Gradient-based scheduling and resource allocation in OFDMA systems

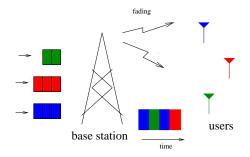
Randall Berry

Northwestern University Dept. of EECS

Joint work with J. Huang, R. Agrawal and V. Subramanian

CTW 2006

Downlink Scheduling and Resource Allocation



- Key component of most recent wireless data systems
 - e.g. CDMA 1xEVDO, HSPDA, IEEE 802.16.
- Dynamically schedule users based on channel conditions/QoS.
 - Cross-layer approach.
 - Use frequent channel quality feedback & adaptive modulation/coding.
 - Exploit multi-user diversity.

Gradient-based Scheduling

- Scheduler needs to balance users' QoS and global efficiency.
- Many approaches accomplish this via gradient-based scheduling.
- Assign each user a utility, $U_i(\cdot)$, depending on delay, throughput, etc.
- Scheduler choosea rate $\mathbf{r} = (r_1, \ldots, r_N)^T$ to solve:

$$\max_{\mathbf{r}\in\mathcal{R}(\mathbf{e})}\nabla \mathbf{U}(\mathbf{X}(t))\cdot\mathbf{r} = \max_{\mathbf{r}\in\mathcal{R}(\mathbf{e})}\sum_{i}\dot{U}_{i}(X_{i}(t))r_{i},$$

Myopic policy, requires no knowledge of channel or arrival statistics.

Gradient-based Scheduling Examples

• α -fairness: utility function of average throughput W_i :

$$U_i(W_i) = \begin{cases} \frac{c_i}{\alpha} (W_i)^{\alpha}, & \alpha \leq 1, \alpha \neq 0. \\ c_i \log(W_i), & \alpha = 0 \end{cases}$$

•
$$\alpha = 0 \Rightarrow$$
 Prop. fair.

- $\alpha = 1 \Rightarrow$ Max. throughput.
- Utility may also be function of delay/queue size.
 - e.g. Stabilizing policies.

State-dependent Feasible Rate Regions

- Optimization is over feasible rate region $\mathcal{R}(\mathbf{e}_t)$.
- Region depends on:
 - Available channel quality info \mathbf{e}_t ,
 - Physical layer resource allocation,
 - MAC layer multiplexing.

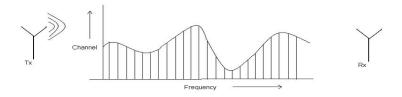
State-dependent Feasible Rate Regions

- Optimization is over feasible rate region $\mathcal{R}(\mathbf{e}_t)$.
- Region depends on:
 - Available channel quality info e_t,
 - Physical layer resource allocation,
 - MAC layer multiplexing.
- E.g. TDMA systems/full CSI
 - $\mathcal{R}(\mathbf{e}_t) = \text{simplex with max rate } r_i \text{ for each user } i$.
 - Gradient-policy \Rightarrow schedule users with max $U_i(X_i)r_i$.

State-dependent Feasible Rate Regions

- Optimization is over feasible rate region $\mathcal{R}(\mathbf{e}_t)$.
- Region depends on:
 - Available channel quality info e_t,
 - Physical layer resource allocation,
 - MAC layer multiplexing.
- E.g. TDMA systems/full CSI
 - $\mathcal{R}(\mathbf{e}_t) = \text{simplex with max rate } r_i \text{ for each user } i$.
 - Gradient-policy \Rightarrow schedule users with max $\dot{U}_i(X_i)r_i$.
- In many systems, additional multiplexing within a time-slot.
 - e.g. CDMA (HSDPA), OFDMA (802.16).
 - ► Requires allocating physical layer resources among scheduled users.

OFDMA systems



- Frequency band divided into N subcarriers/tones.
- Resource allocation:
 - assignment of tones to users
 - allocation of power across tones.

