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0. Introduction
• The purpose of a sensor network is to sense 

one or more specific physical phenomena 
• Often it is necessary to detect, track, localize, 

classify these physical sources
• We consider three different approaches for 

acoustic and seismic source localization
• Often it is also necessary to localize the 

sensing nodes/arrays relative to the sources 
• We also consider a distributed Gauss-Newton 

iterative node localization method



1.  Randomly distributed array processing 
based on TDOA-LS methods
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Coherent Processing for Narrowband Beamforming



Space-Time-Frequency Wideband Beamforming
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Sample Auto- and Cross-Correlation Matrices

Array Weight Obtained by Dominant 
Eigenvector of Cross-Correlation Matrix

(For simplicity, consider N = 3)

Maximizing Beamformer Output

where w3L = [w10, w11,…,w1(L-1),…,w20,…,w2(L-1),…,w30,…,w3(L-1)]T  

Time delays td, n est. from the w3L (Yao et al, IEEE JSAC, Oct. 1998)

the eigenvector of largest eigenvalue of  R3Lw3L=λ3Lw3L

is



Intuitive & Formal Interpretation of the Beamformer

Intuitive interpretation                                        

Max array output  ~ coherently sum the “strongest 

part” of the source 

Szego asymptotic distribution of eigenvalues (1915)                   
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Simple Example

• Second order AR source with spectral peak at f = 0.2

• t12 = 3 ;  t23 = 2  ;  t13 = 5

• Array   wL = φ3L (rL : -1 : (r-1)L+1),  r = 1, 2, 3.

• Propagation delay information contained in the array 
weights wL

(r)

• Each array FIR acts as a narrowband filter centered 
at frequency of Smax

(3L)(r)
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1 0.0062 0.0011 0.0002
2 0.0088 0.0020 0.0005
3 0.0114 0.0036 0.0011
4 0.0140 0.0062 0.0020
5 0.0165 0.0088 0.0036
6 0.0191 0.0114 0.0062
7 0.0216 0.0140 0.0088
8 0.0241 0.0165 0.0114
9 0.0266 0.0191 0.0140
10 0.0291 0.0216 0.0165
11 0.0315 0.0241 0.0191
12 0.0339 0.0266 0.0216
13 0.0363 0.0291 0.0241
14 0.0386 0.0315 0.0266
15 0.0409 0.0339 0.0291
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Source Localization from Estimated
Time Difference of Arrival (TDOA)
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• Least-squares solution is then given as 
follows after algebraic manipulation

Aw b=

TDOA - Least-Squares
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We write                    , where

w A b= + A A A AT T+ −= ( ) 1, where the pseudoinverse

An overdetermined solution of the source location and speed of 
propagation can be given from the sensor data as follows
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Source Localization and Speed of Propagation
Results Using Seismic Array Sensors



2. Approx. ML Estimation Method 

• ML method is a well-known statistical est. tool 

• We formulated an approx. ML (AML) method for 
wideband signal for DOA, source localization, and 
optimal sensor placement in the freq. domain  
(Chen-Hudson-Yao, IEEE Trans. SP, Aug. 2002)

• AML method generally outperforms many 
suboptimal techniques such as closed-form least 
squares and wideband MUSIC solutions

• Has relative high complexity



AML Metric Plot

Near-field case Far-field case

• Peak at source location in near-field case
• Broad “lobe” along source direction in far-field 

case
• Sampling frequency fs = 1KHz, SNR = 20dB
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Semi-Anechoic Room at Xerox Parc
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Indoor Convex Hull Exp. Results

AML LS

• Semi-anechoic room, SNR = 12dB
• Direct localization of an omni-directional loud speaker 

playing the LAV (light wheeled vehicle) sound
• AML RMS error of 73 cm, TOA-LS RMS error of 127cm



Outdoor Testing at Xerox -Parc
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AML LS

• Omni-directional loud speaker playing the LAV sound 
while moving from north to south

• Far-field situation: cross-bearing of DOAs from three 
subarrays



Optimum Sensor Placement 
via CRB Approach
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Sensor Network at 29 Palms
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29 Palms Field Measurement
• Single Armored Amphibious Vehicle (AAV) traveling at 

15mph
• Far-field situation: cross-bearing of DOAs from two 

subarrays (square array of four microphones, 1ft spacing)



Outdoor Experiment
using iPAQ testbed



One and Two Source AML 
Localization 



Space-Frequency Classification 
of Targets

• Previous discussions show that AML is able 
to estimate the DOAs of multiple targets

• Then the targets are spatially separated, 
detected, and located

• Since the AML algorithm not only estimates 
the DOA spatially, but also can yield the 
dominant spectral contents of each target

• The spectral signature of the target at a 
given DOA can provide information for  
classification  



Spectra of Two Targets Used 
in Simulation for AML DOA Estimation

Tracked vehicle data Simple sound data
One FFT index no. = 14 Hz



Excellent estimation of spectrum of source 1 at subarray 1



Excellent estimation of spectrum of source 2 at subarray 1



Other Use of AML Algorithm

• We are using the AML algorithm to detect, 
localize, and classify woodpeckers in 
collaboration with bio-complexity researchers

• We are using the AML metric as the LR 
function in the recursive formulation of 
particle filtering approach for real-time 
tracking of a human speaker in a reverberant 
room 



Tracking Experiment
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Tracking experiments in a 
reverberant room



Experimental Results
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3.  Garner Valley, CA 
Acoustic Array Experiment

• 8 low cost Behringer XM200S 
microphones

• Each array consists of 4 
microphones 1 meter apart in a 
square

• 2 acoustic arrays
• The output of 8 microphones 

are sent to the Presonus
Firepod 8 channel 94bit/96kb 
firewire-based recording sys. 

