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Downlink Scheduling and Resource Allocation

time
base station

fading

users

Key component of most recent wireless data systems
I e.g. CDMA 1xEVDO, HSPDA, IEEE 802.16.

Dynamically schedule users based on channel conditions/QoS.
I Cross-layer approach.
I Use frequent channel quality feedback & adaptive modulation/coding.
I Exploit multi-user diversity.
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Gradient-based Scheduling

Scheduler needs to balance users’ QoS and global efficiency.

Many approaches accomplish this via gradient-based scheduling.

Assign each user a utility, Ui (·), depending on delay, throughput, etc.

Scheduler choosea rate r = (r1, . . . , rN)T to solve:

max
r∈R(e)

∇U(X(t)) · r = max
r∈R(e)

∑
i

U̇i (Xi (t))ri ,

I Myopic policy, requires no knowledge of channel or arrival statistics.
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Gradient-based Scheduling Examples

α-fairness: utility function of average throughput Wi :

Ui (Wi ) =

{
ci
α (Wi )

α, α ≤ 1, α 6= 0.

ci log(Wi ), α = 0

I α = 0 ⇒ Prop. fair.
I α = 1 ⇒ Max. throughput.

Utility may also be function of delay/queue size.
I e.g. Stabilizing policies.
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State-dependent Feasible Rate Regions

Optimization is over feasible rate region R(et).

Region depends on:
I Available channel quality info et ,
I Physical layer resource allocation,
I MAC layer multiplexing.

E.g. TDMA systems/full CSI
I R(et) = simplex with max rate ri for each user i .
I Gradient-policy ⇒ schedule users with max U̇i (Xi )ri .

In many systems, additional multiplexing within a time-slot.
I e.g. CDMA (HSDPA), OFDMA (802.16).
I Requires allocating physical layer resources among scheduled users.

R. Berry (NWU) OFDMA Scheduling CTW 2006 5 / 22



State-dependent Feasible Rate Regions

Optimization is over feasible rate region R(et).

Region depends on:
I Available channel quality info et ,
I Physical layer resource allocation,
I MAC layer multiplexing.

E.g. TDMA systems/full CSI
I R(et) = simplex with max rate ri for each user i .
I Gradient-policy ⇒ schedule users with max U̇i (Xi )ri .

In many systems, additional multiplexing within a time-slot.
I e.g. CDMA (HSDPA), OFDMA (802.16).
I Requires allocating physical layer resources among scheduled users.

R. Berry (NWU) OFDMA Scheduling CTW 2006 5 / 22



State-dependent Feasible Rate Regions

Optimization is over feasible rate region R(et).

Region depends on:
I Available channel quality info et ,
I Physical layer resource allocation,
I MAC layer multiplexing.

E.g. TDMA systems/full CSI
I R(et) = simplex with max rate ri for each user i .
I Gradient-policy ⇒ schedule users with max U̇i (Xi )ri .

In many systems, additional multiplexing within a time-slot.
I e.g. CDMA (HSDPA), OFDMA (802.16).
I Requires allocating physical layer resources among scheduled users.

R. Berry (NWU) OFDMA Scheduling CTW 2006 5 / 22



OFDMA systems

Frequency band divided into N subcarriers/tones.

Resource allocation:
I assignment of tones to users
I allocation of power across tones.
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OFDMA rate region

Initially, allow users to time-share each subchannel
I In practice, one user/tone.

Assume rate/subchannel = log(1 + SNR).

Rate region (similar to [Li,Goldsmith], [Wang, et. al]):

R(e) =

{
r : ri =

∑
j

xij log

(
1 +

pijeij

xij

)
,
∑

ij

pij ≤ P,

∑
i

xij ≤ 1, ∀ j , (x,p) ∈ X
}

,

where
I X := {(x,p) ≥ 0 : xij ≤ 1, ∀i , j} .
I xij = fraction of subchannel j allocated to user i .
I pij = power allocated to user i on subchannel j .
I eij = received SNR/unit power.
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Model Variations

1 Maximum SINR constraint: sij (limit on modulation order)
I Let

X :=

{
(x,p) ≥ 0 : 0 ≤ xij ≤ 1, 0 ≤ pij ≤

xijsij
eij

∀i , j
}

.

