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Outline

 Cross-Layer Design and “Loose Coupling”

 Focus on congestion control and scheduling problem
 Model and formal formulation

 Optimal solution

 Difficulties with optimal solution

 Impact of imperfect scheduling
 Static system

 Dynamic system

 Ongoing work and open problems
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Cross-Layer Design

Network

MAC

Physical

Transport

 Layered architecture offers simplicity and modularity
 Optimizing within layers has reached the point of

diminishing returns.
 Future applications that will fuel the growth of wireless

require orders of magnitude increase in performance.
 Thesis: To satisfy the increasing demand for new wireless

services, a cross-layer perspective needs to be taken to
obtain significant improvements in wireless spectrum
efficiency
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The Cross-layer Dilemma:
Efficiency vs. Modularity

 Cross-Layer design needed to improve
efficiency

 Layers are coupled
 Potential loss of modularity
 Could lead to complex and fragile overall

design
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Cross-Layer with “Loose
Coupling”

 Loose coupling idea:
 Minimal interaction between layers
 Imperfect measurements or decision at one layer

should not affect the entire system
 Overall cross-layer solution must ensure both

efficiency and modularity

 Appropriately designed cross-layer solutions do
exhibit a layered structure with minimal but
crucial interaction between the layers.
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The Cross-Layer Congestion-Control
and Scheduling Problem

 Congestion control: Determines end-to-end rate at which users should
transmit
 Maximize capacity and avoid excessive congestion
 Improve fairness of the service to different users

 Scheduling: Everything in MAC and Physical layer, e.g., power control,
link scheduling, adaptive modulation and coding

 Goal: To determine the maximum end-to-end rate at which users should
transmit and at the same time find the associated “scheduling policy” that
stabilizes the system --- a cross-layer problem

 For simplicity, we assume that routing is fixed. Results can be readily
extended to incorporate multi-path routing.

Network

MAC

Physical

Transport Congestion control (e.g. TCP)

Scheduling
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Related Work
 Congestion control in wireline networks [Kelly, Kunniyur and Srikant,

Mazumdar et al., Lapsy and Low, Towsley, Qiu and Shroff, and many others]
 Simple rate-power functions

 Rate of a link is a function of its own power assignment [Xiao et. al. 2002]
 Mapped to convex problems (the high-SINR case) [Johansson et. al. 2003, Chiang

2004]
 The node-exclusive interference model [Sarkar & Tassiulas 2003, Yi & Shakkottai

2004, Paschalidis et. al. 2005]
 The clique-based interference model [Xue et. al. 2003, Chen et. al., 2005]

 Offline cross-layer solution
 Column-Generation Approach [Johansson & Xiao 2004]

 On-Line Centralized cross-layer solutions [Lin & Shroff 2004, Neely et al.
2005, Eryilmaz and Srikant, 2005, Paschalidis et al. 2005, Chiang et  al. 06]
 Scheduling is still the bottleneck!

 Cross-Layer solutions with imperfect scheduling and distributed solution [Lin
& Shroff 2005]

 More recent work on distributed scheduling [Wu and Srikant, Charpokar et
al.] , joint congestion control and scheduling [Eryilmaz and Srikant, Bui et
al.] , complexity of scheduling [Sharma, Mazumdar and Shroff], random
access solutions [Lin and Rasool], [Joo and Shroff]
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The Network Model
 A multihop wireless network serving multiple users
 N nodes and L Links

 A link corresponds to a transmitter-receiver pair

 S users:
 Each user transmits from a source node to a destination node
 The path of each user s could traverse multiple wireless links
 H: routing matrix

User s
if path of user s
traverses link l,

otherwise0

1
    =

l

s
H

Dest d
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The User Model
 Us(xs): utility of user s if its end-to-end

rate is xs  (measures the level of satisfaction
of the user).
 Us(·): strictly concave, non-decreasing

 “Principle of diminishing return”
 Fairness

 Ms: the maximum data rate

User s
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The Link Model

 Pl: power assignment on link l
rl: data rate on link l

 Shared nature of the wireless medium
 The data rate on link l depends on the

interference due to power assignments on other
links.

 Assume (for now) no channel  variations due to
fading, etc.

 Hence, the link capacity                         is a
function of the global power assignment
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The Link Model

 Each link uses the appropriate modulation and coding
scheme to achieve data rate

                 :  the rate-power function

 :  feasible power assignments

User s
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Link Scheduling
 Interleaving different schedules over

time will typically increase capacity
                 : the schedule at time t
 Scheduling policy

 pick                   at each time

xs=2
4 4

xs=2
4
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The Capacity Region Λ
 The set of end-to-end rates that the network

can support

 The capacity region Λ is given by [Neely 03,
Cruz & Santhanam 03]

The set of feasible 
power assignment

The sum rate 
at each link

Rate-power 
function
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 The Cross-Layer Congestion
Control and Scheduling Problem

A Cross-Layer Problem:
 Find the user rate vector            that

maximizes the total system utility, i.e.,

 An end-to-end problem

 Find the associated scheduling policy that
stabilizes the system (i.e., keeps all queues
finite)
 A link-by-link problem
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The Optimal Cross-Layer Solution

 ql(t): the queue length of link l at time t (price)
 Congestion control component (max. net utility)

 Scheduling component (max. value of data)

 Two components are coupled by the queue
length (difference between demand & supply)
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The Optimal Cross-Layer Solution

 Above Theorem shows that our cross layer solution
converges to the optimal rate allocation provided the
chosen stepsizes are sufficiently small

 Proof techniques: optimization of non-differentiable
functions, convex analysis
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Extension: Dealing with
Channel Variations

 K: channel state, with stationary distribution πK
 The rate-power function:
 The capacity region:

 Only the scheduling component needs to change
slightly:

 Does not require prior knowledge of the
stationary distribution of the channel
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Comments on the Optimal
Cross-Layer Solution

 Achieves the full capacity region Λ
 Exhibits an aspect of loose-coupling property

Congestion 
Control

Scheduling
(MAC/Physical)

Queue Length

Distributed

Centralized

To obtain simple and potentially 
fully distributed solutions 

Imperfect
scheduling

Hard to solve even
in a centralized

fashion

Not convex
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Loose-Coupling Revisited

 Problem: Will our cross-layer solution break
down if the scheduling component is
imperfect?

