling

- Interleaving different schedules over time will typically increase capacity
- $\vec{P}(t)$ or $\vec{r}(t)$: the schedule at time t
- Scheduling policy
 - pick $\vec{P}(t)$ or $\vec{r}(t)$ at each time





The Capacity Region Λ

- The set of end-to-end rates that the network can support
- The capacity region A is given by [Neely 03, Cruz & Santhanam 03]

Rate-power function

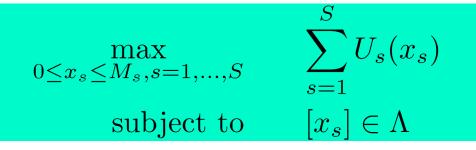
$$\Lambda = \left\{ \vec{x} \left| \begin{bmatrix} S \\ \sum_{s=1}^{S} H_s^l x_s \end{bmatrix} \in \mathbf{Convex_Hull}(\underline{g}(\Pi)) \right\}$$

The sum rate at each link The set of feasible power assignment

The Cross-Layer Congestion Control and Scheduling Problem

A Cross-Layer Problem:

Find the user rate vector $\vec{x} \in \Lambda$ that maximizes the total system utility, i.e.,



- An end-to-end problem
- Find the associated scheduling policy that stabilizes the system (i.e., keeps all queues finite)
 - A *link-by-link* problem

The Optimal Cross-Layer Solution

q^l(t): the queue length of link l at time t(price)
Congestion control component (max. net utility)

$$x_s(t) = \operatorname*{argmax}_{0 \le x_s \le M_s} \left[U_s(x_s) - x_s \sum_{l=1}^L H_s^l q^l(t) \right]$$

Scheduling component (max. value of data)

$$ec{r}(t) = rgmax_{ec{r}=g(ec{P}),ec{P}\in\Pi}\sum_{l=1}^L rac{q^l(t)r_l}{l}.$$

 Two components are coupled by the queue length (difference between demand & supply)

$$q^{l}(t+1) = \left[q^{l}(t) + \alpha_{l}\left(\sum_{s=1}^{S} H_{s}^{l} x_{s}(t) - r_{l}(t)\right)\right]^{+}$$

The Optimal Cross-Layer Solution

Theorem: For any $\epsilon > 0$, there exists a set of stepsizes α_l such that for any initial queue lengths there exists a time T_0 such that for all $t \ge T_0$,

$$|\vec{x}(t) - \vec{x}^*|| < \epsilon.$$

Further, the queue length is bounded over all time t.

- Above Theorem shows that our cross layer solution converges to the optimal rate allocation provided the chosen stepsizes are sufficiently small
- Proof techniques: optimization of *non-differentiable* functions, convex analysis

Extension: Dealing with Channel Variations

- K: channel state, with stationary distribution π_K
 - The rate-power function: $\vec{r} = u(\vec{P}, K), \vec{P} \in \Pi$
 - The capacity region:

$$\Lambda = \left\{ \vec{x} \left| \sum_{s=1}^{S} H_s^l x_s \right] \in \sum_K \pi_K \mathbf{Convex_Hull}(u(\Pi, K)) \right\}$$

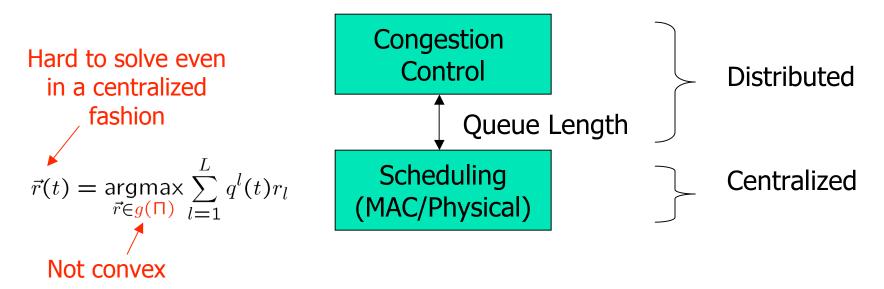
Only the scheduling component needs to change slightly:

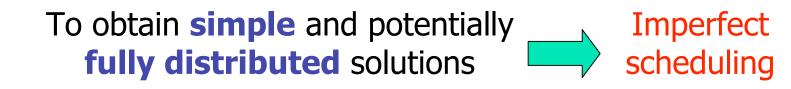
$$\vec{r}(t) = \operatorname*{argmax}_{\vec{r}=g(\vec{P}, \mathbf{K}(t)), \vec{P} \in \Pi} \sum_{l=1}^{L} q^{l}(t) r_{l}.$$

 Does not require prior knowledge of the stationary distribution of the channel

Comments on the Optimal Cross-Layer Solution

- Achieves the full capacity region Λ
- Exhibits an aspect of *loose-coupling* property





Loose-Coupling Revisited

- Problem: Will our cross-layer solution break down if the scheduling component is imperfect?
 - Will it get stuck into local sub-optimal solutions?
 - Will it lead to excessive inefficiency?

