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• Salient features of WSNs:

– The primary application is inference

– Information at different terminals is often correlated

– Energy is often severely limited

• Research in WSNs:

– Networking Issues: capacity, delay, routing, etc.

– Applications Issues: primarily distributed inference

• Primary goal:

– Optimize performance within constraints of wireless systems

(i.e., “bandwidth & batteries”)

MotivationMotivation
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Sensor FieldSensor Field
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Access PointAccess Point

SensorsSensors

Basic Set UpBasic Set Up

    Topics of TodayTopics of Today’’s Talks Talk::
¯̄ Energy efficiency in shared-access networksEnergy efficiency in shared-access networks
¯̄ Collaborative Collaborative beamformingbeamforming
¯̄ Energy issues in distributed inference (briefly)Energy issues in distributed inference (briefly)
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ENERGY EFFICIENCY INENERGY EFFICIENCY IN
SHARED-ACCESSSHARED-ACCESS

NETWORKSNETWORKS
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Competition in Shared-Competition in Shared-
Access NetworksAccess Networks

• Sensors transmit to an access

point via a shared channel.

• Sensors are like players in a

game, competing for resources

to transmit their data to the AP.

• The action of each sensor affects

the others.

• Can model this as a non-cooperative game, with payoff

measured in bits-per-joule.

• First, we digress …
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Shared-Access ChannelShared-Access Channel

Modulator Channel
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110…

Signal
Processing
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Signal
Processing 010…

... ...

... ...

 Multiuser Detection: receiver processing for shared-access systems
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Sensor N: 011…

MultipathMultipath, Multi-antenna Case, Multi-antenna Case
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Space-Time MUD Structure

•• XISO (XISO (P=P=11) ) requiresrequires no beam-formers no beam-formers
•• Flat fading (Flat fading (LL=1=1))requires requires no no RAKEsRAKEs
•• Decision logic:  Decision logic:  Optimal (ML, MAP), linear, iterative, adaptive.Optimal (ML, MAP), linear, iterative, adaptive.

 

... ...
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Linear MUDLinear MUD

Decision
Logic

... ... == Quantizer
Linear 

Transformation
(LT)

... ...

Key ExamplesKey Examples::

•• Matched Filter/RAKEMatched Filter/RAKE Receiver Receiver: : LT = identityLT = identity

•• DecorrelatorDecorrelator:  :  LT = channel inverterLT = channel inverter (i.e., zero-forcing) (i.e., zero-forcing)

•• MMSE DetectorMMSE Detector: : LT = MMSE estimateLT = MMSE estimate of the transmitted symbols of the transmitted symbols
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Game Theoretic FrameworkGame Theoretic Framework

€ 

uk = utility =
throughput

transmit power
=
Tk

pk
  bits
Joule
 
  

 
  

Tk = Rk f(γk), where f(γk) is the frame success rate, and γk  is

the received SIR of sensor k.

Game:  G = [{1,…,N}, {Ak}, {uk}]

N: total number of sensors

Ak: set of strategies for sensor k

uk: utility function for sensor k

Energy Efficiency in Shared Access Networks

[[MeshkatiMeshkati, Poor, Schwartz, , Poor, Schwartz, MandayamMandayam, , IEEE Trans. COMIEEE Trans. COM, Nov. 2005., Nov. 2005.]]



An Uplink GameAn Uplink Game

• For a fixed linear MUD at the uplink receiver, each sensor

selects its transmit power to maximize its own utility.

• Th’m:  f  sigmoidal ⇒ Nash equilibrium (i.e., no user can

unilaterally improve its utility) is reached when each sensor

chooses a transmit power that achieves γ*:

• I.e., Nash equilibrium (NE) requires SIR balancing.

f(γ*) = γ* f′(γ*)

Energy Efficiency in Shared Access Networks



RemarksRemarks

• The NE is unique, and can be reached iteratively as

the unique fixed point of a nonlinear map.