 Will it get stuck into local sub-optimal solutions?
 Will it lead to excessive inefficiency?
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Imperfect Scheduling Policies Sγ

 Sγ policies:

 Compute a schedule r(t) that achieves a queue-
weighted rate sum of at least  γ times the optimal.

hardereasier γ =1γ =0
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The Impact of Imperfect Scheduling

 One naturally hopes:  If we were to use an Sγ
scheduling policy that the data rate allocation
of each user would be around γ times the
optimal rate allocation (γ reduced problem)

 Not true! The rates of some users can be
significantly worse
 Weak fairness property: Rates cannot be arbitrarily

worse.

 Question: does such sub-optimality in static
system matter when considering the more
realistic dynamic case?
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Connection Between the Static
Setting and the Dynamic Setting

 Question: How much of Λ can we utilize?
 Previous results on stability for wireline networks [Bonald & Mossoulie 01, De

Veciana et al. 01, Fayolle et al. 01, Ye 03]

 Fairness                   largest stability region (largest set of 
                     offered loads & maintain finite queues) = Λ

 Unfairness                significantly reduced stability region.

 Fairness is not just an aesthetic property but also carries a strong performance
implication

 Is weak fairness enough?

Fairness Stability

Static Setting Dynamic Setting
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[Theorem]

If

then the stability region of the system is no smaller
than γΛ, where
                         denotes the maximum number of
                           classes going through any link, and
                         denotes the maximum number of
                           links used by any class.

Main Result
 

Local sub-optimality in the
 static setting does not matter

Loose-coupling

Best we can hope to achieve
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Example Scenario: Node
Exclusive Model

 Thus far: Results applicable to general interference models
 Focus on Node Exclusive Model [Sarkar & Tassiulas 2003, Yi &

Shakkottai 2004]
 Each node can communicate with one other node at any given time

 The data rate of each active link is fixed at some cl
 Applicable for Blue-tooth networks and approximates FH-CDMA
 Provides insights on distributed algorithms for other models.

 First to develop a fully distributed algorithm Maximal Matching that
 Provably achieves a stability region of at least Λ/2

 Empirically, achieves much better performance
 Significantly outperforms layered solutions

allowed not allowed
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Performance Comparison

 The Λ/2 guarantee is in fact quite conservative
 Cross-Layer (Imperfect)>> Layered (Perfect)

Cross-Layer solution 
With MWM (optimal)
or GMM (Greedy S1/2)

Layered solution 
With MWM (optimal)

Layered solution 
With GMM

Cross-Layer solution 
With MM (distributed)

GMM: Greedy Maximal Matching     MM: Maximal Matching (Distributed)
MWM: Maximum-Weighted Matching (Optimal)
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Recent Related Works
 [Wu and Srikant, INFOCOM 2006]

 2-hop interference model
 Prove that “greedy scheduling” (maximal matching) achieves a throughput

within a factor of Nε of the optimal, where

 [Chaporkar Sarkar, and Kar, Allerton 2005]
 Bi-directional equal power model and a general interference model
 Prove that “maximal scheduling” achieves a throughput within a factor of

KN of the optimal, where KN is the maximum number of non-conflicting
links that can interfere with any given link in the network

 [Bui, Eryilmaz, and Srikant INFOCOM 2006]
 Asynchronous congestion control and scheduling under node-exclusive

interference model
 Algorithm that supports at least 1/3 of the maximum achievable

throughput
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Recent Related Works
 [Sharma, Mazumdar, and Shroff, FAWN 2006]

 Studied a family of  K-hop interference model (links within K hops cannot
simultaneously transmit)

 Hardness and approximability of scheduling: K>1, problem is NP-hard and
not approximable within a large factor.

 PTAS solutions for disk (geometric) graphs
 PTAS guarantees performance within 1+ε  factor for any ε  greater than zero.
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Ongoing/Future Work
 Developing distributed solutions for more general interference

models with provable performance bounds
 Use of maximal scheduling results in low γ.
 Need to improve performance by sharing local queue length

information.
 Developing cross-layer solutions for

 Random access MAC [Lin and Rasool, Joo and Shroff]
 Multi-carrier OFDM types of systems
 Minimal feedback (e.g., binary feedback as in TCP)

 Experimentation on Purdue Mesh Network (with Profs. Hu and Lin:
Mesh@Purdue)
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Open Problems
 Tightness of throughput-loss bounds

 Bounds on loss of throughput are based on worse-case analysis
 Simulations suggest that average performance could be quite good
 Open Problem: characterizing the average perceived performance?

 Incorporating the effects of delay in the feedback for general
interference models

 Determining the performance limits of distributed algorithms.
 Study the tradeoffs between performance and overhead
 Development of constant/low overhead solutions

 Cross-Layer design with fairness under session-level dynamics
 Non-concave utility functions

 Inelastic traffic
 Non-convexity appears in both the rate-power function and the

objective function.
 Impact of mobility on overall solution
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Concluding Remarks

 Potential: Cross-layer gains are
multiplicative

 Key to Success:
 Cross-layer solutions should be loosely

coupled across the layers such that high
performance gains are achieved without a
significant loss of modularity.
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