Imperfect Scheduling Policies S_{γ}

• S_{γ} policies:

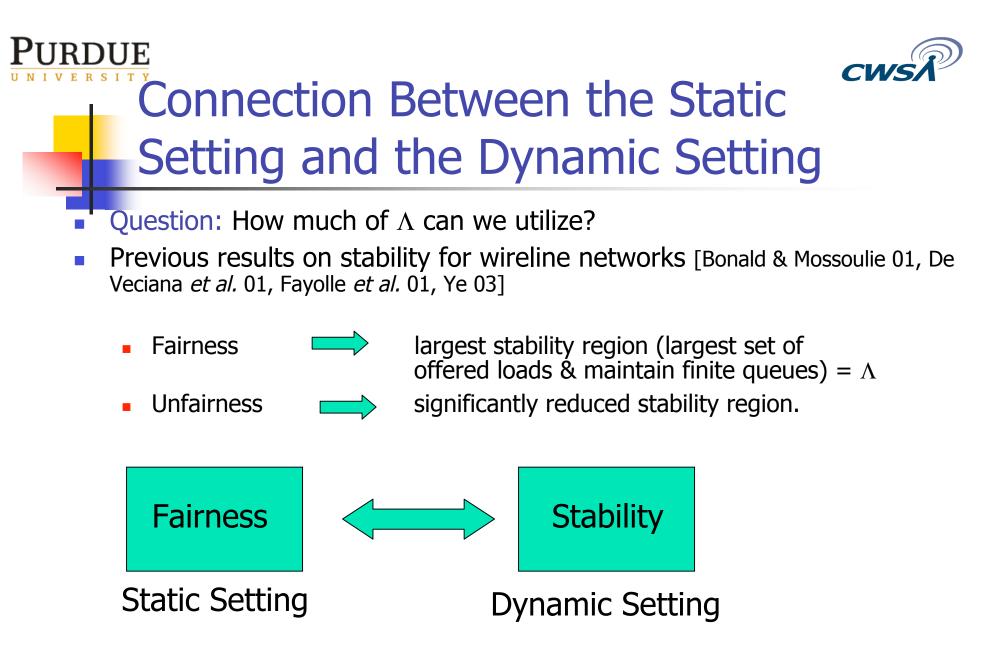
$$\sum_{l=1}^{L} r_l(t)q^l(t) \ge \gamma \max_{\vec{r} \in g(\Pi)} \sum_{l=1}^{L} r_l q^l(t), \quad 0 < \gamma < 1$$

 Compute a schedule r(t) that achieves a queueweighted rate sum of at least γ times the optimal.

$$\gamma = 0$$
 easier harder $\gamma = 1$

The Impact of Imperfect Scheduling

- One naturally hopes: If we were to use an S_{γ} scheduling policy that the data rate allocation of each user would be around γ times the optimal rate allocation (γ reduced problem)
- Not true! The rates of some users can be significantly worse
 - Weak fairness property: Rates cannot be arbitrarily worse.
- Question: does such sub-optimality in static system matter when considering the more realistic dynamic case?

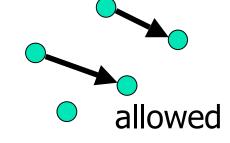


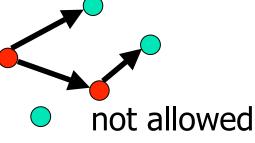
- Fairness is not just an aesthetic property but also carries a strong performance implication
- Is weak fairness enough?

Main Result Best we can hope to achieve [Theorem] $\max_{l} \alpha_{l} \leq \frac{1}{T\bar{S}\bar{L}} \frac{2^{\beta} - 1}{16} \min_{s} \frac{w_{s}}{\rho_{s}M_{s}^{\beta}}$ If then the stability region of the system is no smaller than $\gamma \Lambda$, where • $\bar{S} = \max_{l} \sum_{s=1}^{S} H_{s}^{l}$ denotes the maximum number of classes going through any link, and classes going through any link, and • $\bar{\mathcal{L}} = \max_s \bar{\sum} H_s^l$ denotes the maximum number of links used by any class. l=1

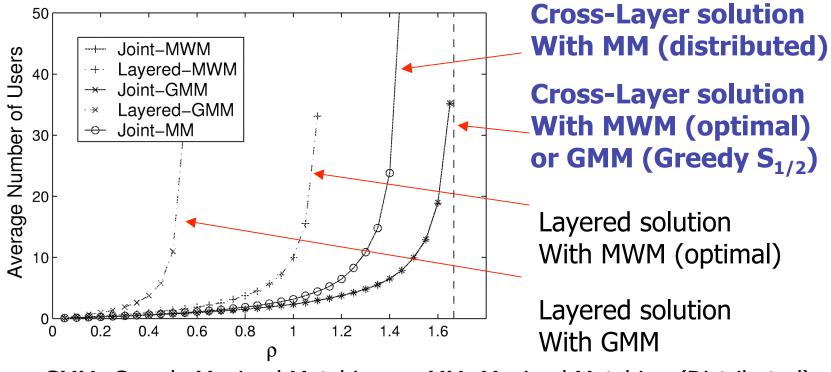
PURDUE Example Scenario: Node cws Exclusive Model