• Effects of Detector Choice:

– We can use the NE to examine the effects of uplink receiver

choice on energy efficiency.

– Of interest are the classical matched filter, the (zero-

forcing) decorrelator, and the MMSE detector.
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• Random CDMA: N sensors; spreading  gain G

• Load: α = N/G (i.e., the number of users per dimension)

• Large-system limit: N, G →∞ , with α fixed.

Nash EquilibriumNash Equilibrium
UtilityUtility vs vs. Load (Large-System Limit). Load (Large-System Limit)

m = # receive antennas

Energy Efficiency in Shared Access Networks



Effects of Delay ConstraintsEffects of Delay Constraints

• For some messages (e.g., alarms), delay is important.

• Delay model (ARQ):

– X represents the number of transmissions needed for a given

packet to be received without error, so that:

– We can represent a delay requirement as a pair (D,β):

– Thus, we have a constrained game, with γk ≥ γk’.

P(X=m) = f(γ) [1 - f(γ)]m-1 , m = 0, 1, …

Energy Efficiency in Shared Access Networks

P(X≤D)≥β ⇔ γ ≥ γ’

[[MeshkatiMeshkati, Poor, Schwartz, ISIT05., Poor, Schwartz, ISIT05.]]



NE for Multiple Delay ClassesNE for Multiple Delay Classes

Energy Efficiency in Shared Access Networks

• Traffic is typically heterogeneous

with multiple delay classes.

• A given delay class c will have its

own SIR constraint: γc’

• At NE all sensors in class c will

SIR-balance to max{γ*,γc’}.

• Tight delay constraints on one class can affect the energy

efficiencies of all sensors due to increased interference levels.
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2-Class Example: Utility Loss2-Class Example: Utility Loss

Energy Efficiency in Shared Access Networks

• RCDMA in the large-system limit: N, G →∞ , with α = N/G fixed.

• Class A: (DA,βA) =  (1, 0.99)

• Class B: (DB,βB) =  (3, 0.90)

α = 0.1

α = 0.9



EnhancementsEnhancements

• Nonlinear MUD (ML, MAP, PIC, etc.): SIR-balancing also leads to a

Nash equilibrium for certain nonlinear MUDs for RCDMA in the

large system limit. [w/ D. Guo; Allerton’05]

• Multicarrier CDMA: Actions also include choice of a carrier; at NE

(when it exists) each sensor transmits on its single, best, carrier

+ SIR balancing. [w/ M. Chiang; JSAC’06]

• Delay w/ Finite Backlog: Add queuing. [w/ R. Balan; CITIA Wkshp 06]

• Adaptive Modulation/Coding: Actions also include choice of a

modulation. [w/ A. Goldsmith, et al., GLOBECOM 06, submitted]

Energy Efficiency in Shared Access Networks



COLLABORATIVE
BEAMFORMING

[[OchiaiOchiai, , MitranMitran, Poor, , Poor, TarokhTarokh, , IEEE Trans. SPIEEE Trans. SP, Nov. 2005., Nov. 2005.]]
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Collaborative Beamforming

CollaborativeCollaborative Beamforming Beamforming
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What are the properties of a beam formed

collaboratively by randomly placed sensors?
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 Average beam has nice properties. Life is good.

ButBut, average doesn, average doesn’’t represent t represent the the realizationsrealizations
of the sensor array!of the sensor array!

• As cluster radius RR becomes larger relative to wavelength λ,

the main beam becomes sharper.

• Sidelobe level of average beampattern with N sensors is

approximately 1/N.

• Peak ave. sidelobe value does not depend on RR/λ, but the

peak location does.

• There are no grating lobes.

Average Average Beampattern Beampattern PropertiesProperties

Collaborative Beamforming
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• Maximum peak of sidelobe corresponds to worst-case

interference.

• We use level-crossing theory to analyze this issue.

• For large N the beam is Rice-Nakagami in the sidelobes.

• Modeling sidelobes as a complex stationary Gaussian

process, approximate upper bound on sidelobe

distribution can be found.

