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MultiMulti--hop Wireless Networkshop Wireless Networks

• time-varying channel conditions and co-channel 
interference;

• random access;
• bursty traffic flows;
• Mobility, dynamic network topology;
• …

ChannelChannel
fadingfading

RandomRandom
accessaccess

BurstyBursty
traffictraffic

Stochastic attributes of wireless networks:Stochastic attributes of wireless networks:



Objective and ApproachObjective and Approach

•Goal: fair rate control through joint congestion control and 
MAC design in multi-hop random access networks.

•Approach: network utility maximization

• Treat rate control as a utility maximization problem
• Different layers function “cooperatively” to achieve the 
optimum point (equilibrium point).



Basic SettingBasic Setting

• Consider a wireless network modelled as a directed graph G = (N,E);

• Let Us(xs) denote the utility function of flow s, where xs is the flow rate;

• Consider persistence scheme with xmission prob. {p(i,j), ∀(i, j) ∈ E}.

• Let N I
to(i) denote the set of nodes whose transmissions interfere with node

i’s reception; Nto(i) = N
I
to(i) ∪ i .

• Use Nin(i) to denote the set of the nodes from which node i receives traffic,
Nout(i) to denote the set of nodes to which node i is sending packets and
NI
from(i) to denote the set of nodes whose reception is interfered by node

i’s transmission.



Problem FormulationProblem Formulation

Observation: Problem Ξ is non-convex and non-separable.

Ξ : max
{xs}

P
s∈S

Us(xs)

subject to
P

s∈S((i,j))
xs ≤ c(i,j)(p(i,j)

Q
k∈Nto(j)

(1− Pk)), ∀ (i, j)P
j∈Nout(i)

p(i,j) = Pi, ∀ i

0 ≤ xs ≤Ms, ∀ s
0 ≤ Pi ≤ 1, ∀ i,

where Ms is the maximum for flow data rate of s, c(i,j) is the average trans-
mission rate and the utility function Us(·) takes the form [Mo, Walrand 00]

Uκ(ri) =

½
wi log ri, if κ = 1
wi(1− κ)−1r1−κi , otherwise.



Related workRelated work

1. Internet TCP/AQM: [Kelly, Maulloo, Tan 98], [Low, 
Lapsley 99], [Srikant 05] and many many more  
(sorry due to limited space ☺);

2. Joint flow control/routing/MAC/PHY design in 
wireless networks: [Chiang 04], [Lin-Shroff 05], [Wang-Kar
05], [Eryilmaz-Srikant05] [Neely-Modiano-Li 05] [Chen-Low-
Chiang-Doyle 06] ….

A common assumption:
Most works above assume deterministic 

feedback in their distributed 
algorithms.



OutlineOutline

I: Single time-scale algorithm based on dual decomposition 

(        ): 
1. Deterministic P-D algorithm;
2. Stochastic P-D algorithm under noisy feedback:

• Unbiased case:  convergence, rate of convergence;
• Biased case: contraction region, stochastic stability.

II: Two time-scale algorithms via alternative decompositions 
(           ):
• Feasible direction method;
• Primal decomposition method;
• Stability for unbiased case.

Acknowledgement: 
Part I based on CISS’06 paper with Dong Zheng;
Part II based on ongoing collaboration with Mung

Chiang.

κ≥1

κ ≥ 0



Deterministic PDeterministic P--D Algorithm: D Algorithm: 

Observation: Problem P is convex and separable if κ ≥ 1.

κ ≥ 1

Let x̃s = log(xs) [Lee, Chiang, Calderbank 06], we have

P : max
{x̃s}

P
s∈S

U 0
s(x̃s)

subject to log(
P

s∈S((i,j)) exp(x̃s))− log(p(i,j))
−Pk∈Nto(j)

log(1− Pk) ≤ 0, ∀ (i, j)P
j∈Nout(i)

p(i,j) = Pi, ∀ i
−∞ ≤ x̃s ≤ M̃s, ∀ s
0 ≤ Pi ≤ 1, ∀ i,

where U 0s(x̃s) = Us(exp(x̃s)).