• The recording system 
synchronizes the acoustic 
signals and sends to a PC for 
AML-based DOA/loc. algorithm



Garner Valley, CA 
Seismic Array Experiment

• Episensor tri-axial/bi-axial 
accelerometer sensors

• Accelerometers have wide
frequency/amplitude ranges,
and wide dynamic range

• Outputs of accelerometers
are fed to the low power, high
resolution Quanterra Q330s
recording systems

• 9 sensor (6 tri-axial and 3 bi-
axial), 8 of them on the
perimeter of a 100 feet square, 
and the last one in the center



Garner Valley Acoustic and Seismic 
Field Measurements/Results

• Metal hammer struck a heavy metal plate at the 
two separate locations

Acoustic and Seismic Sensor Map Acoustic Array Map
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Acoustic Array Localization

• AML-based acoustic DOA/localization 
using whitening pre-processing yields 
metal plate at (78.4, 23.8), close to the 
true location of (75, 25)

• AML-based acoustic DOA/localization 
using whitening pre-processing yields 
metal plate at (23.4, 80.1), close to the 
true location of (25, 75)

Case A Case B



Seismic Event Detection Results
• The simple eigen-decomposition procedure can be 

performed on sliding time windows through the data 
record to find signification events of interest

• The data record with 6 significant hammer strikes 
was selected for analysis

• The eigenvalue plot clearly indicates the 6 peaks 
above 10-4 is where the 6 significant hammer strikes 
happened
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Single-Station Tri-Axial Seismic DOA 
Est. via Covariance Matrix Analysis

• Use polarization analysis developed for long-range 
seismic data analysis 

• The largest eigenvalue of the covariance matrix 
corresponds to the average energy of the strongest 
seismic mode polarized in the direction of the 
corresponding eigenvector

• Same can be said for the second and the smallest 
eigenvalues and their corresponding eigenvectors



Single-Station Tri-Axial Seismic DOA 
Est. via Surface Wave Analysis

• Rayleigh wave is elliptically polarized in two mutually orthogonal 
directions

• Love wave is rectilinearly polarized in the direction orthogonal to the 
two Rayleigh directions

• The three-dimensional space can be rotated such that two 
dimensions only pick up the Rayleigh wave, and the one other, 
orthogonal dimension picks up only the Love wave



Seismic Source Localization
Covariance Analysis Source Localization

84.8481.2381.4379.7275Hmr. B y-coordinate

13.76 
0.39

31.1038.3930.8152.4325Hmr. B x-coordinate

28.5154.4931.8264.1125Hmr. A y-coordinate

74.35 
1.71

83.0761.4885.4359.1575Hmr. A x-coordinate

S.D. 
Range

Wt. L1Unw. L1Wt. TLSUnw. 
TLS

True 
SrcLocLocation in Feet

Surface Wave Analysis Source Localization

79.6665.7277.3669.6275Hmr. B y-coordinate

3.17
0.37

26.9731.1427.5629.8925Hmr. B x-coordinate

26.6734.1527.5932.1925Hmr. A y-coordinate

5.99
1.66

80.6485.2081.2780.3175Hmr. A x-coordinate

S.D. 
Range

Wt. L1Unw. L1Wt. TLSUnw. 
TLS

True 
SrcLocLocation in Feet



Combined Acoustic/Seismic 
Localization Case A

• A simple average of the acoustic and 
seismic coordinates gives the fusion result
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Combined Acoustic/Seismic 
Localization Case B

• The fusion result in this case is closer to the true source 
than either the acoustic or the seismic result
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4. Sensor Node Localization
System Description

• m anchor nodes (locations known) and n sensor 
nodes (locations to be estimated)

• Each sensor node has distance measures to all of 
the sensor and anchor nodes in its neighborhood   

Example
• 4 anchor nodes at each 

corner and 15 sensor 
nodes in the middle

• Radio range = 0.35
• Every link represents a 

communication link
• Distance measurement dij
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Metric for Minimization
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Distributed Gauss-Newton Sequential/Parallel 
Node Localization Methods

Estimation Results

• 10 anchor nodes at 
each coroner and 
100 sensor nodes in 
the middle

• Radio range = 0.35
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Some Average Iteration/ 
Processing Time Behaviors

• Keep the density of the sensor, the ratio of 
sensor/anchor and the radio range to be constant

• Each sensor stops the algorithm if 
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Comparison to Centralized 
Algorithm
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5. Conclusions
• Considered three source localization methods:

1.  TDOA-LS algorithms(centralized processing)
2.  AML algorithm (distributed processing)
3.  Seismic localization: covariance method

(centralized processing) and surface wave
method (distributed processing)

• Distributed Gauss-Newton Node Localization
Method (Sequential and Parallel algorithms)



6. Challenging Processing Problems in SN

• Perform distributed computation of eigenvalue/ 
eigenvector/singular value/singular vector without 
sending raw data from the sensors to a central proc.

• Theoretical/practical (i.e., low complexity) use of data 
fusion from different types of sensors (video/acoustic/ 
seismic) of different quality and sampling rate 

• Theoretical (e.g., CRB)/practical issues of placement 
of sensors of different types

• Using random set theory method for determining 
number of sources and nearest neighboring nodes

• Real-time/practical (i.e., low complexity) use of particle
filtering methodology for source/sensor node tracking


