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Network Coding — Wireline Networks

 Alllinks at rate 1

* Single-source multicast a .°
 Upper bound on rate R for each A,/’/
destination is 2 ®. .

— Same as min-cut

* Routing cannot achieve this

— If ?=Db, D, only receives b a a® b
* Network coding can
— By coding at intermediate node
@ :ob
D1



Network Coding — General Wireline Networks

Theorem [AncaLiYe00]: Multicast capacity = min, {min-cut for D, }

S
a/,O\
— Min-cut bound for each D. 7 SO

« Achievability [Ho et al 03] |
— Source sends messages from F i C

« Upper bound

— Nodes perform Random Linear a
Coding (RLC) over received messages: I )
C=aqa+ab, o eF, @ C C

D

— D, decodes source messages from

received vectors: Y,=(Y,,=a, Y,,=C)

. o . V. — 1 O a
— Achieves rates arbitrarily close to min- =1 a1 as b
cut bound for sufficiently large g



Broadcast Erasure Networks (BEN)

« Directed graph G=(V,E)
« Each link ecE is independent
erasure channel

- P(Y .| X, X,) =P(Y,, | X)) X




Broadcast Erasure Networks (BEN)

« Directed graph G=(V,E)

 Each link ecE is independent Y, .
erasure channel
— P(Yq | Xy, X0) = P(Yy4 | Xy) X1

- Broadcast constraint
—~ v, must send same X, along both \ /
(v, v5) and (vy,v,) 4

o/ i

24




Broadcast Erasure Networks (BEN)

« Directed graph G=(V,E)
« Each link ecE is independent Y., .
erasure channel
- P(Y .| X, X,) =P(Y,, | X)) X1

 Broadcast constraint
—~ v, must send same X, along both \ /
(v, v5) and (v,,v,)
« Coding at each node . / v, s

24
- X4 = f(Y14’ Y24)




Broadcast Erasure Networks (BEN)

« Directed graph G=(V,E)

 Each link ecE is independent Y, .
erasure channel
— P(Y14 | X1 ’ X2) = P(Y14 | X1) X

 Broadcast constraint

— v, must send same X, along both \ /
(v, v5) and (v,,v,)
« Coding at each node . / v4

24
- X4 = f(Y14= Y24)

Does not model interference




I
Broadcast Erasure Networks -- Capacity

« Results for directed acyclic graphs

« Theorem [DanGow04, LunMed04]:
Capacity = min; {generalized min-cut for D}

— €.0., (1 B 813814) + (1- 824)
 Upper bound

— Follows from min-cut bound
ming, 1( Xeyer s Yeutr | X

cut cut-r cut-r )

 Achievability

— [DanGow04] Random coding at nodes
« need to keep track of erasure patterns

— [LunMed04] model as Hypergraph, RLC at nodes
- track flow of innovative packets

« generalized to arbitrary arrival processes and
correlated erasure patterns



Wireless Broadcast and Interference Networks
(WBAIN)

 Above and other results model broadcast but not interference
* Interference is challenging to analyze

« Capacity region not known for even simple network configurations

— Single-relay channel / ® \
® ®

— Interference channel o >< o
@ > @




WBAIN - A Finite-Field Model

 Directed acyclic graph G=(V,E)

* Broadcast constraint

— v, must send same X, along both
(v, v5) and (vy,v,)




WBAIN - A Finite-Field Model

 Directed acyclic graph G=(V,E)

 Broadcast constraint

— v, must send same X, along both
(v, v5) and (v,,v,)

* Model power constraint by rate

— v, can send at rate < R,




WBAIN - A Finite-Field Model

Directed acyclic graph G=(V,E)

Broadcast constraint

— v, must send same X, along both
(v, v5) and (v,,v,)

Model power constraint by rate

— v, can send at rate <R,

All operations over finite field F,
— Each node transmits vectors from F,
— log g > max; R,




WBAIN - A Finite-Field Model

Directed acyclic graph G

Broadcast constraint

— v, must send same X, along both
(v, v5) and (v,,v,)

Model power constraint by rate

— v, can send at rate <R,

All operations over finite field F,
— Each node transmits vectors from F,
— log g > max; R,

Two reception models
— With or without fading




WBAIN - A Finite-Field Model (contd.)

* Non-fading model:

v, receives Y,, where Y, y
- =X, + X, € F, with prob. 1-g, >/ i

— = ¢ (erasure) with prob. g, . X

1
— Erasures are independent across v, Y, /
receivers S X4
Te —
@ Vs
« Fading model: Vo
As above, except when no erasure

= Yy =hyy Xy + hyy X5
— h; uniform i.i.d. over F,




Upper Bound on WBAIN with Fading

« Bound on capacity of finite-field MAC

= MaXx) < gy H(Yal Nig, Nog) - H(Ygl Xy, X5, g, 1)

= maX{H(xj) <Rj H(ngX; + hpgXpl Nyg, hpg) - 0
- q2((@-D(R, + R ) + (g-1)2 min {R,+R , log o))
<min{(1-g")(R. +R)), (1-0?) log g}
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Upper Bound on WBAIN with Fading

« Bound on capacity of finite-field MAC
Co(@) = MaXqyx) <y (Vs X, X, hy

2)
= MaXx) < gy HYal Nig, Nog) - H(Ygl Xy, X5, g, 1)

= maX{H(Xj) <Rj H(hy3X + hpaXy| hyg, hpg) - 0
- q2((@-1(R, + R ) + (g-1)2 min {R,+R , log o))
<min {(1-g")(R. +R), (1-0?) log g}

 Node i receives transmissions from nodes in J | ®

Ci(@) < min {(1'q'1)(zj€J R), (1-g°") log q} X/ Vs

@ |
* More generally, total rate across cut U bounded by V1X1\AY
| 4
Cy(a) < maX{H(xj) <R} 1(Y3, Yy X, X5 | Hyn34)

< min {Zj (1-g800)) Rj, log g Zi 1-q310)

| X
./ v,
V |

2 i U




Upper Bound (contd.)

