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• Introduction

− Network coding

− Wireless models – broadcast erasure networks

• Our system model

− Finite-field operations

− Both broadcast and interference constraints

• Upper bound

• Network coding strategy

− Achieves rates asymptotically close to u.b.

• Capacity gains due to fading
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Network Coding Network Coding –– WirelineWireline NetworksNetworks

• All links at rate 1

• Single-source multicast

• Upper bound on rate R for each 

destination is 2

− Same as min-cut

• Routing cannot achieve this

− If ? = b, D2 only receives b

• Network coding can

− By coding at intermediate node
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Network Coding Network Coding –– General General WirelineWireline NetworksNetworks

• Upper bound

− Min-cut bound for each Di

• Achievability [Ho et al 03]

− Source sends messages from Fq

− Nodes perform Random Linear     

Coding (RLC) over received messages:              

C = α1a + α2b, αi ∈ Fq

− D1 decodes source messages from 

received vectors: Y1=(Y11=a, Y12=C)

− Achieves rates arbitrarily close to min-

cut bound for sufficiently large q

Theorem [AhCaLiYe00]: Multicast capacity = mini {min-cut for Di }
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• Directed graph G=(V,E)

• Each link e∈E is independent 

erasure channel
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Broadcast Erasure Networks Broadcast Erasure Networks ---- CapacityCapacity

• Results for directed acyclic graphs

• Theorem [DanGow04, LunMed04]:

Capacity = mini {generalized min-cut for Di}

− e.g., (1 - ε13ε14) + (1- ε24)

• Upper bound

− Follows from min-cut bound                                

mincut I( Xcut-l ;Ycut-r | Xcut-r )                                                               

• Achievability

− [DanGow04] Random coding at nodes

• need to keep track of erasure patterns

− [LunMed04] model as Hypergraph, RLC at nodes

• track flow of innovative packets

• generalized to arbitrary arrival processes and 

correlated erasure patterns
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Wireless Broadcast and Interference Networks Wireless Broadcast and Interference Networks 
(WBAIN)(WBAIN)

• Above and other results model broadcast but not interference

• Interference is challenging to analyze

• Capacity region not known for even simple network configurations

− Single-relay channel

− Interference channel

− …
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WBAIN WBAIN –– A FiniteA Finite--Field Model Field Model 

• Directed acyclic graph G

• Broadcast constraint

− v1 must send same X1 along both          

(v1, v3) and (v1,v4)

• Model power constraint by rate 

− vi can send at rate � Ri

• All operations over finite field Fq

− Each node transmits vectors from Fq

− log q ≥ maxi Ri

• Two reception models

− With or without fading
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WBAIN WBAIN –– A FiniteA Finite--Field Model (contd.)Field Model (contd.)

• Non-fading model:

v4 receives Y4, where Y4

− = X1 + X2 ∈ Fq with prob. 1-ε4

− = φ (erasure) with prob. ε4

− Erasures are independent across 

receivers

• Fading model:                                   

As above, except when no erasure

− Y4 = h14 X1 + h24 X2

− hij uniform i.i.d. over Fq
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Upper Bound on WBAIN with Fading Upper Bound on WBAIN with Fading 

• Bound on capacity of finite-field MAC                                                 

C3(q) =  max{H(Xj) � Rj}
I(Y3; X1

, X
2
| h

13
, h

23
) 

= max{H(Xj) � Rj}
H(Y3| h13, h23) - H(Y3| X1, X2, h13, h23)

= max{H(Xj) � Rj}
H(h13X1 + h23X2| h13, h23) - 0

= q-2((q-1)(R
1

+ R
2
) + (q-1)2 min {R1+R

2
, log q})

� min {(1-q-1)(R
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• Node i receives transmissions from nodes in J

Ci(q)  � min {(1-q-1)(∑
j∈J

Rj), (1-q-δI
(i)) log q}

• More generally, total rate across cut U bounded by

CU(q) � max{H(Xj) � Rj}
I(Y3, Y4; X1,X2 | H1,2;3,4)

� min {∑j (1-q-δo(j)) R
j
, log q ∑

i 
1-q-δI(i)}

v1

v3X1

X1

v2

X2

Y4

v4

X4

Y3

U

R1

R2



Upper Bound (contd.) Upper Bound (contd.) 