OFDMA rate region

- Initially, allow users to time-share each subchannel
 - In practice, one user/tone.
- Assume rate/subchannel = $\log(1 + SNR)$.
- Rate region (similar to [Li,Goldsmith], [Wang, et. al]):

$$\mathcal{R}(\mathbf{e}) = \left\{ \mathbf{r}: \ r_i = \sum_j x_{ij} \log \left(1 + rac{p_{ij} e_{ij}}{x_{ij}}
ight), \sum_{ij} p_{ij} \leq P, \ \sum_i x_{ij} \leq 1, \ orall \ j, \ (\mathbf{x}, \mathbf{p}) \in \mathcal{X}
ight\},$$

where

- $\blacktriangleright \mathcal{X} := \{ (\mathbf{x}, \mathbf{p}) \geq \mathbf{0} : x_{ij} \leq 1, \forall i, j \}.$
- x_{ij} = fraction of subchannel *j* allocated to user *i*.
- p_{ij} = power allocated to user *i* on subchannel *j*.
- e_{ij} = received SNR/unit power.

Model Variations

1 Maximum SINR constraint: *s_{ij}* (limit on modulation order)

► Let
$$\mathcal{X} := \left\{ (\mathbf{x}, \mathbf{p}) \ge \mathbf{0} : 0 \le x_{ij} \le 1, 0 \le p_{ij} \le \frac{x_{ij} s_{ij}}{e_{ij}} \ \forall i, j \right\}.$$

Model Variations

Let

1 Maximum SINR constraint: *s_{ij}* (limit on modulation order)

$$\mathcal{X} := \left\{ (\mathbf{x}, \mathbf{p}) \geq \mathbf{0} : 0 \leq x_{ij} \leq 1, 0 \leq p_{ij} \leq rac{x_{ij}s_{ij}}{e_{ij}} \ orall i, j
ight\}.$$

Sub-channelization (bundle tones to reduce overhead)

- Possible channelizations:
 - Interleaved (802.16 standard mode)
 - Adjacent (Band AMC mode)
 - ★ Random (e.g. frequency hopped)
- Can accommodate by letting x_{ij} = allocation of subchannel *j*.
- View e_{ii} as "average" SNR/subchannel.

Model Variations

I et

1 Maximum SINR constraint: *s_{ij}* (limit on modulation order)

$$\mathcal{X} := \left\{ (\mathbf{x}, \mathbf{p}) \geq \mathbf{0} : 0 \leq x_{ij} \leq 1, 0 \leq p_{ij} \leq rac{x_{ij}s_{ij}}{e_{ij}} \ orall i, j
ight\}.$$

Sub-channelization (bundle tones to reduce overhead)

- Possible channelizations:
 - ★ Interleaved (802.16 standard mode)
 - Adjacent (Band AMC mode)
 - * Random (e.g. frequency hopped)
- Can accommodate by letting x_{ij} = allocation of subchannel *j*.
- ▶ View *e_{ij}* as "average" SNR/subchannel.

Self-interference:

$$SINR_{ij} = rac{e_{ij}p_{ij}}{x_{ij} + \alpha e_{ij}p_{ij}}.$$

Optimal Scheduling algorithm

The optimal gradient-based scheduling algorithm must solve:

$$\max_{x_{ij}, p_{ij} \in \mathcal{X}} V(\mathbf{x}, \mathbf{p}) := \sum_{i} w_i \sum_{j} x_{ij} \log \left(1 + \frac{p_{ij} e_{ij}}{x_{ij}} \right)$$

subject to: $\sum_{i,j} p_{ij} \leq P$, and $\sum_{i} x_{ij} \leq 1, \forall j \in \mathcal{N},$

•
$$w_i = \dot{U}_i$$
.

- Need to re-solve every scheduling interval.
- We consider optimal and suboptimal algorithms for this.