2 Sub-channelization (bundle tones to reduce overhead)
I Possible channelizations:

F Interleaved (802.16 standard mode)
F Adjacent (Band AMC mode)
F Random (e.g. frequency hopped)

I Can accommodate by letting xij = allocation of subchannel j .
I View eij as “average” SNR/subchannel.

3 Self-interference:
SINRij =

eijpij

xij + αeijpij
.

R. Berry (NWU) OFDMA Scheduling CTW 2006 8 / 22



Model Variations

1 Maximum SINR constraint: sij (limit on modulation order)
I Let

X :=

{
(x,p) ≥ 0 : 0 ≤ xij ≤ 1, 0 ≤ pij ≤

xijsij
eij

∀i , j
}

.

2 Sub-channelization (bundle tones to reduce overhead)
I Possible channelizations:

F Interleaved (802.16 standard mode)
F Adjacent (Band AMC mode)
F Random (e.g. frequency hopped)

I Can accommodate by letting xij = allocation of subchannel j .
I View eij as “average” SNR/subchannel.

3 Self-interference:
SINRij =

eijpij

xij + αeijpij
.

R. Berry (NWU) OFDMA Scheduling CTW 2006 8 / 22



Model Variations

1 Maximum SINR constraint: sij (limit on modulation order)
I Let

X :=

{
(x,p) ≥ 0 : 0 ≤ xij ≤ 1, 0 ≤ pij ≤

xijsij
eij

∀i , j
}

.

2 Sub-channelization (bundle tones to reduce overhead)
I Possible channelizations:

F Interleaved (802.16 standard mode)
F Adjacent (Band AMC mode)
F Random (e.g. frequency hopped)

I Can accommodate by letting xij = allocation of subchannel j .
I View eij as “average” SNR/subchannel.

3 Self-interference:
SINRij =

eijpij

xij + αeijpij
.

R. Berry (NWU) OFDMA Scheduling CTW 2006 8 / 22



Optimal Scheduling algorithm

The optimal gradient-based scheduling algorithm must solve:

max
xij ,pij∈X

V (x,p) :=
∑

i

wi

∑
j

xij log

(
1 +

pijeij

xij

)
subject to:

∑
i ,j

pij ≤ P, and
∑

i

xij ≤ 1, ∀j ∈ N ,
(OPT)

wi = U̇i .

Need to re-solve every scheduling interval.

We consider optimal and suboptimal algorithms for this.
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Optimal algorithm

Scheduling problem (OPT) is convex and has no duality gap.

Consider Lagrangian:

L(x,p, λ,µ) :=
∑

i

wi

∑
j

xij log

(
1 +

pijeij

xij

)

+ λ

(
P −

∑
i ,j

pij

)
+

∑
j

µj

(
1−

∑
i

xij

)
.

Associated dual function:

L(λ, µ) = max
(x,p)∈X

L(x,p, λ,µ)

By duality, solution to (OPT) is:

V ∗ = min
(λ,µ)≥0

L(λ, µ)
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Dual Function

Can explicitly solve for the dual function.

Fixing x, λ,µ, optimizing over pij ⇒ “water-filling” like solution.

p∗ij =
xij

eij

[(wieij

λ
− 1

)+
∧ sij

]
.

Given optimum p∗ij ,

L(x,p∗, λ,µ) =
∑
ij

xij(µij(λ)− µj) +
∑

j

µj + λP

I Optimizing over xij ∈ [0, 1] is now easy.

⇒ L(λ, µ) =
∑

ij(µij(λ)− µj)
+ +

∑
j µj + λP
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Minimizing the dual function

Dual function:

L(λ, µ) =
∑
ij

(µij(λ)− µj)
+ +

∑
j

µj + λP.

First minimize over µ:

L(λ) := min
µ≥0

L(λ, µ) = λP +
∑

j

max
i

µij(λ).