• Consider Broadcast Erasure Network T(G)

having same topology and rates as G, with

– no interference, e.g., Y4 receives (X1, X2) v1
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Upper Bound (contd.) Upper Bound (contd.) 

• Consider Broadcast Erasure Network T(G) 

having same topology and rates as G, with

– no interference, e.g., Y4 receives (X1, X2)

– each broadcast link has independent erasures 

with probability q-1, e.g., (1,3), (1,4), (2,4) 

– each receiving node erasures are mapped to    

auxiliary edge erasures 

– MAC sum-rate constraint through aux. edge 

rate constraint, Ri = (1-q-δI(i))log q

• Theorem: Capacity of WBAIN G over Fq, Cq

� Capacity of BEN, T(G), Cs(q)         

= mini {generalized min-cut for D
i
} 
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Coding Strategy for WBAIN with FadingCoding Strategy for WBAIN with Fading

• For any δ>0, there exists flow vector {fp} for all            
paths {p}  between s-d in BEN T(G) such that

− ∑p fp = Cs·(1-δ)  

− ∑p: vi ∈ p fp /(1-εh(vi,p)) � Ri ·(1-δ) 

• h(vi,p) is next hop from i on path p
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• For any δ>0, there exists flow vector {fp} for all            
paths {p}  between s-d in BEN T(G) such that

− ∑p fp = Cs·(1-δ)  
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• h(vi,p) is next hop from i on path p

• Coding strategy: 

− Source s gets messages at rate Cs·(1-δ)

− s injects RLC of received messages at rate                      

∑p fp/(1-εh(s,p))    

− Node vi injects RLC of received                                

messages at rate ∑p: vi ∈ p fp/(1-εh(vi,p))

• Theorem: Cs·(1-O(1/q))·(1-δ) is achievable in   

G with uniform i.i.d. fading
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Coding Strategy for WBAIN with Fading (Coding Strategy for WBAIN with Fading (contdcontd))

Main steps in achievability proof:

− Track the flow of innovative packets

− Fading helps to maintain innovation rates  

over different links in a cut 

• in spite of broadcast and interference 

− “Bad” fading at node vj -- hj=(hij)i = 0 or          hj

dependent on {hk} -- reduces rate of    

innovation by at most (1-O(1/q)) 

− At each hop of path p the rate of innovation is 

at least gp = fp ·(1-O(No/q))

• No = diameter of G

− Achieved rate = ∑p gp = Cs·(1-O(No/q))·(1-δ)
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Tight bounds on Capacity of WBAIN with fadingTight bounds on Capacity of WBAIN with fading

Theorem:  Cs · (1- O(1/q))  � Cq � Cs

• Also holds for heterogenous networks having   
both wireless and wireline links:

– Each node can have both types of incoming and 

outgoing links

– Node receives weighted sum of vectors sent 

over incident wireless links, Y4 = h14X1 + h24X2

– Node receives separate information over 

incoming wireline links, Y7 =(X5, X6)

– Similarly, when node transmits
v6
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Capacity Gains due to Fading Capacity Gains due to Fading –– An ExampleAn Example

• Heterogenous network: wireless at cut U, wireline otherwise 

• R1 and q s.t. U is bottleneck cut

− e.g., R1 =  log q 

• Upper bound:                                                    

Cs ~ ∑5
i=1R1(1-εi) = R1(5-∑i εi)

• Fading: our strategy achieves

Cs· (1-O(1/q))(1-δ)

• No fading: capacity is bounded by                                        

R1(1-∏i εi)

• ~5-fold increase in capacity with fading

− Higher for graphs with larger bottleneck cut
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Summary and Future WorkSummary and Future Work

• Finite-field model of interference networks

− All operations over a finite field

− Incorporates both broadcast and interference constraints

− Allows for fading

• Asymptotically tight bounds on capacity for uniform iid fading

− Upper bound based on results for Broadcast Erasure Networks

− Achievability through network coding

Some Interesting Issues

• Non-uniform fading?

• Achievable rates under no fading?

• What can we infer about Gaussian channels? 

− Limit of finite-field channels under appropriate distribution remapping? 


