Toward Network Coding for Interference Networks

Piyush Gupta

Mathematical & Algorithmic Sciences Center Bell Labs, Lucent Technologies Murray Hill, NJ

Joint work with Sandeep Bhadra and Sanjay Shakkottai, UT-Austin

Outline

- Introduction
 - Network coding
 - Wireless models broadcast erasure networks
- Our system model
 - Finite-field operations
 - Both broadcast and interference constraints
- Upper bound
- Network coding strategy
 - Achieves rates asymptotically close to u.b.
- Capacity gains due to fading

- All links at rate 1
- Single-source multicast

- All links at rate 1
- Single-source multicast
- Upper bound on rate R for each destination is 2
 - Same as min-cut

- All links at rate 1
- Single-source multicast
- Upper bound on rate R for each destination is 2
 - Same as min-cut
- Routing cannot achieve this
 - If ? = b, D_2 only receives b

- All links at rate 1
- Single-source multicast
- Upper bound on rate R for each destination is 2
 - Same as min-cut
- Routing cannot achieve this
 If ? = b, D₂ only receives b
- Network coding can
 - By coding at intermediate node

Network Coding – General Wireline Networks

Theorem [AhCaLiYe00]: Multicast capacity = min_i {min-cut for D_i }

- Upper bound
 - Min-cut bound for each D_i
- Achievability [Ho et al 03]
 - Source sends messages from F_q
 - $\begin{array}{l} \mbox{ Nodes perform Random Linear} \\ \mbox{ Coding (RLC) over received messages:} \\ C = \alpha_1 a + \alpha_2 b, \, \alpha_i \in F_q \end{array}$
 - D₁ decodes source messages from received vectors: Y₁=(Y₁₁=a, Y₁₂=C)
 - Achieves rates arbitrarily close to mincut bound for sufficiently large q

$$Y_1 = \left[\begin{array}{cc} 1 & 0 \\ \alpha_1 & \alpha_2 \end{array} \right] \left[\begin{array}{c} a \\ b \end{array} \right]$$

- Directed graph G=(V,E)
- Each link e∈E is independent erasure channel

$$- P(Y_{14} | X_1, X_2) = P(Y_{14} | X_1)$$

- Directed graph G=(V,E)
- Each link e∈E is independent erasure channel

$$- P(Y_{14} | X_1, X_2) = P(Y_{14} | X_1)$$

- Broadcast constraint
 - v_1 must send same X_1 along both (v_1, v_3) and (v_1, v_4)

- Directed graph G=(V,E)
- Each link e∈E is independent erasure channel

$$- P(Y_{14} | X_1, X_2) = P(Y_{14} | X_1)$$

- Broadcast constraint
 - v_1 must send same X_1 along both (v_1, v_3) and (v_1, v_4)
- Coding at each node

$$- X_4 = f(Y_{14}, Y_{24})$$

- Directed graph G=(V,E)
- Each link e∈E is independent erasure channel

$$- P(Y_{14} | X_1, X_2) = P(Y_{14} | X_1)$$

- Broadcast constraint
 - v_1 must send same X_1 along both (v_1, v_3) and (v_1, v_4)
- Coding at each node

$$- X_4 = f(Y_{14}, Y_{24})$$

Does not model interference

Broadcast Erasure Networks -- Capacity

- Results for directed acyclic graphs
- Theorem [DanGow04, LunMed04]: Capacity = min_i {generalized min-cut for D_i}
 - e.g., $(1 \epsilon_{13}\epsilon_{14}) + (1 \epsilon_{24})$
- Upper bound
 - Follows from min-cut bound min_{cut} I(X_{cut-I} ;Y_{cut-r} | X_{cut-r})
- Achievability
 - [DanGow04] Random coding at nodes
 - · need to keep track of erasure patterns
 - [LunMed04] model as Hypergraph, RLC at nodes
 - · track flow of innovative packets
 - generalized to arbitrary arrival processes and correlated erasure patterns

Wireless Broadcast and Interference Networks (WBAIN)

- Above and other results model broadcast but not interference
- Interference is challenging to analyze
- Capacity region not known for even simple network configurations
 - Single-relay channel

- Interference channel

- Directed acyclic graph G=(V,E)
- Broadcast constraint
 - v_1 must send same X_1 along both (v_1, v_3) and (v_1, v_4)

- Directed acyclic graph G=(V,E)
- Broadcast constraint
 - v_1 must send same X_1 along both (v_1, v_3) and (v_1, v_4)
- Model power constraint by rate
 - $-v_i$ can send at rate $\leq R_i$