Optimal algorithm

- Scheduling problem (OPT) is convex and has no duality gap.
- Consider Lagrangian:

$$L(\mathbf{x}, \mathbf{p}, \lambda, \mu) := \sum_{i} w_{i} \sum_{j} x_{ij} \log \left(1 + \frac{p_{ij} e_{ij}}{x_{ij}} \right) \\ + \lambda \left(P - \sum_{i,j} p_{ij} \right) + \sum_{j} \mu_{j} \left(1 - \sum_{i} x_{ij} \right).$$

• Associated dual function:

$$L(\lambda, \mu) = \max_{(\mathbf{x}, \mathbf{p}) \in \mathcal{X}} L(\mathbf{x}, \mathbf{p}, \lambda, \mu)$$

• By duality, solution to (OPT) is:

$$V^* = \min_{(\lambda, \mu) \ge \mathbf{0}} L(\lambda, \mu)$$

Dual Function

- Can explicitly solve for the dual function.
- Fixing $\mathbf{x}, \lambda, \boldsymbol{\mu}$, optimizing over $p_{ij} \Rightarrow$ "water-filling" like solution.

$$p_{ij}^* = rac{x_{ij}}{e_{ij}} \left[\left(rac{w_i e_{ij}}{\lambda} - 1
ight)^+ \wedge s_{ij}
ight].$$

Dual Function

- Can explicitly solve for the dual function.
- Fixing $\mathbf{x}, \lambda, \boldsymbol{\mu}$, optimizing over $p_{ij} \Rightarrow$ "water-filling" like solution.

$$p_{ij}^* = rac{x_{ij}}{e_{ij}} \left[\left(rac{w_i e_{ij}}{\lambda} - 1
ight)^+ \wedge s_{ij}
ight].$$

• Given optimum p_{ii}^* ,

$$L(\mathbf{x}, \mathbf{p}^*, \lambda, \boldsymbol{\mu}) = \sum_{ij} \mathbf{x}_{ij} (\mu_{ij}(\lambda) - \mu_j) + \sum_j \mu_j + \lambda P$$

• Optimizing over
$$x_{ij} \in [0, 1]$$
 is now easy.

$$\Rightarrow L(\lambda, \mu) = \sum_{ij} (\mu_{ij}(\lambda) - \mu_j)^+ + \sum_j \mu_j + \lambda P$$

Minimizing the dual function

• Dual function:

$$L(\lambda, \mu) = \sum_{ij} (\mu_{ij}(\lambda) - \mu_j)^+ + \sum_j \mu_j + \lambda P.$$

• First minimize over μ :

$$L(\lambda) := \min_{\boldsymbol{\mu} \ge \mathbf{0}} L(\lambda, \boldsymbol{\mu}) = \lambda P + \sum_{j} \max_{i} \mu_{ij}(\lambda).$$

Requires one sort of users per subchannel.

Minimizing the dual function

• Dual function:

$$L(\lambda, \mu) = \sum_{ij} (\mu_{ij}(\lambda) - \mu_j)^+ + \sum_j \mu_j + \lambda P.$$

First minimize over μ:

$$L(\lambda) := \min_{\boldsymbol{\mu} \ge \mathbf{0}} L(\lambda, \boldsymbol{\mu}) = \lambda P + \sum_{j} \max_{i} \mu_{ij}(\lambda).$$

- Requires one sort of users per subchannel.
- $L(\lambda)$ is convex function of λ .
 - Can minimize using iterated 1-D search (e.g. golden section).

Optimal Primal Values.

• Given λ^* , μ^* , let

$$(\mathbf{x}^*, \mathbf{p}^*) = \arg \max_{(\mathbf{x}, \mathbf{p}) \in \mathcal{X}} L(\mathbf{x}, \mathbf{p}, \lambda^*, \mu^*).$$
(*)

- If $(\mathbf{x}^*, \mathbf{p}^*)$ are primal feasible and satisfy complimentary slackness, they are an optimal scheduling decision.
- Can find these as before, except multiple μ_{ij} 's may be tied at the maximum value.
 - \Rightarrow Multiple x_{ij} 's can be > 0.
 - Not all choices result in feasible primal solutions.

