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Motivation

Communication network today are organized in large
scale networks (Internet) where packets traverse
multiple hops in order to reach the destination

In Ad-hoc wireless networks, the number of hops scales
as

√
#nodes

Each hop introduces errors, that become more
pronounced as the number of hops increases

Does processing at the intermediate node processing
improve performance? If so, what kind of processing?
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Motivation - cont.

Network Coding improves the end-to-end performance,
even on network of noise-free links!
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Motivation - cont.

What happens if

the links are noisy?

As before, if the relays have unlimited complexity

the channels interfere?

We’ll comment on this at the end of this talk ...

the graph has cycles?

Feedback: open problem ...
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Example: Unicast (F&T ISIT‘05)
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Example: Unicast (F&T ISIT‘05)
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Network Model

Hypothesis

Network of DMCs
Relay nodes can process blocks of finite length N

only (well suited for packet oriented networks)
Source and Destination can perform coding and
decoding of arbitrary complexity/length

Goal: Determine the capacity of the network
Does finite complexity processing improve over
forwarding?
Properties of optimal intermediate processing
Scalability in large networks
Does N need to scale with the network size in order
to achieve the “min-cut” capacity?
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Example: Network of BSC
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Example: Network of BSC

S

R1

R3

R2

D

N = 1

N = 1

N = 1

???

??? = Y1 (orY2)

??? = Y1 ⊕ Y2

??? = Y1 � Y2
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Example: all links are BSC(p)
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Example: noiseless links among relays
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Example: all links are BSC(p)
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Example: Network of BSC
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Line Networks

DMC
 W Processing

Block
Length N DMC
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Length N DMC
 W 
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Line Networks: Main Results

In general

1

N
log M0(W

⊗N )
︸ ︷︷ ︸

zero-error achievable rate

≤ CN,L(W ) ≤ C(W )
︸ ︷︷ ︸

min-cut capacity

N → ∞ & Finite L (min-cut max-flow)

lim
N→∞

CN,L(W ) = C(W )
︸ ︷︷ ︸

min-cut capacity

Finite N & L → ∞ (Allerton 2005)

lim
L→∞

CN,L(W ) =
1

N
log M0(W

⊗N )
︸ ︷︷ ︸

zero-error achievable rate

≤ C0(W )
︸ ︷︷ ︸

zero-error capacity
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Line Networks: Main Results - cont.

For N = Θ(log L) & L → ∞

lim
L→∞

Clog L,L(W ) = C(W )
︸ ︷︷ ︸

min-cut capacity

CN,L(W ) ≥ (1 − α) C0(W )
︸ ︷︷ ︸

zero-error capacity

+α C(W )
︸ ︷︷ ︸

min-cut capacity

N = Θ(log L) sufficient for all α ∈ [0, 1] (ISITA 2004)
N = Θ(log L) necessary for all α ∈ [β, 1] (ISIT 2006)

β =
limm→∞

1
m

log rank(Am) − C0(W )

C(W ) − C0(W )
≥ 0,

but we conjecture β = 0.
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Example: The Pentagon Channel
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C0(W ) =
1

2
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Example: The Pentagon Channel

For an infinite cascade of “pentagon” channels

lim
L→∞

C1,L(W ) = log 2, lim
L→∞

C2,L(W ) =
1

2
log 5

i.e., N = 2 is optimal if N is restricted to be finite.

With forwarding

lim
L→∞

C(W L) = log 1 = 0,

and this limit is approached exponentially fast.

Intermediate processing, as simple as one-symbol
processing, is necessary if a non-vanishing throughput
is to be achieved in a long line network.
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Example: The Pentagon Channel

About
W⊗m = δm Am + (1 − δm)Bm

we can find

rank(A1) = 3

rank(A2) = 8 < rank(A1)
2 = 9

β ≤
1
2

log 8 − 1
2
log 5

C(W ) − 1
2 log 5

Is logarithmic growth is necessary for 0 < α < β?
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General Networks?

... work in progress ...
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Networks of Interfering Links

Non-interfering links
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Networks of Interfering Links

Interfering links
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The bow-tie example
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Conclusions

The “classical” Network Coding model implicitly
assumes channel orthogonalization at MAC, the use of
capacity achieving codes at PHY.
Goal: “smartly” route information at NET.

Including noise & link interactions makes the model
more general :-)

... however more difficult :-(

We tried to capture in our model some “practical”
constraints ...

... at least we continue to have fun!
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