- Directed acyclic graph G=(V,E)
- Broadcast constraint
 - v_1 must send same X_1 along both (v_1, v_3) and (v_1, v_4)
- Model power constraint by rate
 - $-v_i$ can send at rate $\leq R_i$
- All operations over finite field F_a
 - Each node transmits vectors from F_q
 - $\ \text{log} \ q \geq \text{max}_i \ R_i$

- Directed acyclic graph G
- Broadcast constraint
 - v_1 must send same X_1 along both (v_1, v_3) and (v_1, v_4)
- Model power constraint by rate
 - $-v_i$ can send at rate $\leq R_i$
- All operations over finite field F_a
 - Each node transmits vectors from F_a
 - $-\log q \geq \max_i R_i$
- Two reception models
 - With or without fading

WBAIN – A Finite-Field Model (contd.)

- Non-fading model:
 - v_4 receives Y_4 , where Y_4
 - -~ = X_1 + $X_2 \in F_q$ with prob. 1- $\!\epsilon_4$
 - $= \phi$ (erasure) with prob. ε_4
 - Erasures are independent across receivers
- Y_{3} V_{3} V_{3} V_{3} V_{4} V_{4} V_{4} V_{4} V_{4} V_{4}

• Fading model:

As above, except when no erasure

$$- Y_4 = h_{14} X_1 + h_{24} X_2$$

 $-h_{ij}$ uniform i.i.d. over F_q

Upper Bound on WBAIN with Fading

• Bound on capacity of finite-field MAC

$$\begin{split} & \mathsf{C_3}(q) \ = \ \max_{\{\mathsf{H}(\mathsf{X}_j) \ \le \ \mathsf{R}_j\}} \ \mathsf{I}(\mathsf{Y}_3; \mathsf{X}_1, \mathsf{X}_2| \ \mathsf{h}_{13}, \ \mathsf{h}_{23}) \\ & = \max_{\{\mathsf{H}(\mathsf{X}_j) \ \le \ \mathsf{R}_j\}} \ \mathsf{H}(\mathsf{Y}_3| \ \mathsf{h}_{13}, \ \mathsf{h}_{23}) \ - \ \mathsf{H}(\mathsf{Y}_3| \ \mathsf{X}_1, \ \mathsf{X}_2, \ \mathsf{h}_{13}, \ \mathsf{h}_{23}) \\ & = \max_{\{\mathsf{H}(\mathsf{X}_j) \ \le \ \mathsf{R}_j\}} \ \mathsf{H}(\mathsf{h}_{13}\mathsf{X}_1 \ + \ \mathsf{h}_{23}\mathsf{X}_2| \ \mathsf{h}_{13}, \ \mathsf{h}_{23}) \ - \ \mathsf{0} \\ & = q^{-2}((q-1)(\mathsf{R}_1 \ + \ \mathsf{R}_2) \ + \ (q-1)^2 \ \min \ \{\mathsf{R}_1 \ + \ \mathsf{R}_2, \ \mathsf{log} \ \mathsf{q}\}) \\ & \leq \min \ \{(1 \ - \ \mathsf{q}^{-1})(\mathsf{R}_1 \ + \ \mathsf{R}_2), \ (1 \ - \ \mathsf{q}^{-2}) \ \mathsf{log} \ \mathsf{q}\} \end{split}$$

Upper Bound on WBAIN with Fading

- Bound on capacity of finite-field MAC $C_3(q) = \max_{\{H(X_j) \le R_j\}} I(Y_3; X_1, X_2 | h_{13}, h_{23})$
 - $= max_{\{H(X_{j}) \leq R_{j}\}} H(Y_{3}| h_{13}, h_{23}) H(Y_{3}| X_{1}, X_{2}, h_{13}, h_{23})$

$$= \max_{\{H(X_j) \le R_j\}} H(h_{13}X_1 + h_{23}X_2 | h_{13}, h_{23}) - 0$$

= q⁻²((q-1)(R₁ + R₂) + (q-1)² min {R₁+R₂, log q})

$$\leq \min \{ (1-q^{-1})(R_1 + R_2), (1-q^{-2}) \log q \} \}$$

Node i receives transmissions from nodes in J

 $C_i(q) \leq \min \{(1-q^{-1})(\sum_{j \in J} R_j), (1-q^{-\delta_l(i)}) \log q\}$

