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Motivation

e Salient features of WSNs:
— The primary application is inference
- Information at different terminals is often correlated

— Energy is often severely limited

e Research in WSNs:

- Networking Issues: capacity, delay, routing, etc.

— Applications Issues: primarily distributed inference

e Primary goal:

— Optimize performance within constraints of wireless systems

(i.e., "bandwidth & batteries”)
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Sensor Field
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Basic Set Up

Access Point
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Sensors

Topics of Today's Talk:
- Energy efficiency in shared-access networks
- Collaborative beamforming
- Energy issues in distributed inference (briefly)
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ENERGY EFFICIENCY IN
SHARED-ACCESS
NETWORKS
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Competition in Shared-
Access Networks

Sensors transmit to an access é
point via a shared channel. 7 é

Sensors are like players in a veeee

game, competing for resources -
to transmit their data to the AP. (55

AP >
The action of each sensor affects é

the others.

Can model this as a non-cooperative game, with payoff

measured in bits-per-joule.

First, we digress ...
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Shared-Access Channel
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Multiuser Detection: receiver processing for shared-access systems
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Multipath, Multi-antenna Case
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Space-Time MUD Structure

N Sensors; P Receive Antennas; L Paths/User/Antenna

r(t) —»

Temporal

1,(t) — Matched

Filters

rp(t)_’ {kl II p}

K,
K,

K,

NxLxP

Decision
Logic

»010...

»110...

Beam L, p AKEs—
Formers: Ky |:
{k, I}

NxL N

»011...

XISO (P=1) requires no beam-formers
Flat fading (L=1)requires no RAKEs

Decision logic: Optimal (ML, MAP), linear, iterative, adaptive.

Energy Efficiency in Shared Access Networks

A
s

E‘mﬁ



Linear MUD

. Linear SN >
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Key Examples:

e Matched Filter/RAKE Receiver: LT = identity

e Decorrelator: LT = channel inverter (i.e., zero-forcing)

e MMSE Detector: LT = MMSE estimate of the transmitted symbols
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Game Theoretic Framework

[Meshkati, Poor, Schwartz, Mandayam, IEEE Trans. COM, Nov. 2005.]

Game: G=[{1,...,.N}, {4,}, {u,}]

N: total number of sensors

A,: set of strategies for sensor k

u,: utility function for sensor &

u, = utility = = —-

throughput T bits
transmit power  p,

Joule

T, = R, f(v,), where f(y,) is the frame success rate, and vy, is

the received SIR of sensor k.
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An Uplink Game

e For a fixed linear MUD at the uplink receiver, each sensor

selects its transmit power to maximize its own utility.

e Th’'m: f sigmoidal = Nash equilibrium (i.e., no user can

unilaterally improve its utility) is reached when each sensor

1

chooses a transmit power that achieves y*:

v = v* (v

e I.e., Nash equilibrium (NE) requires SIR balancing.
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Remarks

e The NE is unique, and can be reached iteratively as

the unique fixed point of a nonlinear map.

o Effects of Detector Choice:

— We can use the NE to examine the effects of uplink receiver

choice on energy efficiency.

- Of interest are the classical matched filter, the (zero-

forcing) decorrelator, and the MMSE detector.
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Nash Equilibrium
Utility vs. Load (Large-System Limit)

Average Utility [bits/Joule]
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e Random CDMA: N sensors; spreading gain G

e Load: a = N/G (i.e., the number of users per dimension)

e Large-system limit: N, G —« , with o fixed.
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Effects of Delay Constraints

[Meshkati, Poor, Schwartz, ISITO05.]

e For some messages (e.qg., alarms), delay is important.

e Delay model (ARQ):

- X represents the number of transmissions needed for a given

packet to be received without error, so that:

P(X=m) = fy) [1 - f(Y]™" , m=0, 1, ..

- We can represent a delay requirement as a pair (D,[3):

P(X<D)=zp <y =y’

- Thus, we have a constrained game, with 7, = 7,
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NE for Multiple Delay Classes

Traffic is typically heterogeneous

with multiple delay classes.

A given delay class c will have its

own SIR constraint: y,”

Utility, u

At NE all sensors in class ¢ will

SIR-balance to maX{}/*,)/c'}- Ly

Yo SIR, y

Tight delay constraints on one class can affect the energy
efficiencies of all sensors due to increased interference levels.