Breaking ties - optimal time-sharing

- When ties occur, can show $L(\lambda)$ is not differentiable.
- Each (x*, p*) that satisfy (*) and complimentary slackness give a subgradient of L(λ).
- Simple sort can find max and min subgradients (one user/subchannel).
- Time-sharing between these gives a primal optimal solution.
 - At most 2 users/subchannel.

Single User per Subchannel Heuristic

- In practice typically restricted to one user/subchannel.
- If no "ties" in optimal dual solution, this will be satisfied.
- When ties occurs, selecting one user involved in the tie corresponds to choosing one subgradient.
- In simulations, we choose the user that corresponds to the smallest negative subgradient.
 - Other heuristics also possible.
 - Resulting power constraint may not be tight.

Re-optimizing the power allocation

• Given a feasible x, consider

$$\max_{\mathbf{p}:(\mathbf{p},\mathbf{x})\in\mathcal{X}}V(\mathbf{x},\mathbf{p}) \quad ext{s.t. } \sum_{ij}p_{ij}\leq P$$

- solution again given by "water-filling" like power allocation with a given Lagrange multiplier $\tilde{\lambda}$.
- \bullet Optimal $\tilde{\lambda}$ can be shown to satisfy fixed point equation

$$\lambda = f(\lambda),$$

 $f(\lambda)$ is increasing, finite-valued (piece-wise constant).

 \Rightarrow finite time algorithm for finding $\tilde{\lambda}$.

Single Sort Heuristic

• Optimal subchannel assignment is to user with max $\mu_{ij}(\lambda)$.

- Requires iterating to find optimal λ .
- Instead consider single-sort using metric $w_{ij}\bar{R}_{ij}$,

$$\bar{R}_{ij} = \log[1 + (s_{ij} \wedge (e_{ij}P/N))].$$

Motivated by e.g. [Hoo, et al.].

- Then optimally allocate power as before.
- Also looked at other heuristics.

Numerical Results

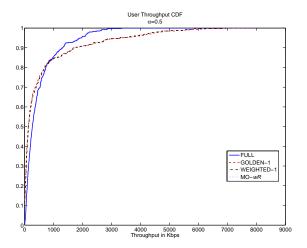
Simulation set-up:

- Single cell, M = 40 users.
- $e_{ij} = (\text{fixed location-based term}) \times (\text{frequency selective fast fading})$
 - Fixed term = empirical distribution.
 - frequency selective term = block fading in time (2msec coh. time); standard ref. mobile delay spread (1 µsec).
- 5 MHz BW, 512 tones.
- Initially adjacent channelization, 8 tones/subchannel.
- use α -utility functions.
- Simulate full algorithm (with one user/subchannel) and single sort.

Different choices of α

α	Algorithm	Utility	Log U	Rate(kbps)	Num.
0.5	FULL	1236	12.58	497.8	5.40
0.5	MO-wR	1234	12.56	498.3	5.17
0	FULL	12.69	12.69	396.8	5.75
0	MO-wR	12.68	12.68	393.0	5.47
1	FULL	716955	8.04	719.3	3.04
1	MO-wR	716955	8.04	719.3	3.04

User throughput CDFs



 $\alpha = 0.5.$

R. Berry (NWU)

Different channelization schemes

Chan.	Algorithm	Utility	Log U	Rate (kbps)	Num.
Adj.	FULL	1236	12.58	497.8	5.40
Adj.	MO-wR	1234	12.56	498.3	5.17
Ran.	FULL	1171	12.42	465.2	4.08
Ran.	MO-wR	1167	12.40	465.5	3.64
Int.	FULL	1136	12.32	447.1	1
Int.	MO-wR	1142	12.33	455.2	1

Upperbound on rate/channel; looser for interleaved/random case.

Conclusions

- Presented optimal and sub-optimal algorithms for gradient-based scheduling in OFDM systems.
 - Can accommodate different channelizations and max. SINR constraints.
- Subchannel allocation is based on a sort metric that depends on power constraint Lagrange multiplier.
- Can solve dual problem with geometric rate of convergence.
- Given suchannel allocation, can optimize power in finite time.
- Simple sort has near optimal performance.
- Can extended the model to include self-interference.