- Thus far: Results applicable to general interference models
- Focus on Node Exclusive Model [Sarkar & Tassiulas 2003, Yi & Shakkottai 2004]
 - Each node can communicate with one other node at any given time
 - The data rate of each *active* link is fixed at some c_l
 - Applicable for Blue-tooth networks and approximates FH-CDMA
 - Provides insights on distributed algorithms for other models.
- First to develop a fully distributed algorithm Maximal Matching that
 - Provably achieves a stability region of at least $\Lambda/2$
 - Empirically, achieves much better performance
 - Significantly outperforms layered solutions





Performance Comparison



GMM: Greedy Maximal Matching MM: Maximal Matching (Distributed) MWM: Maximum-Weighted Matching (Optimal)

- **The** $\Lambda/2$ guarantee is in fact quite conservative
- Cross-Layer (Imperfect) >> Layered (Perfect)

Recent Related Works

- [Wu and Srikant, INFOCOM 2006]
 - 2-hop interference model
 - Prove that "greedy scheduling" (maximal matching) achieves a throughput within a factor of N_{e} of the optimal, where

$$N_{\varepsilon} = \max_{(i,j)\in E} d(i) + d(j) - 1$$

- [Chaporkar Sarkar, and Kar, Allerton 2005]
 - Bi-directional equal power model and a general interference model
 - Prove that "maximal scheduling" achieves a throughput within a factor of K_N of the optimal, where K_N is the maximum number of non-conflicting links that can interfere with any given link in the network
- [Bui, Eryilmaz, and Srikant INFOCOM 2006]
 - Asynchronous congestion control and scheduling under node-exclusive interference model
 - Algorithm that supports at least 1/3 of the maximum achievable throughput

Recent Related Works

- [Sharma, Mazumdar, and Shroff, FAWN 2006]
 - Studied a family of K-hop interference model (links within K hops cannot simultaneously transmit)
 - Hardness and approximability of scheduling: K>1, problem is NP-hard and not approximable within a large factor.
 - PTAS solutions for disk (geometric) graphs
 - PTAS guarantees performance within $1+\epsilon$ factor for any ϵ greater than zero.

Ongoing/Future Work

- Developing distributed solutions for more general interference models with provable performance bounds
 - Use of maximal scheduling results in low γ.
 - Need to improve performance by sharing local queue length information.
- Developing cross-layer solutions for
 - Random access MAC [Lin and Rasool, Joo and Shroff]
 - Multi-carrier OFDM types of systems
 - Minimal feedback (e.g., binary feedback as in TCP)
- Experimentation on Purdue Mesh Network (with Profs. Hu and Lin: Mesh@Purdue)

Open Problems

- Tightness of throughput-loss bounds
 - Bounds on loss of throughput are based on worse-case analysis
 - Simulations suggest that average performance could be quite good
 - Open Problem: characterizing the average perceived performance?
- Incorporating the effects of delay in the feedback for general interference models
- Determining the performance limits of distributed algorithms.
 - Study the tradeoffs between performance and overhead
 - Development of constant/low overhead solutions
- Cross-Layer design with fairness under session-level dynamics
- Non-concave utility functions
 - Inelastic traffic
 - Non-convexity appears in both the rate-power function and the objective function.
- Impact of mobility on overall solution

Concluding Remarks

Potential: Cross-layer gains are multiplicative

Key to Success:

 Cross-layer solutions should be *loosely* coupled across the layers such that *high* performance gains are achieved without a significant loss of *modularity*.

Thank you!

URL: http://www.ece.purdue.edu/~shroff

- Xiaojun Lin, Ness B. Shroff, R. Srikant, " A Tutorial on Cross-Layer Optimization in Wireless Networks, " to appear in the IEEE Journal on Selected Areas in Communications on ``Non-Linear Optimization of Communication Systems", 2006.
- Gaurav Sharma, Ravi R. Mazumdar, and Ness B. Shroff, "Maximum Weighted Matching with Interference Constraints," in *IEEE FAWN* 2006.
- Gaurav Sharma, Ravi R. Mazumdar, and Ness B. Shroff, "On the Complexity of Scheduling in Wireless Networks
- Xiaojun Lin and Ness B. Shroff, "The Impact of Imperfect Scheduling on Cross-Layer Rate Control in Multihop Wireless Networks," in *IEEE INFOCOM*, Miami, Florida, 2005.
- Xiaojun Lin and Ness B. Shroff, "The Impact of Imperfect Scheduling on Cross-Layer Rate Control in Multihop Wireless Networks," to appear in *IEEE/ACM Tran. On Networking, 2006.*
- Xiaojun Lin and Ness B. Shroff, "Joint Rate Control and Scheduling in Multihop Wireless Networks," in *43rd IEEE Conference on Decision and Control*, Paradise Island, Bahamas, December 2004.
- Xiaojun Lin and Ness B. Shroff, "On the Stability Region of Congestion Control," in *42nd Annual Allerton Conference on Communication, Control and Computing,* Monticello, Illinois, September 2004.