I Requires one sort of users per subchannel.

L(λ) is convex function of λ.
I Can minimize using iterated 1-D search (e.g. golden section).
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Optimal Primal Values.

Given λ∗, µ∗, let

(x∗,p∗) = arg max
(x,p)∈X

L(x,p, λ∗,µ∗). (*)

If (x∗,p∗) are primal feasible and satisfy complimentary slackness,
they are an optimal scheduling decision.

Can find these as before, except multiple µij ’s may be tied at the
maximum value.

⇒ Multiple xij ’s can be > 0.
I Not all choices result in feasible primal solutions.
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Breaking ties - optimal time-sharing

When ties occur, can show L(λ) is not differentiable.

Each (x∗,p∗) that satisfy (*) and complimentary slackness give a
subgradient of L(λ).

Simple sort can find max and min subgradients (one
user/subchannel).

Time-sharing between these gives a primal optimal solution.
I At most 2 users/subchannel.
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Single User per Subchannel Heuristic

In practice typically restricted to one user/subchannel.

If no “ties” in optimal dual solution, this will be satisfied.

When ties occurs, selecting one user involved in the tie corresponds to
choosing one subgradient.

In simulations, we choose the user that corresponds to the smallest
negative subgradient.

I Other heuristics also possible.
I Resulting power constraint may not be tight.
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Re-optimizing the power allocation

Given a feasible x, consider

max
p:(p,x)∈X

V (x,p) s.t.
∑
ij

pij ≤ P

solution again given by “water-filling” like power allocation with a
given Lagrange multiplier λ̃.

Optimal λ̃ can be shown to satisfy fixed point equation

λ = f (λ),

f (λ) is increasing, finite-valued (piece-wise constant).

⇒ finite time algorithm for finding λ̃.
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Single Sort Heuristic

Optimal subchannel assignment is to user with max µij(λ).
I Requires iterating to find optimal λ.

Instead consider single-sort using metric wij R̄ij ,

R̄ij = log[1 + (sij ∧ (eijP/N))].

Motivated by e.g. [Hoo, et al.].

Then optimally allocate power as before.

Also looked at other heuristics.
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Numerical Results

Simulation set-up:

Single cell, M = 40 users.

eij = (fixed location-based term)×(frequency selective fast fading)

I Fixed term = empirical distribution.
I frequency selective term = block fading in time (2msec coh. time);

standard ref. mobile delay spread (1 µsec ).

5 MHz BW, 512 tones.

Initially adjacent channelization, 8 tones/subchannel.

use α-utility functions.

Simulate full algorithm (with one user/subchannel) and single sort.
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Different choices of α

α Algorithm Utility Log U Rate(kbps) Num.

0.5 FULL 1236 12.58 497.8 5.40

0.5 MO-wR̄ 1234 12.56 498.3 5.17

0 FULL 12.69 12.69 396.8 5.75

0 MO-wR̄ 12.68 12.68 393.0 5.47

1 FULL 716955 8.04 719.3 3.04

1 MO-wR̄ 716955 8.04 719.3 3.04
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User throughput CDFs
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Different channelization schemes

Chan. Algorithm Utility Log U Rate (kbps) Num.

Adj. FULL 1236 12.58 497.8 5.40

Adj. MO-wR̄ 1234 12.56 498.3 5.17

Ran. FULL 1171 12.42 465.2 4.08

Ran. MO-wR̄ 1167 12.40 465.5 3.64

Int. FULL 1136 12.32 447.1 1

Int. MO-wR̄ 1142 12.33 455.2 1

Upperbound on rate/channel; looser for interleaved/random case.
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Conclusions

Presented optimal and sub-optimal algorithms for gradient-based
scheduling in OFDM systems.

I Can accommodate different channelizations and max. SINR
constraints.

Subchannel allocation is based on a sort metric that depends on
power constraint Lagrange multiplier.

Can solve dual problem with geometric rate of convergence.

Given suchannel allocation, can optimize power in finite time.

Simple sort has near optimal performance.

Can extended the model to include self-interference.
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