Upper Bound on WBAIN with Fading

- Bound on capacity of finite-field MAC
 $$\begin{split} &C_3(q) \ = \ max_{\{H(X_j) \ \le \ R_j\}} \ I(Y_3; X_1, X_2 | \ h_{13}, \ h_{23}) \\ &= \ max_{\{H(X_j) \ \le \ R_j\}} \ H(Y_3 | \ h_{13}, \ h_{23}) \ - \ H(Y_3 | \ X_1, \ X_2, \ h_{13}, \ h_{23}) \\ &= \ max_{\{H(X_j) \ \le \ R_j\}} \ H(h_{13}X_1 \ + \ h_{23}X_2 | \ h_{13}, \ h_{23}) \ - \ 0 \\ &= \ q^{-2}((q-1)(R_1 \ + \ R_2) \ + \ (q-1)^2 \ min \ \{R_1 \ + \ R_2, \ \log \ q\}) \\ &\leq \ min \ \{(1-q^{-1})(R_1 \ + \ R_2), \ (1-q^{-2}) \ \log \ q\} \end{split}$$
- Node i receives transmissions from nodes in J

 $C_i(q) \leq \min \{(1-q^{-1})(\sum_{j \in J} R_j), (1-q^{-\delta_l(i)}) \log q\}$

• More generally, total rate across cut U bounded by
$$\begin{split} &C_U(q) \leq \max_{\{H(X_j) \leq R_j\}} I(Y_3, Y_4; X_1, X_2 \mid H_{1,2;3,4}) \\ &\leq \min \left\{ \sum_j \left(1 - q^{-\delta_0(j)}\right) R_j, \log q \sum_i 1 - q^{-\delta_l(i)} \right\} \end{split}$$

- Consider Broadcast Erasure Network T(G) having same topology and rates as G, with
 - no interference, e.g., Y_4 receives (X_1, X_2)

• Consider Broadcast Erasure Network T(G) having same topology and rates as G, with

- no interference, e.g., Y_4 receives (X_1 , X_2)

- each broadcast link has independent erasures with probability q^{-1} , e.g., (1,3), (1,4), (2,4)

- Consider Broadcast Erasure Network T(G) having same topology and rates as G, with
 - no interference, e.g., Y_4 receives (X_1 , X_2)
 - each broadcast link has independent erasures with probability q^{-1} , e.g., (1,3), (1,4), (2,4)
 - each receiving node erasures are mapped to auxiliary edge erasures

- Consider Broadcast Erasure Network T(G) having same topology and rates as G, with
 - no interference, e.g., Y_4 receives (X_1 , X_2)
 - each broadcast link has independent erasures with probability q^{-1} , e.g., (1,3), (1,4), (2,4)
 - each receiving node erasures are mapped to auxiliary edge erasures
 - MAC sum-rate constraint through aux. edge rate constraint, $R_i = (1-q^{-\delta_i(i)})\log q$

- Consider Broadcast Erasure Network T(G) having same topology and rates as G, with
 - no interference, e.g., Y_4 receives (X_1 , X_2)
 - each broadcast link has independent erasures with probability q^{-1} , e.g., (1,3), (1,4), (2,4)
 - each receiving node erasures are mapped to auxiliary edge erasures
 - MAC sum-rate constraint through aux. edge rate constraint, $R_i = (1-q^{-\delta_i(i)})\log q$
- Theorem: Capacity of WBAIN G over F_q , $C_q \le Capacity$ of BEN, T(G), $C_s(q)$

= min_i {generalized min-cut for D_i}

- For any δ>0, there exists flow vector {f_p} for all paths {p} between s-d in BEN T(G) such that
 - $-\sum_{p} f_{p} = C_{s} \cdot (1-\delta)$

$$-\sum_{p: v_i \in p} f_p / (1 - \varepsilon_{h(v_i, p)}) \le R_i \cdot (1 - \delta)$$

h(v_i,p) is next hop from i on path p

- For any δ >0, there exists flow vector {f_p} for all paths {p} between s-d in BEN T(G) such that
 - $-\sum_{p} f_{p} = C_{s} \cdot (1-\delta)$
 - $-\sum_{p: v_i \in p} f_p / (1 \epsilon_{h(v_i, p)}) \le R_i \cdot (1 \delta)$
 - h(v_i,p) is next hop from i on path p
- Coding strategy:

– Source s gets messages at rate $C_s \cdot (1-\delta)$

- For any δ >0, there exists flow vector {f_p} for all paths {p} between s-d in BEN T(G) such that
 - $-\sum_{p} f_{p} = C_{s} \cdot (1-\delta)$
 - $-\sum_{p: v_j \in p} f_p / (1 \epsilon_{h(v_j, p)}) \le R_i \cdot (1 \delta)$
 - h(v_i,p) is next hop from i on path p
- Coding strategy:
 - Source s gets messages at rate $C_s \cdot (1-\delta)$
 - s injects RLC of received messages at rate $\sum_p f_p/(1{\text -}\epsilon_{h(s,p)})$

- For any δ >0, there exists flow vector {f_p} for all paths {p} between s-d in BEN T(G) such that
 - $-\sum_{p} f_{p} = C_{s} \cdot (1-\delta)$
 - $-\sum_{p: v_j \in p} f_p / (1 \epsilon_{h(v_j, p)}) \le R_i \cdot (1 \delta)$
 - h(v_i,p) is next hop from i on path p
- Coding strategy:
 - Source s gets messages at rate $C_s \cdot (1-\delta)$
 - s injects RLC of received messages at rate $\sum_p f_p/(1{\text -}\epsilon_{h(s,p)})$
 - Node v_i injects RLC of received messages at rate $\sum_{p: v_i \in p} f_p / (1 - \varepsilon_{h(v_i, p)})$

- For any δ >0, there exists flow vector {f_p} for all paths {p} between s-d in BEN T(G) such that
 - $-\sum_{p} f_{p} = C_{s} \cdot (1-\delta)$
 - $-\sum_{p: v_i \in p} f_p / (1 \epsilon_{h(v_i, p)}) \le R_i \cdot (1 \delta)$
 - h(v_i,p) is next hop from i on path p
- Coding strategy:
 - Source s gets messages at rate $C_s \cdot (1-\delta)$
 - s injects RLC of received messages at rate $\sum_p f_p/(1{\text -}\epsilon_{h(s,p)})$
 - Node v_i injects RLC of received messages at rate $\sum_{p: v_i \in p} f_p / (1 - \varepsilon_{h(v_i, p)})$
- Theorem: $C_s \cdot (1 O(1/q)) \cdot (1 \delta)$ is achievable in G with uniform i.i.d. fading

Main steps in achievability proof:

- Track the flow of innovative packets
- Fading helps to maintain innovation rates over different links in a cut
 - in spite of broadcast and interference
- "Bad" fading at node $v_j h_j = (h_{ij})_i = 0$ or dependent on $\{h_k\}$ -- reduces rate of innovation by at most (1-O(1/q))

- At each hop of path p the rate of innovation is at least $g_p = f_p \cdot (1 - O(N_o/q))$
 - N_o = diameter of G
- Achieved rate = $\sum_{p} g_{p} = C_{s} \cdot (1 O(N_{o}/q)) \cdot (1 \delta)$

Tight bounds on Capacity of WBAIN with fading

Theorem: $C_s \cdot (1 - O(1/q)) \leq C_q \leq C_s$

- Also holds for heterogenous networks having both wireless and wireline links:
 - Each node can have both types of incoming and outgoing links
 - Node receives weighted sum of vectors sent over incident *wireless* links, $Y_4 = h_{14}X_1 + h_{24}X_2$

- Node receives separate information over incoming *wireline* links, $Y_7 = (X_5, X_6)$

– Similarly, when node transmits

Capacity Gains due to Fading – An Example

- Heterogenous network: wireless at cut U, wireline otherwise
- R_1 and q s.t. U is bottleneck cut
 - e.g., $R_1 = \log q$
- Upper bound: $C_s \sim \sum_{i=1}^{5} R_1(1-\epsilon_i) = R_1(5-\sum_i \epsilon_i)$
- Fading: our strategy achieves $C_{s} \cdot (1-O(1/q))(1-\delta)$
- No fading: capacity is bounded by $R_1(1-\prod_i \epsilon_i)$
- ~5-fold increase in capacity with fading
 - Higher for graphs with larger bottleneck cut

Summary and Future Work

- Finite-field model of interference networks
 - All operations over a finite field
 - Incorporates both broadcast and interference constraints
 - Allows for fading
- Asymptotically tight bounds on capacity for uniform iid fading
 - Upper bound based on results for Broadcast Erasure Networks
 - Achievability through network coding

Some Interesting Issues

- Non-uniform fading?
- Achievable rates under no fading?
- What can we infer about Gaussian channels?
 - Limit of finite-field channels under appropriate distribution remapping?