Designing Failure-Tolerant Network Codes

S. Y. El Rouayheb A. Sprintson C. Georghiades

Department of Electrical and Computer Engineering Texas A&M

IEEE Communication Theory Workshop, 2006

ElRouayheb, Sprintson, Georghiades (TAMU) Designing Failure-Tolerant Network Codes

CTW 2006 1 / 36

Outline

2 Structure of Unicast Networks

A b

Multicast Networks

Figure: Example of a multicast network.

- Network represented by a directed graph G(V, E)
- Capacity function $c(e): E \rightarrow \mathbb{N}$
- Source *s* where *h* packets x_1, \ldots, x_h are available
- k destination nodes t₁,..., t_k that require all the packets
- Edges are susceptible to failure

The Problem

 A failed edge is deleted from the network

Goal

Find a communication scheme that will guaranty the delivery of all the packets to all the destinations in the case of any single edge failure.

Figure: Failed edge in a network

- E - N

Feasibility

Definition (Feasible Network)

A multicast network \mathbb{N} is feasible if there exists a flow of value *h* from the source to each destination in any subnetwork obtained by deleting a single edge in \mathbb{N} .

Figure: A non feasible unicast network

Network Flows

Figure: A flow of value 3 in a

network.

Definition (Flow of value h)

A flow **b** of value h from s to t in a network \mathbb{N} is an assignment of a real number b(e) to each edge $e \in \mathbb{N}$ such that

•
$$b(e) \leq c(e)$$

- flow out at s = h
- 3 flow in at t = h
- flow in = flow out at intermediate nodes

▲ 同 ▶ → 三 ▶

Example: Rerouting

Definition

A unicast network is a multicast network with a single destination.

Figure: A feasible unicast network.

Example: Rerouting

Rerouting

For every edge $e \in E$, find a flow of value *h* in the subnetwork $G \setminus e$, that will protect against the failure of *e*.

Example: Rerouting

Rerouting

For every edge $e \in E$, find a flow of value *h* in the subnetwork $G \setminus e$, that will protect against the failure of *e*.

- E - N

- a and b are bits
- "+" is the bit xor operation
- the packet carried by a failed edge is always zero
- A kind of "coding" is done at node *v*₄

- E - N

• Single edge failure

• The destination will always be able to decode the original packets *a* and *b*

failure of	<i>m</i> ₂₅	<i>m</i> ₄₅	<i>m</i> ₃₅
	а	a+b	b
(V_1, V_2)		а	b
(V_1, V_3)	а	b	
(V_2, V_4)	а	а	b
(V_3, V_4)	а	b	b
(V_2, V_5)		a+b	b
(V_3, V_5)	а		b
(V_4, V_5)	а	a+b	

A (1) > A (2) > A

Instantaneous recovery!

- Single edge failure
- The destination will always be able to decode the original packets *a* and *b*

failure of	<i>m</i> ₂₅	<i>m</i> 45	<i>m</i> ₃₅
ϕ	а	a+b	b
(V_1, V_2)	0	а	b
(v_1, v_3)	а	b	0
(v_2, v_4)	а	а	b
(V_3, V_4)	а	b	b
(V_2, V_5)	0	a+b	b
(V_3, V_5)	а	0	b
(V_4, V_5)	а	a+b	0

A b

Instantaneous recovery!

- Single edge failure
- The destination will always be able to decode the original packets *a* and *b*

failure of	<i>m</i> ₂₅	<i>m</i> 45	<i>m</i> ₃₅
ϕ	а	a+b	b
(v_1, v_2)	0	а	b
(V_1, V_3)	а	b	0
(V_2, V_4)	а	а	b
(V_3, V_4)	а	b	b
(V_2, V_5)	0	a+b	b
(V_3, V_5)	а	0	b
(V_4, V_5)	а	a+b	0

Instantaneous recovery!

Linear Network Codes

Network Coding

- The packet carried by an edge e(u, v) is
 - A function of the original packets if *u* is the source node
 - Otherwise, a function of the packets carried by edges incoming to u
- The set of all the edge functions is called a network code

Linear Network Codes

- Packets at the source belong to some finite field *GF*(*q*)
- The edge functions are linear over that field

< 回 > < 三 > < 三 >

Robust Network Codes

Definition

A robust network code, for a multicast network, is a linear network code that, in the case of *a single edge failure* will guaranty

- the delivery of all the packets
- to all the destinations

Figure: Example of a robust network

code

Related Work

- Koetter et al. (03) showed that linear robust network codes always exist for feasible multicast networks.
- Jaggi et al. (04)
 - designed a polynomial time algorithm for finding robust network codes
 - gave an upper bound on the minimum field size over which such codes exist for a given multicast network, that is *fk*
 - ★ *f* is the number of failure patterns. Here, f = |E|
 - ★ k number of destinations

A (10) A (10) A (10)

Summary of the Results

- We focus on feasible unicast networks with h = 2
- We show that such networks have a very specific structure. They can be constructed by the concatenation of three blocks that we describe
- We prove, constructively, that robust network codes exist for these networks over GF(2)
- We show that for multicast networks with k destinations and h = 2, a field of size larger than 5k is sufficient for finding robust network codes

Minimal Networks

Definition

A multicast network is minimal if all its *subnetworks*, obtained by deleting an edge or reducing its capacity, are *not feasible*.