» Consider Broadcast Erasure Network T(G)
having same topology and rates as G, with

— no interference, e.g., Y, receives (X,, X,)
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» Consider Broadcast Erasure Network T(G)
having same topology and rates as G, with
— no interference, e.g., Y, receives (X,, X,)

— each broadcast link has independent erasures
with probability g, e.g., (1,3), (1,4), (2,4)

Y3
®
x/ Vs
‘X\A
V1 Y
X, @
® v,
) l’
®
X . Vs,
®
Vv, 1 q-1
X, [
‘/q—; v,




Upper Bound (contd.)

» Consider Broadcast Erasure Network T(G)
having same topology and rates as G, with
— no interference, e.g., Y, receives (X,, X,)
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auxiliary edge erasures
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Upper Bound (contd.)

» Consider Broadcast Erasure Network T(G)
having same topology and rates as G, with
— no interference, e.g., Y, receives (X,, X,)
— each broadcast link has independent erasures
with probability g, e.g., (1,3), (1,4), (2,4)
— each receiving node erasures are mapped to
auxiliary edge erasures

— MAC sum-rate constraint through aux. edge
rate constraint, R, = (1-g2)log g

» Theorem: Capacity of WBAIN G over F, C,
< Capacity of BEN, T(G), C(q)
= min; {generalized min-cut for D}




Coding Strategy for WBAIN with Fading

» For any 8>0, there exists flow vector {f } for all

paths {p} between s-d in BEN T(G) such that Y,
- 2, f,=Cs(1-9) ®
- Zp: viep fp /(1 -Sh(vi,p)) < Ri -(1-0) X/ Vs
« h(v;,p) is next hop from i on path p ® X
1
V1\Y
X @ X
o~
Vq
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Coding Strategy for WBAIN with Fading

» For any 5>0, there exists flow vector {f } for all

paths {p} between s-d in BEN T(G) such that Y,
- 2, f,=Cg(1-9) @
- 2p Viep fp /(1'8h(vi,p)) <R;-(1-9) X/ Vs
« h(v;,p) is next hop from i on path p ® X,
- Coding strategy: V1\Y4 ’
— Source s gets messages at rate C-(1-9) ® X:z/"v\4
4

— s injects RLC of received messages at rate
Zp fo/(1-€n(s )
— Node v, injects RLC of received

messages atrate 2., ., fo/(1-€. )

Vo

» Theorem: C.-(1-O(1/q))-(1-9) is achievable in
G with uniform i.i.d. fading




Coding Strateqgy for WBAIN with Fading (contd)

Main steps in achievability proof:

— Track the flow of innovative packets k
— Fading helps to maintain innovation rates X/ Y3
over different links in a cut ®. x
« in spite of broadcast and interference V1\Y4 X
— “Bad” fading at node v, -- hi=(h;), = 0 or h .XZ/' ‘V\4

dependent on {h,} -- reduces rate of Vs '

innovation by at most (1-O(1/q))

— At each hop of path p the rate of innovation is
at least g, =f,-(1-O(N,/q))

* N, = diameter of G
— Achieved rate = >, g, = C-(1-O(N,/q))-(1-0)




Tight bounds on Capacity of WBAIN with fading

Theorem: Gg- (1- O(1/q)) < C, < Cq

q
g),
 Also holds for heterogenous networks having M Vs
both wireless and wireline links: ®
VvV 1
— Each node can have both types of incoming and 1\\\8 e
outgoing links
| | ‘/ v4
— Node receives weighted sum of vectors sent v, X4
X
— Node receives separate information over Vs\y
incoming wireline links, Y- =(X;, X) X/' ‘
6
Vv

— Similarly, when node transmits




Capacity Gains due to Fading — An Example

Heterogenous network: wireless at cut U, wireline otherwise

R, and g s.t. U is bottleneck cut
- eg., R,=1logq R,

NS>
D

NS

Upper bound:
G, ~ 2°,4Ri(1-g) = Ry(5-2 ¢)

Fading: our strategy achieves S
G, (1-O(1/q))(1-9)

No fading: capacity is bounded by |
R,(1-1]; &) U

~5-fold increase in capacity with fading

— Higher for graphs with larger bottleneck cut




Summary and Future Work

 Finite-field model of interference networks
— All operations over a finite field
— Incorporates both broadcast and interference constraints
— Allows for fading

« Asymptotically tight bounds on capacity for uniform iid fading
— Upper bound based on results for Broadcast Erasure Networks
— Achievability through network coding

Some Interesting Issues
« Non-uniform fading?
 Achievable rates under no fading?

- What can we infer about Gaussian channels?
— Limit of finite-field channels under appropriate distribution remapping?