Energy Efficiency in Shared Access Networks




Ratio of Utilities

2-Class Example: Utility Loss
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RCDMA in the large-system limit: N, G —e , with o = N/G fixed.
Class A: (D,,p,) = (1, 0.99)
Class B: (Dg,pg) = (3, 0.90)
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Enhancements

Nonlinear MUD (ML, MAP, PIC, etc.): SIR-balancing also leads to a

Nash equilibrium for certain nonlinear MUDs for RCDMA in the

large system limit. [w/ D. Guo; Allerton’05]

Multicarrier CDMA: Actions also include choice of a carrier; at NE

(when it exists) each sensor transmits on its single, best, carrier

+ SIR balancing. [w/ M. Chiang; JSAC06]

Delay w/ Finite Backlog: Add queuing. [w/ R. Balan; CITIA Wkshp 06]

Adaptive Modulation/Coding: Actions also include choice of a

modulation. [w/ A. Goldsmith, et al., GLOBECOM 06, submitted]
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COLLABORATIVE
BEAMFORMING

[Ochiai, Mitran, Poor, Tarokh, IEEE Trans. SP, Nov. 2005.]
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Collaborative Beamforming
!

What are the properties of a beam formed

collaboratively by randomly placed sensors?

Access
Point

Sensor
Cluster
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Average Beampattern Example

Average Power [dB]
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N = number of sensors | Observation Angle ¢ [deg]
R = radius of cluster
A = wavelength
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Average Beampattern Properties

e As cluster radius R becomes larger relative to wavelength A,

the main beam becomes sharper.

o Sidelobe level of average beampattern with /\V sensors is

approximately 1//V.

e Peak ave. sidelobe value does not depend on R/A, but the

peak location does.

e There are no grating lobes.

> Average beam has nice properties. Life is good.

j> But, average doesn’t represent the realizations
of the sensor array!
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Ave. Beampattern vs. Realization
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Distribution of Max Sidelobe Peak

Maximum peak of sidelobe corresponds to worst-case

interference.
We use level-crossing theory to analyze this issue.
For large N the beam is Rice-Nakagami in the sidelobes.

Modeling sidelobes as a complex stationary Gaussian
process, approximate upper bound on sidelobe

distribution can be found.

Simulations show good agreement.
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Required Sidelobe Level Margin

—l
N}

Sidelobe Level Above Average [dB
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\ -10log,, N+9
Maximum sidelobe peak
growth if we allow 10% of ’
realizations to exceed this level
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Normalized Radius R/A
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Closed-Loop Phase Acquisition
(Self-Phasing Arrays)

GPS
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Each node autonomously
estimates relative phase
offset from pilot signal
from target and absolute

clock.
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Beampattern with Phase Jitter
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ENERGY ISSUES
IN DISTRIBUTED
INFERENCE
(BRIEFLY)
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Energy-Efficient Sensor Scheduling

[Sung, Tong, Poor, IEEE Trans. IT, Apr. 2006]

H,: signal field + noise H,: noise only

Neyman-Pearson performance of an N-sensor net measured
via the error exponent, K, of the miss prob.:

K ~ -log Py(N)/N

Distributed Inference




Sensor Scheduling Via
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collaboratively for optimal energy efficiency.

e K can be obtained in closed form using state-space model.
e Behavior w.r.t. correlation strength depends on SNR.
e This can be used to schedule sensors to transmit

Distributed Inference
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e Exemplars are distributed

among

Distributed Learning

[Predd, Kulkarni, Poor, IEEE Trans. IT, Jan. 2006]

the

some way.

e Communications capacity -
between the sensors and é
fusion center is limited.

e Question:
optimal

inferential
consistently (N—=«) consuming little transmit power?

Sensors iIn

functions

Distributed Inference

can be

Can we construct algorithms so that

learned




Distributed-Data Network
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We can construct algorithms for the sensors and AP such that:

e C(Classification: transmitting 1 bit/sensor/decision is enough.

e Regression: transmitting log,(3) bits/sensor/decision is enough
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Collaborative Regression

“«—— > oy _
e N sensors at locations ‘(55‘ é) e
{x;} take measurements: ¥ S wé

yi = f(x;) +n; S

e Using message-passing- é
type algorithms, sensors
can collaborate with their
neighbors to estimate f.
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E.g., An Algorithm

[Predd, Kulkarni, Poor, ITW06, Uruguay]

e To initialize, the sensors:
e agree on a kernel K(.,.)
e |ocalize (i.e., estimate x;)
e share positions with neighbors
e measure field locally (i.e. observe y;)

e setz, =y,
e To estimate the field:
for t=1,..., T
fors=1,..., N

Query: Sensor s queries z; from neighbors

Compute: fﬁ,—drgmmzi,f{xj) Zia—1) M| f = foum 1||g;

JEN,
Update: Updates neighbors z; = f «(x;)

Note: Converges to a relaxation of the centralized RKHS estimator.
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Energy Efficiency

e Overall error decreases with |-
size of the neighborhoods.  : | N

e But, energy consumed by : »E
message-passing increases | Connectivity
with neighborhood size. e

r

e Question: What are the trade-offs?
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MSE
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Summary

e We've examined issues (primarily signal
processing) affecting the energy efficiency of

wireless networks:
e Energy efficiency in shared access systems
e Collaborative beamforming

e Energy issues in distributed inference, briefly
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