• Simulations show good agreement.

Distribution of Max Distribution of Max Sidelobe Sidelobe PeakPeak

Collaborative Beamforming
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TargetTarget

GPSGPS

φφ11

φφ22

φφkk
++ϕϕ11

++ϕϕ22

++ϕϕkk

Each node autonomously
estimates relative phase
offset from pilot signal
from target and absolute
clock.

Closed-Loop Phase AcquisitionClosed-Loop Phase Acquisition
(Self-Phasing Arrays)(Self-Phasing Arrays)
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Average beampattern can be expressed as
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ENERGY ISSUESENERGY ISSUES
IN DISTRIBUTEDIN DISTRIBUTED

INFERENCEINFERENCE
(BRIEFLY)(BRIEFLY)
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HH11: : signal field signal field ++ noise noise HH00: : noise onlynoise only

Energy-Efficient Sensor Scheduling

NeymanNeyman-Pearson performance of an -Pearson performance of an NN-sensor net measured-sensor net measured
via the via the error exponent,error exponent,  KK, of the miss , of the miss probprob.:.:

K ~ - log PM(N)/N

Distributed Inference

[[Sung, Tong,  Poor, Sung, Tong,  Poor, IEEE Trans. ITIEEE Trans. IT, Apr. 2006, Apr. 2006]]



•• KK can be obtained in  can be obtained in closed formclosed form using  using state-space modelstate-space model..
•• BehaviorBehavior w.r.t. correlation strength  w.r.t. correlation strength depends on SNRdepends on SNR..
•• This can be used to This can be used to schedule sensorsschedule sensors to transmit to transmit

collaboratively for optimal collaboratively for optimal energy efficiencyenergy efficiency..

Sensor Scheduling Via K

Distributed Inference



Distributed Learning

• Exemplars are distributed

among the sensors in

some way.

• Communications capacity

between the sensors and

fusion center is limited.

• Question: Can we construct algorithms so that

optimal inferential functions can be learned
consistently (N→∞) consuming little transmit power?

APS

S S

S

[[PreddPredd, , KulkarniKulkarni, Poor, , Poor, IEEE Trans. IT, IEEE Trans. IT, Jan. 2006Jan. 2006]]
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X
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Distributed-Data Network

We can construct algorithms for the sensors and AP such that:

• Classification: transmitting 1 bit/sensor/decision is enough.

• Regression: transmitting log2(3) bits/sensor/decision is enough

Distributed Inference



Collaborative Regression

• N sensors at locations

{xi} take  measurements:

• Using message-passing-

type algorithms, sensors

can collaborate with their

neighbors to estimate f.
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  yi = f(xi) + ni  

Distributed Inference



E.g., An Algorithm

Note: Converges to a relaxation of the centralized RKHS estimator.

• To initialize, the sensors:
•  agree on a kernel K(.,.)
•  localize (i.e., estimate xi)
•  share positions with neighbors
•  measure field locally (i.e. observe yi)
•  set zi = yi

• To estimate the field:
for t=1,…,T

for s = 1,…, N
Query: Sensor s queries  zi  from neighbors

Compute:

Update: Updates neighbors zi  = fs,t(xi) 

Distributed Inference

[[PreddPredd, , KulkarniKulkarni, Poor, ITW06, Uruguay, Poor, ITW06, Uruguay]]



Energy Efficiency

• Overall error decreases with

size of the  neighborhoods.

• But, energy consumed by

message-passing  increases

with neighborhood size.

• Question: What are the trade-offs?

M
S
E

M
S
E

ConnectivityConnectivity

Distributed Inference



Energy-per-Sensor vs.N

Distributed Inference
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Mean-Square Error vs.N

Distributed Inference
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• We’ve examined issues (primarily signal

processing) affecting the energy efficiency of

wireless networks:

• Energy efficiency in shared access systems

• Collaborative beamforming

• Energy issues in distributed inference, briefly

SummarySummary

Energy & Inference in WSNs



Thank You!