Lagrange Dual ApproachLagrange Dual Approach

The Lagrangian function is

L(x̃,p,λ) =

⎧⎨⎩X
s

U 0s(x̃s)−
X
(i,j)

λ(i,j) log

⎛⎝ X
s∈S((i,j))

exp(x̃s)

⎞⎠⎫⎬⎭+X
(i,j)

λ(i,j) log

⎛⎝p(i,j) Y
k∈NI

to(j)

(1− Pk)

⎞⎠
Then, the Lagrange dual function is

Q(λ) = maxP
j∈Nout(i) p(i,j)=Pi

0≤P≤1
−∞≤x̃≤M̃

L(x̃,p,λ),

and the dual problem is given by

D : min
λ≥0

Q(λ)



Strong DualityStrong Duality

Proposition:

a) There is no duality gap, i.e., the minimum value
of the dual problem D is equal to the maximal
value of the primal problem P.

b) Let Φ be the set of λ that minimizes Q(λ). Then Φ is
non-empty and compact; and ∀λ ∈ Φ, there exists a unique
vector (x̃∗,p∗) that maximizes the Lagrangian function L(·, ·, ·).



Distributed PrimalDistributed Primal--dual Alg.dual Alg.
• The source rates are updated by

x̃s(n+1) =

⎡⎢⎢⎢⎢⎢⎢⎣x̃s(n) + ²n
⎛⎝U̇ 0s(x̃s(n))− exp(x̃s(n)) X

(i,j)∈L(s)

λ(i,j)(n)P
s∈S((i,j)) exp(x̃s(n))

⎞⎠
| {z }

,Lx̃s (x̃(n),p(n),λ(n))

⎤⎥⎥⎥⎥⎥⎥⎦

M̃s

−∞

.

• The shadow prices are updated by

λ(i,j)(n+1) =

⎡⎢⎢⎢⎢⎢⎢⎣λ(i,j)(n)− ²n
⎛⎝log(p(i,j)(n)) + X

k∈N I
to(j)

log(1− Pk(n))− log

⎛⎝ X
s∈S((i,j))

exp(x̃s(n))

⎞⎠⎞⎠
| {z }

Lλ(i,j) (x̃(n),p(n),λ(n))

⎤⎥⎥⎥⎥⎥⎥⎦

∞

0

.

• The persistence probabilities are updated by

p(i,j)(n+ 1) =
λ(i,j)(n)P

k∈Nout(i)
λ(i,k)(n) +

P
(l,m):m∈N I

from
(i),l∈Nin(m)(n)

λ(l,m)
.



Stochastic StabilityStochastic Stability

Related work on  stability:

• Connection-level randomness: [Bonald-Massoulie 01],  
and [Lin-Shroff 05] [Eryilmaz-Srikant05] [Neely-
Modiano-Li 05] [Stolyar 05] and more ;

• Rate of convergence around the equilibrium points: 
[Kelly-Malloo-Tan 98], [Kelly-03], … ;

• Deterministic feedback error: [Mehyar-Spanos-Low 04]

Feedback information is needed to compute the gradients;
Unfortunately, the feedback is based on error-prone 
measurement mechanisms and is noisy in practical systems!

Stochastic stability is pertinent to following issues:
1. number of users and/or queuing length remain finite;
2. algorithms converge in some stochastic sense. 

A fundamental open question:

Q) What’s the impact of noisy feedback on network utility maximization?



Stochastic PrimalStochastic Primal--Dual Alg.Dual Alg.
Our motivation is to bring back packet-level dynamics and 
understand convergence of the following stochastic alg.

• SA algorithm for source rate updating :

x̃s(n+ 1) = [x̃s(n) + ²n

³
L̂x̃s(x̃(n),p(n),λ(n))

´
]M̃s
−∞.

• SA algorithm for shadow price updating :

λ(i,j)(n+ 1) =
h
λ(i,j)(n)− ²n(L̂λ(i,j)(x̃(n),p(n),λ(n)))

i∞
0
.

• The persistence probability updating rule remains the same.



Structure of Stochastic GradientsStructure of Stochastic Gradients

Stochastic gradient L̂x̃s(·, ·, ·): Observe that

L̂x̃s (x̃(n),p(n),λ(n)) = Lx̃s (x̃(n),p(n),λ(n)) + αs(n) + ζs(n),

where αs(n) is the biased random error in Lx̃s (x̃(n),p(n),λ(n)), given by

αs(n) , En
h
L̂x̃s (x̃(n),p(n),λ(n))

i
− Lx̃s (x̃(n),p(n),λ(n)) ,

and ζs(n) is a martingale difference noise

ζs(n) , L̂x̃s (x̃(n),p(n),λ(n))−En
h
L̂x̃s (x̃(n),p(n),λ(n))

i
.



Structure of Stochastic Gradients (ContStructure of Stochastic Gradients (Cont’’d)d)

Stochastic gradient L̂λ(i,j)(·, ·, ·): Observe that

L̂λ(i,j) (x̃(n),p(n),λ(n)) = Lλ(i,j) (x̃(n),p(n),λ(n))) + β(i,j)(n) + ξ(i,j)(n),

where β(i,j)(n) is the biased random error of Lλ(i,j) (x̃(n),p(n),λ(n)), given by

β(i,j)(n) , En
h
L̂λ(i,j) (x̃(n),p(n),λ(n))

i
− Lλ(i,j) (x̃(n),p(n),λ(n)) ,

and ξ(i,j)(n) is a martingale difference noise:

ξ(i,j)(n) , L̂λ(i,j) (x̃(n),p(n),λ(n))−En
h
L̂λ(i,j) (x̃(n),p(n),λ(n))

i
.



TechnicalTechnical AssumptionsAssumptions

A1. We assume that the estimators of the gradients
are based on the measurements in each iteration only.

A2. Condition on the step size:
²n > 0, ²n → 0,

P
n ²n →∞ and

P
n ²

2
n <∞.

A3. Condition on the biased error:P
n ²n|αs(n)| <∞,∀ s and

P
n ²n|β(i,j)(n)| <∞,∀ (i, j).

A4. Condition on the martingale difference noise:
supn En[ζs(n)

2] <∞, ∀ s, and supn En[ξ(i,j)(n)2] <∞,∀ (i, j).



Main Result 1:  Stability for Unbiased CaseMain Result 1:  Stability for Unbiased Case

Theorem 1:
Under Conditions             the iterates 
generated by the stochastic primal-dual algorithm, converge with 
probability one to the optimal solutions of Problem

Ξ.

A1−A4, {(x(n), λ(n),p(n)), n = 1, 2, . . .},

1. Good news: The stochastic algorithm converges to the desired points
under conditions A1 — A4.
2. Caution:

• When ²n or the biased terms do not go to zero, we cannot hope to get
convergence w.p.1.

• Even the expectation of the limiting distribution would not be the equi-
librium point if biased terms do not go to zero.

• Nevertheless, we expect that the iterates would converge weakly to some
neighborhood “close” to the equilibrium point.



AnAn Example on Exponential MarkingExample on Exponential Marking

• Assume exponential marking is used to feedback price information, where
the overall non-marking probability q = exp

³P
(i,j)∈L(s)

λ(i,j)P
s∈S(i,j) xs

´
• To estimate the overall price, source s sends Nn packets during round n
and counts the non-marked packets, say K packets. Then the estimation
is log(q̂), where q̂ = K/Nn.

• By definition, αs(n) = exp(x̃s(n)) (En[log(q̂)]− log(q))

• From A2, to ensure the convergence, it suffices to have thatX
n

²n√
Nn

<∞

e.g., when ²n = 1/n, Nn ∼ O(log4(n)) is sufficient.



Stochastic Stability: Biased CaseStochastic Stability: Biased Case

1. When the gradient estimator is biased, we cannot hope 

for almost sure convergence;
2. Instead, we expect that the iterates return to a 

neighborhood of the optimal points under certain 
conditions. 

3. Indeed, we can show that if the errors are uniformly 
bounded, there exists a ‘‘contraction region” such that the 
iterates return to this region infinitely often w.p.1.



Main Result 2: Stability for Biased CaseMain Result 2: Stability for Biased Case

A7. Condition on the biased error: There exist non-negative constants {αus}
and {βu(i,j)} such that lim supn |αs(n)| ≤ αs, ∀ s and lim supn |β(i,j)(n)| ≤
β(i,j), ∀ (i, j).

Under ConditionsA1−A2,A4 andA7, the iterates {(x(n),λ(n),p(n)), n =
1, 2, . . .}, generated by stochastic primal-dual algorithm, return to the set Aη
infinitely often with probability one.

Theorem 2:

Define the “contraction region” Aη as follows:

Aη , {(x,λ) : αs ≥ η|Lx̃s (x̃,p,λ) |, for some s,
orβ(i,j) ≥ η|Lλ(i,j) (x̃,p,λ) |, for some (i, j), 0 ≤ η < 1}.



RemarksRemarks

1. ConditionA7 essentially requires that the biased terms are asymptotically
bounded. Clearly, this is weaker than A3, and in this sense, the stability
result is more general.

2. The “contraction region” Aη involves a set of nonlinear inequalities, and it
is difficult to characterize Aη in closed-form. Numerical method is required
to characterize “contraction region”.



Numerical StudiesNumerical Studies

Α Β C

D

link 2
link 3

lin
k

 4

flow 1

link 1

flow 2

flow 3

flow 4

Consider logarithm utility functions where κ = 1.



Numerical ExamplesNumerical Examples –– DDeterministic Caseeterministic Case



Numerical Examples Numerical Examples –– Stochastic (unbiased) CaseStochastic (unbiased) Case



Numerical Examples: Biased CaseNumerical Examples: Biased Case



Proof for the Main Result 1Proof for the Main Result 1

• Let (x̃∗,p∗, λ∗) be a saddle point.

• Define the Lyapunov function V (·) as follows:

• Define for a given μ > 0, a neighborhood set

Aμ , {(x̃,λ) : V (x̃,λ) ≤ μ}.x∼

x∼∗

x∼∗+μ

x∼∗

λ λmin max

−μ

φ

Aμ

λ

V (x̃,λ) , ||x̃− x̃∗||2 + min
λ∗∈Φ

||λ− λ∗||2,

Step I: Using the stochastic Lyapunov Stability Theorem, we establish the
recurrence of any arbitrary small neighborhood of the optimal point.



Stochastic Stochastic LyapunovLyapunov FunctionFunction

We show

En[V (x̃(n+ 1),λ(n+ 1))] ≤ V (x̃(n),λ(n)) + 2²nG(x̃(n),λ(n))

+O (²n(||α(n)||+ ||β(n)||)) +O(²2n),

with the understanding that

G(x̃(n),λ(n)) = (x̃(n)− x̃∗)TLx̃(x̃(n),p(n),λ(n))

−(λ(n)− λ∗min)TLλ(x̃(n),p(n),λ(n)),

where λ∗min = argminλ∈Φ||λ(n)− λ||2.

It suffices to show that G(x̃(n),λ(n)) < 0
when (x̃(n),λ(n)) ∈ Acμ.



A A SupermartingaleSupermartingale LemmaLemma

Let {Xn} be an Rr-valued stochastic process, and V (·) be a real-valued
and non-negative function on Rr. Suppose that {Yn} is a sequence of random
variables satisfying that

P
n |Yn| < ∞ with probability one. Let {Fn} be a

sequence of σ−algebras, generated by {Xi, Yi, i ≤ n}. Suppose that there exists
a compact set A ⊂ Rr such that for all n

En[V (Xn+1)]− V (Xn) ≤ −²nσ + Yn, for Xn /∈ A,

where ²n satisfies A1 and σ is a positive constant. Then the set A is recurrent
for {Xn}, i.e., Xn ∈ A for infinitely many n with probability one.



Step II Step II –– Local AnalysisLocal Analysis
Step II: We establish, via “local analysis,” that the recurrent iterates eventu-

ally reside in an arbitrary small neighborhood of the optimal points, by showing
{(x̃(n),λ(n), n = 1, 2, . . .} leaves A3μ only finitely often with probability one.

Let {nk, k = 1, 2 . . .} denote the recurrent times such that (x̃(nk),λ(nk)) ∈
Aμ. it suffices to show that there exists nk0 , such that for all n ≥ nk0 , the
original iterates {(x̃(n),λ(n)), n = 1, 2, . . .} reside in A3μ w.p.1.



Proof for Main Result 2Proof for Main Result 2

1) Define A , Aμ ∪Aη. It can be shown that A is compact.

3) Since η < 1, using the fact that G(x̃(n),λ(n)) < −δ for some positive
constant δ when (x̃(n),λ(n)) /∈ A, it follows that the iterates return to A in-
finitely often with probability one by appealing to the stability lemma (where
Yn = 0, ∀n).

Now let μ→ 0, we have that A→ Aη.

2) Similar to the proof of Main Result 1, it can be shown that

En[V (x̃(n+ 1),λ(n+ 1))] ≤ V (x̃(n),λ(n)) + 2²n(1− η)G(x̃(n),λ(n)) +O(²2n).

Aη , {(x,λ) : αs ≥ η|Lx̃s (x̃,p,λ) |, for some s,
or β(i,j) ≥ η|Lλ(i,j) (x̃,p,λ) |, for some (i, j), 0 ≤ η < 1}.



RateRate of Convergenceof Convergence

• Define Ux̃(n) , (x̃(n)− x̃∗)/
√
²n and Uλ(n) , (λ(n)− λ∗)/

√
²n.

• Construct Un(t) to be the piecewise constant interpolation of U(n) =
{Ux̃(n), Uλ(n)}, i.e., Un(t) = Un+i, for t ∈ [tn+i − tn, tn+i+1 − tn), where
tn ,

Pn−1
i=0 ²n.

Un

Un+1

Un+2
Un(t)

t²n ²n+1 ²n+2

• The rate of convergence is concerned with the asymptotic behavior of
normalized distance of iterates from the optimal points.

• As is standard, assume that the iterates generated by the stochastic primal-
dual algorithm have entered in a small neighborhood of an optimal solution
(x̃∗,λ∗).



AssumptionsAssumptions

A5. Let θ(n) , (x̃(n),λ(n)) and φn , (ζ(n), ξ(n)). Suppose for any given
small ρ > 0, there exists a positive definite symmetric matrix Σ = σσ0 such that

En[φnφ
T
n − Σ]I {|θ(n)− θ∗| ≤ ρ}→ 0

as n→∞.
Define

A ,
∙
Lx̃x̃(x̃

∗,p∗,λ∗) Lλx̃(x̃
∗,p∗,λ∗)

−Lλx̃(x̃∗,p∗,λ∗) 0

¸
. (1)

A6. Let ²n = 1/n; and assume A+ I/2 is a Hurwitz matrix.
Note that it can be shown that the real parts of the eigenvalues of A are all

non-positive [Bertsekas, 99].



Main Result on Rate of ConvergenceMain Result on Rate of Convergence

a) Under Conditions A1 and A3−A6, Un(·) converges weakly to the solu-
tion (denoted as U) to the Skorohod problemµ

dUx̃
dUλ

¶
=

µ
A+

I

2

¶µ
Ux̃
Uλ

¶
dt+ σdw(t) +

µ
dzx̃
dzλ

¶
,

c) If (x̃∗,λ∗) is on the boundary of the constraint set, then the limiting
process U is a stationary reflected linear diffusion process.

b) If (x̃∗,λ∗) is an interior point in the constraint set, then the limiting
process U is a stationary Gaussian diffusion process, and U(n) converges in
distribution to a normally distributed random variable with mean zero and
covariance Σ.



Remarks and Engineering InsightsRemarks and Engineering Insights

5) The covariance matrix of the limit process gives a measure of the spread
at the equilibrium point, and is typically “smaller” than the unconstrained case.

4) Intuitively speaking, the reflection terms would help increase the speed of
convergence, which unfortunately cannot be characterized exactly.

3) The rate of convergence depends heavily on the smallest eigenvalue of¡
A+ I

2

¢
. The more negative the smallest eigenvalue is, the faster the rate of

convergence would be.

2) The limit process would be Gaussian if there is no reflection term. For
instance, when all the link constraints in Problem P are active at the optimal
point.

1) In general, the limit process is a stationary reflected linear diffusion pro-
cess, not necessarily the standard Gaussian diffusion process.



Two TimeTwo Time--Scale AlgorithmsScale Algorithms
Using Alternative DecompositionUsing Alternative Decomposition

• In above, we focus on          . What about            ?

• Different decomposition methods lead to different 
layering algorithms [Palomar-Chiang 06].

• We show that using the feasible direction method
and the primal decomposition method, the NUM 
problem can be solved via two time-scale algorithms
• Feasible direction method is applicable to non-

convex constraint cases.

κ ≥ 1 κ > 0.



Feasible Direction Method: Feasible Direction Method: 

• On a larger time scale, the 

source rates are updated using 
gradient method to maximize 
the utility functions; 

• On a smaller time scale, the 
updated source rates are 
projected back to the feasible 
region imposed by the 
constraints. 

x(n)~

x(n+1)−

x(n+1)~

Feasible region

x*

U(x)

Pareto surface

A key advantage:     does to have to be less than 1.
Feasible direction method can be used for non-convex 
optimization.

κ

κ > 0.



Feasible Direction AlgorithmFeasible Direction Algorithm
Large (slow) time scale:

x̄s(n+ 1) = x̃s(n) + bn
dU 0s(x̃s)
dx̃s

,

• The source rates are updated by

x̃s(n+1) =

⎡⎣x̃s(n) + an
⎛⎝x̄s(n + 1)− x̃s(n)− exp(x̃s(n)) X

(i,j)∈L(s)

λ(i,j)(n)P
k∈S((i,j)) exp(x̃k(n))

⎞⎠⎤⎦M̃s

−∞

.

• The shadow prices are updated by

λ(i,j)(n+1) =

⎡⎣λ(i,j)(n)− an
⎛⎝log(p(i,j)(n)) + X

k∈Nto(j)
log(1 − Pk(n)) − log

⎛⎝ X
s∈S((i,j))

exp(x̃s(n))

⎞⎠⎞⎠⎤⎦∞
0

.

• The persistence probabilities are updated by

p(i,j)(n+1) =
λ(i,j)(n)P

k∈Nout(i)
λ(i,k)(n) +

P
(l,m):m∈NI

from(i),l∈Nin(m)
λ(l,m)(n)

.

Small (fast) time scale (bn = o(an)):



Stochastic Feasible Direction AlgorithmStochastic Feasible Direction Algorithm

Large (slow) time scale:

x̄s(n+ 1) = x̃s(n) + bn
dU 0s(x̃s)
dx̃s

,

Small (fast) time scale (bn = 0(an)):

• The source rates are updated by

x̃s(n+1) =

⎡⎣x̃s(n) + an
⎛⎝x̄s(n + 1)− x̃s(n)− exp(x̃s(n)) X

(i,j)∈L(s)

λ(i,j)(n)P
k∈S((i,j)) exp(x̃k(n))

+Ms(n)

⎞⎠⎤⎦M̃s

−∞

• The shadow prices are updated by

λ(i,j)(n+1) =

⎡⎣λ(i,j)(n)− an
⎛⎝log(p(i,j)(n)) + X

k∈Nto(j)
log(1 − Pk(n)) − log

⎛⎝ X
s∈S((i,j))

exp(x̃s(n))

⎞⎠ +N(i,j)(n)
⎞⎠⎤⎦∞

0

.

• The updating rule for the persistence probability remains the same



AssumptionsAssumptions

B1. Condition on the step sizes:

an > 0, bn > 0,P
n an = ∞,

P
n bn = ∞,P

n a
2
n < ∞,

P
n b

2
n < ∞,

bn = o(an).

B2. Condition on the estimation error:X
n

anM (n) < ∞ a.s. and
X
n

bnN (n) < ∞ a.s.



Main Result 3: Stability for Two TimeMain Result 3: Stability for Two Time--
Scale AlgorithmsScale Algorithms

Remarks:

1. Condition B1 is a standard assumption in two time-scale stochastic ap-
proximation algorithms; and intutively speaking, bn = o(an) requires that
the updating of the candidate source rates execute at a larger time scale
than the projection.

2. Condition B2 assumes that the average (combined) effects of the biased
error and the martingale noise at the two time scales are asymptotically
“negligible”, i.e., the estimation errors are asymptotically unbiased. Again,
when the estimators are biased, we cannot hope that the iterates converge
to the optimal points with probability one.

Theorem 3: Under Conditions A1, B1 and B2, the iterates {x̃(n), n =
1, 2, . . .}, generated by the stochastic feasible direction algorithm, converge with
probability one to the optimal solutions of Problem P.



Primal Decomposition MethodPrimal Decomposition Method

1. On the smaller time scale, we 
first fix p, and solve the end-
to-end flow control problem 
with a fixed capacity that is a 
function of p;

2. On the larger time scale, p is 
updated using a sub-gradient 
method. x*

U(x)

Pareto surfaceFeasible region when P=P(n)

p(n) p(n+1)

x(n)

x(n+1)



Primal Decomposition AlgorithmPrimal Decomposition Algorithm
• Small (fast) time scale:

— The source rates are updated by

xs(n+ 1) =0≤xs≤Ms

⎛⎝Us(xs)− xs X
(i,j)∈L(s)

λ(i,j)(n)

⎞⎠ .
— The shadow prices are updated by

λ(i,j)(n+ 1) =

⎡⎣λ(i,j)(n)− an
⎛⎝c(i,j)(n) − X

s∈S((i,j))
xs(n)

⎞⎠⎤⎦∞
0

.

• Large (slow) time scale:

— The persistence probabilities are updated by

p(i,j)(n+1) =

⎡⎣p(i,j)(n) + bn X
(s,t)∈L

λ(s,t)(n)
∂
³
p(s,t)

Q
k∈Nto(t)

(1− Pk)
´

∂p(i,j)

⎤⎦1
0

.



ConclusionsConclusions
1) We have studied joint flow control and MAC design in multi-hop wireless

networks with random access; and formulate rate control as a network utility
maximization problem.

2) We have shown that the proposed primal-dual algorithm converges al-
most surely to the optimal solutions provided that the gradient estimator is
asymptotically unbiased. For the biased case, we show that the iterates return
to a contraction region infinite often w.p.1 provided that the biased errors are
uniformly bounded.

3) Our findings on rate of convergence reveal that in general the limit process
of the interpolated process, corresponding to the normalized iterate sequence
generated from the primal-dual algorithm, is a reflected linear diffusion process,
not necessarily the Gaussian diffusion process.

4) Using alternative decomposition methods, we show that the NUM problem
can be solved via two time-scale algorithms.
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