Figure: A non minimal unicast network

EIRouayheb, Sprintson, Georghiades (TAMU) Designing Failure-Tolerant Network Codes

CTW 2006 16 / 36

Simple Networks

Definition

A unicast network (h = 2) is a simple network iff it is

- feasible
- minimal
- All of its nodes are of degree 3

Robust NC for Unicast Networks

etworks Extendin

Extending the Results

Summary

Reduction to Simple Networks

Figure: (a) unicast net. (b) corresponding simple net.

Theorem

Let \mathbb{N} be a feasible unicast network (h = 2). Then, there exists a simple network \mathbb{N}' such that if \mathbb{N}' has a robust network code over GF(q), then \mathbb{N} has also one over the same field.

Flow Network

 We transform the problem of protecting against edge failures in a network N, into the problem of studying the properties of flows in a corresponding network N

Definition (Flow Network)

To each unicast network \mathbb{N} with h = 2, we associate a flow network $\overline{\mathbb{N}}$ defined on the same graph but where edge capacity are reduced from 2 to 1.5, and all the other capacities are kept the same.

< ロ > < 同 > < 回 > < 回 >

Example of a flow network

Figure: (a) feasible unicast net \mathbb{N} . (b) Corresponding flow net $\overline{\mathbb{N}}$.

CTW 2006 20 / 36

< (□) < 三 > (□)

A Property of Flow Networks

Theorem

A unicast network is feasible if and only if the corresponding flow network admits a flow of value 3 from s to t.

Figure: A flow of value 3

in a flow network.

ElRouayheb, Sprintson, Georghiades (TAMU) Designing Failure-Tolerant Network Codes

CTW 2006 21 / 36

Flows and Minimality

Theorem

Let \mathbb{N} a simple (minimal& feasible) network. Then, in the corresponding flow network $\overline{\mathbb{N}}$, all flows of value 3 are nowhere-zero flows.

ElRouayheb, Sprintson, Georghiades (TAMU) Designing Failure-Tolerant Network Codes

Structure of Simple Networks

Theorem

All simple networks \mathbb{N} can be decomposed into the blocks A, B and C depicted below.

Example

Figure: A simple network

ElRouayheb, Sprintson, Georghiades (TAMU) Designing Failure-Tolerant Network Codes

CTW 2006 24/36

Example

Figure: Block decomposition of a simple network

ElRouayheb, Sprintson, Georghiades (TAMU) Designing Failure-Tolerant Network Codes

CTW 2006 25 / 36

Sketch of Proof

- The proof of the *block decomposition theorem* of simple networks is based on
 - Residual networks
 - The augmenting cycle theorem
- Any configuration, other than blocks *A*, *B* and *C*
 - will result in a flow with some edge carrying a zero flow.
 - contradicts the minimality of the simple network

Summary

Robust Network Code

< (□) < 三 > (□)

Robust Network Code

< 6 b

- E - N

Summary

Robust Network Code

a

Proof of Robustness

- A simple network always ends by a block B
- The proof of the robustness of the previous network code
 - ▶ is done by induction on the number of blocks *B* in the network
 - shows that the output of any block B is always a subset of at least two elements of the set {a, b, a + b}

• • • • • • • • • • • •

Beyond Two Packets

- The flow network technique does not generalize for *h* > 2
- Finding the structure of feasible and minimal networks seems hard for large values of *h*

First Conjecture

Conjecture 1

There exists a function f(h), such that, for all prime powers $q \ge f(h)$, there exist robust network codes over GF(q) for all unicast networks with *h* packets.

- *f*(*h*) does not depend on the network
- *f*(2) ≥ 2

- E - N

Beyond Unicast

Theorem

Consider a multicast network \mathbb{N} with h = 2 packets and k destinations. Then, there exists a robust network code for \mathbb{N} over GF(q) for all $q \ge 5k$.

Lemma

If **m** flows are needed to protect against all single edge failures in \mathbb{N} , then there exists a robust network code \mathbb{N} over GF(q) for all $q \ge m$ (Jaggi et al. 04).

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Beyond Unicast

Theorem

Consider a multicast network \mathbb{N} with h = 2 packets and k destinations. Then, there exists a robust network code for \mathbb{N} over GF(q) for all $q \ge 5k$.

Lemma

If *m* flows are needed to protect against all single edge failures in \mathbb{N} , then there exists a robust network code \mathbb{N} over GF(q) for all $q \ge m$ (Jaggi et al. 04).

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Proof

 For a unicast network, at most 5 flows are sufficient for protecting against failures

- Red-Maroon for edges in the middle
- Green-Red and Blue-Red for edges on the left
- Blue-Maroon and Green-Maroon for edges on the right
- If we repeat this for each destination, we get the 5k bound

< 回 ト < 三 ト < 三

Second Conjecture

Conjecture 2

There exists a function g(h), such that, for all prime powers $q \ge kg(h)$, there exist robust network codes over GF(q) for all multicast networks with *h* packets and *k* destinations.

- We addressed the problem of constructing robust network codes for multicast networks
 - focused on unicast networks with h = 2 packets
- We described the structure of feasible and minimal unicast networks (h = 2)
 - It can be constructed by the concatenation of three blocks
- Onstructed a robust network code for these networks
 - > permits instantaneous recovery from any single edge failure
 - over GF(2)
- Showed that a field of size q, where q ≥ 5k, is always sufficient for finding robust codes for multicast networks with 2 packets and k destinations

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >