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1 Executive Summary

1.1 Overview

This proposal details a multi-year, multi-sponsor University-Industry research initiative on the
application of advanced signal analysis and processing techniques to problems in oil and gas
exploration and production. One of the striking features of seismic signals is their highly non-
stationary character — a property that is poorly dealt with by current analysis and processing
tools. The central theme of theRice Consortium on Computational Seismic Interpretationis the
application oftime-frequency representationsandwavelet transformsto seismic and well-log sig-
nal analysis, interpretation, and processing. The initiative leverages 30+ years of leadership in
signal processing research at Rice University towards two primary objectives: (1) systematic de-
velopment of advanced time-frequency-based seismic attributes for enhanced feature extraction
from multi-dimensional seismic data, and (2) application of wavelet-based signal processing tools
to key problems in seismic and well-log data preprocessing. Technology transfer to the industrial
sponsors will be achieved through software libraries (Seismic UNIX modules and Matlab code),
interactive research meetings, focused collaborative work sessions, and technical reports, preprints
and publications.

1.2 Motivation and Significance

Seismic imagery of the earth’s subsurface is critical to all aspects of the oil and gas exploration and
production process — from the location of fields to their appraisal, development, and subsequent
monitoring. In exploration, seismic images of the earth’s subsurface are scrutinized by interpreters
who search for patterns correlated to possible hydrocarbon reservoirs. Recently, 3D imaging tech-
nology has become a standard exploration tool, particularly in mature hydrocarbon provinces like
the Gulf of Mexico and the North Sea. The seismic interpretation process has changed radically as
a result. While previously interpreters dealt with large plots of 2D cross-sections of the earth, they
now work on computers with 3D volumes comprising Gbytes of data. There exists a great need for
advanced tools for sifting through these mountains of data for features indicative of hydrocarbons.

One of the most striking features of seismic and well-log signals is theirhighly non-stationary
character. This non-stationarity confounds traditional data analysis and processing tools, such as
time-invariant filtering and Fourier transform techniques. As a result, these tools offer less than
optimal performance. Clearly, non-stationary signals dictate matched, non-stationary analysis and
processing techniques.

The central theme of this research effort is the application oftime-frequency representations
andwavelet transformsto seismic data analysis, interpretation, and processing. Time-frequency
and wavelet representations measure local (in time and/or space) changes in frequency and scale
content of a signal. Representations like the wavelet transform, the short-time Fourier transform,
and the Wigner distribution figure prominently in a host of different application areas, including
data compression; image coding and analysis; communications; speech and acoustic signal pro-
cessing; and modeling and understanding of the human hearing and vision systems.
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Time-frequency and wavelet representations map signals to a time-frequency/scale domain
that acts like a generalized (time-varying) Fourier domain. Thus, in addition to analyzing seis-
mic data, time-frequency/scale representations have natural applications in data processing. The
time-frequency signal representation in terms of transient wavelets rather than long duration plane
waves will enable high-performancenon-stationary signal and image processingfor detection,
classification, compression, denoising, deconvolution, etc.

Seismic attributesaid the quantitative interpretation of seismic data by extracting information
on the nature of its non-stationarity. The increased quality and resolution of seismic data, allows
the deployment of quantitative signal analysis and feature extraction algorithms. Robust and auto-
mated seismic attribute extraction is becoming increasingly important for information extraction.
Many of the currently used attributes lack the robustness and geological/physical significance to
live up to this task. We will develop new seismic attributes based on a set of sophisticated high
resolution time-frequency analysis tools developed over the past number of years at Rice.

1.3 Objectives

Our multidisciplinary approach to computational seismic interpretation and processing is unique in
that it builds a bridge between advanced digital signal processing techniques and their application
in geophysics. Our primary objectives are twofold:

Advanced time-frequency representations for seismic data: Using the time-frequency
paradigm, we will derive novel attributes particularly suited for extracting features and high-
lighting anomalies in modern 3D and 4D seismic data sets. Measures to be investigated
include volume attributes (dip, azimuth, continuity, correlation) and event-based attributes
(extracted along or perpendicular to the prevailing dip).

We will develop improved variants of the classical complex trace attributes (such as instanta-
neous frequency, bandwidth, Q-factor, etc.) based on a suite of powerful new time-frequency
representations developed at Rice. The high performance of these representations will natu-
rally lead to attributes that are more accurate, indicative, robust, and rapid to compute than
their classical counterparts.

Wavelet-based seismic data processing: We do not propose to simply apply existing wavelet
processing techniques to seismic and well-log data, but rather to develop fundamentally new
seismic processing algorithms based on wavelets. We will develop wavelet systems that
are tailor-made for seismic processing tasks, in the sense that they are designed to take the
specific properties of seismic and well-log signals into account.

In the near term, we aim to leverage 30+ years of signal processing experience at Rice
(including 8 years of time-frequency and wavelet analysis experience) into seismic interpretation
and processing. In the long term, we will expand our effort to address the challenges associated
with analysis and processing of 3D, 4D and 4C seismic data. In particular, we will concentrate on
fast and robust algorithms for dealing with the huge data volumes involved.

A detailed description of our promising preliminary results, research objectives, and plans
are included in Appendices A–C.
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1.4 Impact

Expensive to acquire and often impossible to reacquire, seismic and well data is perhaps the most
important asset of any oil company. Effective hydrocarbon exploration and production depends
heavily on signal processing algorithms to extract the maximum possible amount of information
from each data set. However, current tools for information extraction do not match the funda-
mental non-stationary character of seismic data, and information extraction performance suffers
as a result. High resolution time-frequency representations provide a natural domain for analyz-
ing and processing non-stationary seismic data. Our new seismic attributes have the potential to
revolutionize seismic data interpretation, enabling human seismic interpreters to search effectively
and efficiently through mountains of data for the critical non-stationarities that indicate potential
hydrocarbons. Furthermore, non-stationary processing techniques will provide geophysicists with
new opportunities for improving on traditional seismic signal preprocessing algorithms.

It could be said that up to the present wavelets and time-frequency methods have not deliv-
ered as promised and have, to a large degree, been a disappointment in geophysics applications.
While a huge body of advanced time-frequency research has been developed in the signal process-
ing community, the link with geophysics has not been made directly. Only an interdisciplinary
team made up of both signal processing and geophysics researchers in collaboration with indus-
try can realize the true potential of time-frequency methods in geophysics. Here at Rice we have
assembled the core of such an interdisciplinary team; in conjunction with industry we can indeed
deliver revolutionizing interpretation tools using advanced signal processing.

1.5 Consortium Fee

The proposed annual fee is $25,000. The consortium will become active when five sponsors have
committed themselves, with a target start date of January 1, 1998. After an initial period of two
years, new sponsors joining the consortium or sponsors not actively participating in the preceding
program year will be asked to pay an initiation fee to join the consortium. In the initial phase of
the consortium, personnel supported by other research funds will play an active role. Graduate
fellowships will be identified explicitly as industrially-sponsored; this will be a significant factor
in attracting good students to our interdisciplinary team.
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2 Management Plan

The core research staff of the consortium will consist of Dr. Jan E. Odegard, Dr. Philippe Steeghs,
Prof. Richard G. Baraniuk, Prof. C. Sidney Burrus, and Prof. Raymond O. Wells, Jr. (see curricula
vitae in the Appendices). We plan to add one or two full-time postdoctoral research scientists, a
number of graduate students, as well as a part-time administrative assistant. Additional faculty
members might be invited to join the consortium based on interests and future research activities.
Funding obtained for the project will be used to leverage additional research funding from gov-
ernment agencies and the University. Current federal and industrial research funding related to
the proposed project will also be leveraged towards the consortium by the participating faculty
members.

1. Project Director: In collaboration with faculty members, research staff, and consortium
members, develop the overall scientific research objectives and maintain the overall admin-
istrative and budgetary activities of the project. Supervise and approve plans for annual
meetings and maintain communication with industry collaborators and sponsors. Develop
new interactions and generate additional and complementary funding through leveraging of
consortium funds.

2. Faculty: Work with the Director in developing the scientific objectives and goals of the
research program. Advise graduate and undergraduate students and work extensively with
graduate students who are well into their thesis research; suggest and approve topics for the-
sis research. Supervise and help plan annual meetings. Collaborate with industrial partners
and develop new research directions. Develop an interdisciplinary introductory graduate
course/seminar on material related to the research effort as well as maintain other teaching
and professional duties.

3. Postdoctoral Research Scientists:Carry out independent focused collaborative work sup-
porting the over-arching goals of the research program. Interact with individual company
researchers on a regular basis for effective technology transfer and research objective tun-
ing. Manage weekly research seminars and assist in directing graduate and undergraduate
students on various projects and research activities. Plan and arrange annual review meeting
as well as organize intermittent research meetings as needed. Report and document research
results; develop and document pilot code to be shared with the participating companies.
Ideally, we expect each research scientist to remain with the project for a minimum of two
years.

4. Graduate Students: Perform research and complete basic requirements for the Ph.D.
degree in their respective departments. Take appropriate advanced course work in signal
processing, spectrum estimation, wavelet theory, geophysics, and applied mathematics to
strengthen theoretical skills and develop understanding of the physics underlying the re-
search effort.

5. Undergraduate Students: A number of undergraduate students will be involved in the
project through summer employment and honors class projects.
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6. Administrative Assistant: Serve as a contact for routine business with sponsors, funding
agencies, and the University. Maintain records; arrange travel; schedule research meetings;
coordinate the logistics of annual review meetings; maintain publication database, bibliog-
raphy, and consortium web pages. Assist the Director, faculty and research scientists in
budgetary and editorial responsibilities.

3 Technology Transfer

The consortium will implement several parallel mechanisms for transferring research results to the
individual members. We will exploit the internet to the fullest by providing a secure, members-only
web interface for the consortium. Through this internet connection we will provide pre-publication
technical reports, software and miscellaneous information of importance to the consortium mem-
bers. Furthermore, the consortium will host an annual meeting at Rice University for joint dis-
cussions, technology presentations, and demonstrations. The goals of the annual meeting will be
twofold:

1. formally report on the past year’s research activities

2. provide a common forum for open discussions and company input.

While the internet link will be central in facilitating technology transfer the primary method
for transferring research results will be through the development of software and library modules
(C, C++, Java, and Matlab). The consortium will use seismic UNIX as the platform for developing
seismic processing modules. Core processing modules will be provided as independent library
modules written in C and/or C++. For the purpose of rapid research development, testing and
prototyping of new ideas, the MATLAB programming environment will be used extensively by
the consortium. Our focus on writing portable software modules in C and/or C++ will expedite
technology transfer by eliminating the necessity for each participating company to code algorithms
from scratch for basic prototyping and testing in-house.

In addition to software, technology transfer will also be facilitated through publications,
technical reports, education, and close collaboration with researchers from the participating com-
panies.

To enhance the value of the material provided at the annual meeting the annual report, appro-
priate technology demonstrations, technical reports and publications as well as software developed
by and for the consortium will be provided on a CD-ROM. The CD-ROM will be organized as
web pages and will permit the individual member companies to enhance the consortium exposure
by publishing the CD-ROM as web pages on their intranets.

The consortium and its research faculty and staff will also offer individual companies and/or
groups of companies one-on-one tutorials and workshops that draw on the experience gained from
the consortium research. While these types of extensive educational efforts will be individually
arranged and negotiated, they will be at reduced cost and more in-depth. Seminars and lectures
can be arranged with individuals at the expense of the company and any standard honorary fee will
be waived for consortium members. While the educational aspects of the consortium are optional,
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they will be extremely efficient for technology transfer. Tutorials, workshops, and lectures can be
used to educate a larger group within the company about the technology developed by the consor-
tium. The in-house knowledge acquired through these educational efforts can then be applied to
research problems outside the scope of the consortium.

Active participation and industrial input and collaboration will ensure a focused research
consortium. In addition to the annual meeting, less formal interactions will take place throughout
the year as appropriate. A number of open seminars will be given and/or hosted by the project
team on relevant technologies in an effort to enhance interest and foster interactions with industry.

In addition to the technical contributions, the consortium will have a significant impact on
the education and training of scientists and engineers at Rice University. The consortium will allow
the group to train a larger number of graduate students as well as attract highly qualified postdocs
and visiting research faculty.

Undergraduate students will be pulled in and the consortium will be an integral part in their
training for a future career in the booming energy industry. In fact, the promising preliminary
results of [70] were developed in the course of a senior honors project.

Since we began working with oil companies two years ago, Rice faculty incorporated exam-
ples from geophysics into their signal processing course materials. As a result, students graduating
with a strong background in signal processing have had an increased desire in pursue a career in
the oil and oil-service industry.

Finally, the Department of Electrical Engineering at Rice has recently launched a summer
intership program for undergraduate and graduate students. As a member of the consortium, your
company will an automatic member of this program, greatly enhancing your recruiting abilities as
well as further improving technology transfer.

4 Institutional Commitment and Support

Eighty-five years ago, Rice’s founding president, Edgar Odell Lovett, assembled a remarkable
community of scholars dedicated to excellence in education and research [10]. Today, Rice is rec-
ognized as a top-ranked undergraduate college and a premier research university. Rice’s modest
size (approximately 450 faculty, 2700 undergraduates, and 1400 graduate students) has not pre-
vented it from becoming a top 20 University. In remaining true to its founding principles, Rice has
leveraged its size to foster a strong and growing collaborative environment for both education and
research. In this way, faculty in small departments have worked together to integrate individual
expertise and talents into multidisciplinary teams to address complex challenges in research areas
of national importance.

Through the leadership of President Malcolm Gillis and Provost David Auston, several bold
initiatives are underway that are reflected in strategic faculty hiring and major new buildings to
house research in computational and information engineering, nanoscale science, biosciences and
bioengineering, and public policy. Rice has also embarked on a bold program to apply information
technologies in imaginative approaches to teaching and learning.

Rice organizes its research through both its academic departments and a group of strate-
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gic institutes. The institutes provide the opportunity for collaborative research efforts, graduate
student training, enhance undergraduate programs, and industrial partnering across disciplines,
departments and schools. Today, Rice’s research institutes include:

CITI Computer and Information Technology Institute

CRPC Center for Research on Parallel Computation

EESI Environmental and Energy Science Institute

CNST Center for Research in Nanoscale Science and Technology

RQI Rice Quantum Institute

IBB Institute for Biosciences and Bioengineering

BIPP Baker Institute for Public Policy.

The Computer and Information Technology Institute(CITI) is a research institution com-
posed of faculty, research scientists, staff, and graduate students dedicated to the advancement of
applied interdisciplinary research in the areas of computer and information technology. CITI’s goal
is to support, foster, and develop research and education across a wide area of computing technolo-
gies, computational engineering, and information processing and theory. Faculty, research scien-
tists, staff and students associated with CITI are primarily from the departments of Electrical and
Computer Engineering, Computational and Applied Mathematics, Computer Science, and Statis-
tics, although Mathematics, Biochemistry and Cell Biology, Chemical Engineering, Physics, Geo-
physics, Chemistry, Space Physics, and Mechanical and Civil Engineering are also represented.
Over eighty Ph.D. faculty and research scientists and over 120 graduate students are affiliated with
CITI.

Founded in 1987, CITI has grown to achieve an annual research funding level of approx-
imately $8 million. In addition, CITI sponsors several major centers and laboratories, including
the Center for Research in Parallel Computation (CRPC), the Rice Inversion Project (TRIP), the
Center for Technology in Teaching and Learning (CTTL), the Center for Computational Discrete
Optimization (CCDO), the Center for Multimedia Communications (CMC), the Computational
Mathematics Laboratory (CML), the Distributed Computing Laboratory (DCL), and the Statistics
Consulting Lab (SCL). It is Rice’s intention to have CITI act as an interdisciplinary catalyst to
foster research projects across the campus.

Rice University has established a reputation as a high-quality engineering educational and
research institution. However, Rice is a small university and does not attempt to address all en-
gineering research areas or disciplines. Likewise, CITI does not attempt to address all aspects of
information technology and computational engineering; it primary areas of research are:

� digital signal and image processing

� seismic data processing and analysis
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� data modeling and analysis

� parallel computation

� distributing computing

� telecommunications (including wireless)

� optimization (discrete, continuous and multidisciplinary design)

� technologies in education (including collaborative environments)

Consistent with Rice’s philosophy to invest heavily in the Institutes and the Centers, this
consortium draws heavily on strengths created through interdisciplinary collaboration.

5 Computational Resources

Our current computer infrastructure consists of a mixture of Sun workstations and mid-range com-
pute servers running Solaris. Through various internal efforts the group is today using as the main
compute server a 250MHz, 4 processor Sun Ultra Enterprise 3000 with 1Gb of RAM and 24Gb
disk space. In addition to the dedicated resources, the consortium team has regular access to a
250MHz, 8 processor Sun Ultra Enterprise 4000 server with 1Gb of RAM and 9Gb disk space.

In addition to the Sun server/workstation precesses, the core members participating in the
proposed consortium were recently awarded, as part of a 3-year $2 million Intel grant to Rice
University, a large number of Intel based compute servers and NT development stations. The Intel
equipment will provide the consortium and its members an opportunity to port and benchmark
seismic processing modules developed by the team. Traditional supercomputers have, until very
recently, dominated the market for computation- and I/O-intensive applications. These applications
are beginning to migrate to clusters, currently largely dominated by Unix platforms. Similarly, the
high-end visualization area has been dominated primarily by Silicon Graphics equipment. The
Intel offers Rice and our consortium the opportunity to work with industry and Intel to break new
ground.

In addition to the local resources, the group, through various collaborations, has access to
researchers exploring a number of different computing platforms and paradigms. Rice has been at
the forefront of parallel computing for many years, most notably through the Center for Research
in Parallel Computation (CRPC), a Science and Technology Center funded by the National Sci-
ence Foundation. Furthermore, we have been among the first advocates of clusters of commodity
workstations for parallel computing, leading on early results in fault tolerance and computational
support tools for clusters. Through these various efforts, we have presently on campus a number
of such clusters, including a HIPPI network of 4 Silicon Graphics 4-way SMPs (funded by NSF),
a Memory Channel network of 4 DEC Alpha 4-way SMPs (funded by DEC and Rice), an 8 node
IBM RS/6000 SP2 (funded by NASA in conjunction with Boeing), and a number of lower-end
networks, including two PC networks, one running Linux and one running WindowsNT. Further-
more, we also have on campus a 16-node Convex SPP-2000, and through our involvement with the
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NCSA Partnership for Advanced Computational Infrastructure (PACI), we have access to a very
large Silicon Graphics Origin 2000 and a larger Convex SPP-2000 at NCSA. In short, we have
access to the entire gamma of parallel computing equipment, from the low end to the very high
end.

Rice have a strong track record of successful collaboration between computer scientists and
researchers in the scientific and engineering disciplines using high performance computing in re-
spective research areas. Examples include: The Rice Inversion Project (TRIP), in its sixth year
of support from the petrochemical and geophysical industry; the Keck Center for Computational
Discrete Optimization; and the Distributed Computing Lab, which supports a variety of clustered
computational projects involving Chemistry, Nanotechnology, and Biosciences, and Bioengineer-
ing.

6 Financial Plan

The fee of participating in the consortium is $25,000/year (subject to future revisions) with a start
date of January 1, 1998. A minimum of 5 companies will be required to start the consortium.
After an initial period of two years, new sponsors joining the consortium or sponsors not actively
participating in the preceding program year will be asked to pay an initiation fee of 50% of the
current annual fee to join the consortium.

During the open enrollment period, individual research interactions will be pursued aggres-
sively and developed prior to a commitment from 5 companies. However, such interactions will be
formed with the expressed understanding that when 5 or more companies have signed on to par-
ticipate in the research effort, the outlined consortium agreement , its infrastructure and associated
goals will become the primary vehicle for collaboration.

Funding will be devoted to the support of the research goals set forth by the project as out-
lined in this proposal in close collaboration with representatives from the participating companies.
Such support includes salary, fringe benefits, equipment, travel, indirect costs, and other expenses
related to the overall goals of the project.

In the initial phase of the consortium, personnel supported by other research funds will play
an active role. Graduate fellowships will be identified explicitly as industrially-sponsored; this will
be a significant factor in attracting good students to our interdisciplinary team.

7 Terms of Sponsorship

An agreement for joining the Rice Consortium for Computational Seismic Interpretation is en-
closed.
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APPENDICES: PROPOSED RESEARCH

A Time-Frequency, Time-Scale, and Wavelet Representations

The sinusoidal decomposition of the Fourier transform plays a fundamental role in a broad range
of disciplines, including geophysics. Given a time/space signalx(t),1 the Fourier transform

bx(f) =

Z
x(t) e�i2�ft dt; (1)

performs an analysis in terms of infinite-length sinusoids. In Figure 1(b) we plot the power spec-
trum jbx(f)j2 of the seismic trace of Figure 1(a).

The power spectrum provides information on the distribution of global cyclicities in the sig-
nalx(t). In particular, it measures the average energy content of the signal at sinusoidal frequency
f . However, the power spectrum provides no explicit information on thetime variationof cyclic-
ities. (This information is hidden in the phase ofbx(f)). In any application involving transients
or time-varying signals — geophysics included — this timing information is crucial for effective
signal analysis and processing.

The fundamental theme of this research effort is the representation of seismic data in terms of
joint time and frequency coordinates. The resultingtime-frequency representations(TFRs) [17, 51]
play the role oflocal power spectrathat measure how the frequency content of a signal changes
over time.2 A TFR of the signal,Px(t; f), measures the content ofx around timet and frequency
f , and so can be interpreted as a mathematical generalization of the musical score. As we see in
Figure 1(c), TFRs elicit and display the fine structures that result from nonstationarity in signals.
Thus, the joint time-frequency domain provides a new domain for seismic signal analysis and
processing.

While the Fourier power spectrum of a signal is unique, there are an infinite number of
different TFRs for analyzing time-varying frequency content. The key is picking the right tool
for the job at hand. Here we give a brief outline of the key concepts and representations. More
information is available in the papers [5, 4, 17, 51, 79] and on the Rice signal processing internet
site located at www.dsp.rice.edu.

1For clarity of explanation, we will base our development in terms of one-dimensional time signals. However, the
time-frequency concept generalizes in a straightforward manner to multi-dimensional spatial signals (images).

2Time-frequency techniques are not new to geophysics. In fact, many of the early developments in this area were
made by geophysics researchers (see [64, 42], for example). However, this project builds on new TFRs that have not
yet been applied to seismic data.
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Figure 1:Time-frequency representations (TFRs) of a seismic time trace (a). The Fourier power spectrum
(b) provides only global frequency information. The short-time Fourier transform (c) localizes frequency
information in time.
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A.1 Time-frequency representations

Short-time Fourier transform. The simplest way to measure the local frequency content of a
signal is to compute the Fourier transform of a windowed portion of the signal. The result is the
windowed Fourier transform or short-time Fourier transform

Sx(t; f) =

Z
x(� )w�(� � t) e�i2�f� d�; (2)

with w the sliding window function. The squared magnitudejSx(t; f)j2 is known as the spectro-
gram. The short-time Fourier transform can also be interpreted in terms of projecting the signal
onto a set of overcomplete basis elements. Defining

�t;f(� ) = w(� � t) ei2�f� ; t; f 2 IR; (3)

we have

Sx(t; f) = hx; �t;fi ; (4)

with the inner producthg; hi =
R
g(� )h�(� ) d� . The time-frequency atoms�t;f are formed by

translating and modulating the window function and thus are concentrated at different points in
time-frequency. Contrast this situation to that of the Fourier transform, which projects onto the
frequency-localized but infinite-length sinusoidal basis elementsei2�f� .

The time-frequency representation of the short-time Fourier transform is sensitive to the
length of the window functionw. Figure 2(a) and (b) depict short-time Fourier transforms of the
seismic trace using windows of two different lengths to illustrate the fundamental time-frequency
resolution tradeoff of this TFR: Short windows provide good time resolution at the expense of
frequency resolution, while long windows provide good frequency resolution at the expense of
time resolution.

Wigner distribution. Since the “best” short-time window will depend on the signal under anal-
ysis, a short-time Fourier transform “matched” to the signal should provide a more accurate ren-
dering of the time-frequency content. The Wigner distribution — a rescaled short-time Fourier
transform using the time-reversed signal as window — in fact provides an optimal time-frequency
resolution tradeoff. The Wigner distribution is a quadratic function of the signal

Wx(t; f) =

Z
x
�
t+

�

2

�
x�
�
t�

�

2

�
e�i2�f� d�: (5)

It satisfies the marginal propertiesZ
Wx(t; f) df = jx(t)j2;

Z
Wx(t; f) dt = jbx(t)j2 (6)

that make it interpretable as a time-frequency energy density.
The excellent time-frequency localization properties of the Wigner distribution result from its

quadratic matched filter structure. Unfortunately, this nonlinear structure also results in oscillatory
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Figure 2: Time-frequency representations of a seismic trace. (a) Spectrogram (short window), (b) spec-
trogram (long window), (c) pseudo Wigner distribution, (d) optimum kernel time-frequency representation,
and (e) scalogram (Morlet wavelet).
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interference components, which impair its representation of real-world, multi-component signals
(see Figure 2(c)).

Cohen’s class TFRs.Typically, Wigner distribution interference components are suppressed via
lowpass smoothing over the time-frequency plane. Two-dimensional convolution yields a distribu-
tion in Cohen’s class of quadratic TFRs [17]

Cx(t; f) =

ZZ
Wx(u; v) �(u� t; v � f) du dv: (7)

The smoothing function� is called thekernelof the TFR. Since the properties of a particular
quadratic TFR are completely determined by its kernel function, operation within Cohen’s class
reduces TFR design to kernel design [17, 5, 4]. Examples of Cohen’s class TFRs are the Choi-
Williams [14] and cone-kernel [99] distributions. The spectrogram is obtained using� =Ww.

Optimal-kernel TFRs. Traditionally, Cohen’s class TFRs have employed fixed kernels. However,
specification of a fixed kernel limits the class of signals for which the corresponding TFR performs
well — much like specification of a fixed window limits the performance of the short-time Fourier
transform.

At Rice, we have developed a number of powerfuladaptive TFRsthat adjust the TFR kernel
to optimally suppress the Wigner distribution interference components while preserving its time-
frequency localization [5, 6, 4, 55, 54]. These TFRs employ performance measures based on
concentration, peakiness, and entropy that relate closely to those in deconvolution [97, 25]. The
optimal 1/0 kernel TFR [5, 6] and the optimal radially Gaussian kernel method [4] choose one
kernel for the entire signal. The adaptive optimal kernel (AOK) TFR [55], on-line optimal TFR
[54], and on-line optimal 1/0 kernel TFR [79] allow the kernel to change over time to better match
complex signal structure. In Figure 1(d) we plot the adaptive optimal kernel TFR of [79] for the
seismic trace. Optimal-kernel TFRs represent the current state of the art of high-resolution time-
frequency analysis.

A.2 Time-scale representations

The TFRs of Cohen’s class aretime-frequency shift covariant. That is, time shifts and frequency
shifts of the signal simply translate the TFR:

x(t) �! x(t� t0) e�i2�f0t

# #

Cx(t; f) �! Cx(t� t0; f � f0):

Time-scale representations (TSRs) are joint signal representations that aretime-scale covariant.
Time shifts and scale changes of the signal translate and scale a TSR
x(t; f) [9, 77]:

x(t) �! 1p
�
x
�
t�t0
�

�
# #


x(t; f) �! 
x

�
t�t0
�
; �f

�
:
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Like a TFR, a TSR measures the joint time-frequency content in a signal. We use the terminology
TSR/TFR merely to differentiate between time-scale covariance and time-frequency shift covari-
ance.

Continuous wavelet transform. The continuous wavelet transform results from projecting the
signal onto the set of overcomplete basis elements

 t;f(� ) =
p
f  (f(� � t)); t; f 2 IR; (8)

formed by translating and scaling a basic bandpass wavelet function (with center frequency
1Hz):

Qx(t; f) = hx;  t;fi =
p
f

Z
x(� ) � (f(� � t)) d�: (9)

Unlike the short-time Fourier transform, the resolution of the continuous wavelet transform changes
with frequency: at low analysis frequenciesf the transform offers good frequency resolution at the
expense of poor time resolution, while at high frequenciesf the transform offers good time reso-
lution at the expense of poor frequency resolution. The squared magnitudejQx(t; f)j2 is referred
to as the scalogram. Figure 2(e) (above) depicts the time-scale analysis of the scalogram.

Affine class TSRs. In order to more effectively time-scale analyze signals, quadratic “matched”
wavelet transforms have been developed. The affine Wigner distributions [9, 35, 36] generalize
the Wigner distribution, but marginalize to the Fourier transform and the Mellin transform, an im-
portant tool for dealing with compressed and dilated signals. Being quadratic, the affine Wigner
distributions suffer from interference components. However, these can be suppressed using a wide-
band, proportional-bandwidth smoothing (an affine convolution [77, 35, 36]).

A.3 Discrete TFRs and TSRs: Frames and Bases

The short-time Fourier transform and continuous wavelet transform have discrete analogues, in
which we discretize the valuest andf that determine the time-frequency locations of the basis
atoms used in (3) and (8). For TFRs, we use(t; f) = (nt0;mf0); for TSRs, we use(t; f) =
(2mnt0; 2�mf0), m;n 2 ZZ. The resulting atoms can be made to form aframe(basically, a well
behaved basis set) for almost arbitrary choices of the window or wavelet function [20, 76]. To form
an orthonormal basis using time-frequency or time-scale atoms requires special windows/wavelets
[20]. Discrete TFR/TSRs can be implemented using filter banks inO(N) complexity for TSRs
(wavelets) andO(N logN) for TFRs.

Discrete transforms have the advantage of speed and parsimony over their continuous coun-
terparts. However, they typically have poorer time-frequency resolution and potentially aliased
coefficients.

Additional approaches to TFRs include matching pursuit [63] and the hybrid linear/nonlinear
distributions [76].
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B Seismic signal analysis and attribute extraction

The demand for more detailed, but less time-consuming interpretation of seismic data calls for an
increased effort to develop more effective methods for seismic attribute extraction and analysis.
Seismic interpretation nowadays involves the inspection of a large number of cross-sections of
3D seismic data on a seismic interpretation work-station. There exists a great need for advanced
tools for sifting through these mountains of data for features that are indicative of hydrocarbon
reservoirs. For this, the application of coherence analysis [2, 33] and volume attribute analysis
techniques [53] have proven successful. Recent results in [79, 88, 81, 82] show that with time-
frequency techniques significant improvements can be achieved with respect to state-of-the-art
attribute extraction techniques.

In addition to the issue of reducing seismic interpretation time, the decrease of the average
size of new oil and gas fields demands a more detailed interpretation of small scale features in seis-
mic data. Seismic attribute maps, such as horizon dip and azimuth maps have been very successful
in finding and interpreting structures that are not easily recognized in the original data [19, 52, 56].
Seismic attribute extraction is not only a tool for seismic interpretation; it also plays a key role in
the prediction of reservoir quality from seismic data as well. The correlation of seismic attributes
with petrophysical properties that are measured in a borehole is used to guide the geostatistical pre-
diction of reservoir properties away from the well location. Currently, there are literally hundreds
of attributes in use in geostatistical applications [13]. It is rather remarkable that so few studies
have been carried out in relation to the significance and quality of seismic attributes. Many geo-
statistical studies are based on complex-trace attributes, which have little geological significance
and are highly susceptible to noise in the data. Heedless application of attributes in geostatistical
reservoir prediction can result in grossly wrong estimates of reservoir properties [57].

Time-frequency representations (TFRs) such as wavelet transforms, short-time Fourier trans-
forms and Wigner distributions all provide potential domains for extraction of more robust and
meaningful signal attributes. The relation between TFRs and the instantaneous frequency has al-
ready been exploited to improve instantaneous frequency estimation of seismic data [79, 88]. For
example, Figure 3 shows the instantaneous frequency that is obtained from an adaptively smoothed
Wigner distribution. The figure shows how much better the instantaneous frequency estimate based
on the time-frequency representation captures the detail that is hidden in the data compared tot the
instantaneous frequency that is obtained by complex-trace analysis [84].

The time-frequency and the time-scale planes are extremely rich feature spaces for enhanc-
ing existing or developing new seismic attributes. The TFR of a signal allows the definition of
attributes such as instantaneous bandwidth, dispersion, and attenuation (Q-factor). The scale space
provides a new point of attack for developments in seismic attribute extraction. The parameters
used to characterize frequency content have their equivalent in the scale domain. For instance,
attributes, such as mean frequency or bandwidth, have their counterpart in mean scale and scale
bandwidth. The analysis of seismic data in terms of scaling properties may contribute to issues that
are related to measurement scale and resolution, such as seismic to well ties and matching surface
seismic and VSP data. The continuous wavelet transform has been proposed in the past as a feature
space for seismic attribute extraction. However, similarly to the short-time Fourier transform in the
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Figure 3:(a) Seismic section, (b) complex-trace instantaneous frequency, and (c) instantaneous frequency
obtained from an adaptively smoothed time-frequency representation (TFR) [88, 79]. For every trace of the
seismic section, a TFR is computed. The instantaneous frequency is then extracted as the mean frequency
of this TFR as a function of time.
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time-frequency case, the wavelet transform suffers from poor resolution. Recently, a number of
novel high-resolution time-frequency and time-scale representations have been developed at Rice
[35, 36]. The improved resolution of these representations will result in attributes that are more
informative than those obtained using existing methods.

The extension of the time-frequency framework to higher-dimensional local frequency anal-
ysis has resulted in a method for volume attribute extraction from 3D seismic data [81]. Figure
4 illustrates a newdip measure applied to a 3D data set. The dip is extracted from a 3D local
slant-stack power spectrum. It has already been shown that with local slant-stack good results
can be obtained for dip and azimuth extraction [81]. However, in the localangle-temporal fre-
quency/scaleor slowness-temporal frequency/scalespectrum a number of other attributes can be
devised. The local slant-stack enables the extraction of attributes along or perpendicular to the
prevailing reflector dip. This reflector-based signal analysis will result in attributes with more
geological significance than those in current use.

Local spectral analysis has the potential to become an extremely effective tool for automated
pre-stack data analysis and feature extraction. The development of fast and robust algorithms
will be critical for the success of transferring applications from the post-stack to the pre-stack
domain. There exists a great need for signal analysis methods that can aid velocity model building
for 3D pre-stack imaging, which is currently a very time consuming process. Automated velocity
analysis based on high-resolution local slant stacks is currently under investigation. In addition, the
local spectral analysis tools that have been developed at Rice are better able to cope than existing
attribute extraction methods with the low signal-to-noise-ratios involved. As a result, pre-stack
attribute extraction and processing should be feasible. A potential application of local spectral
analysis methods in the pre-stack domain is robust estimation of offset dependent parameters as an
extension of AVA/AVO analysis.

Recent developments in time-frequency and time-scale analysis have created exciting
possibilities for improvements and new directions in quantitative seismic signal interpreta-
tion. We propose to conduct research in the following areas: time-frequency based attribute
extraction, multi-dimensional local spectrum analysis, seismic sequence analysis and event
characterization, pre-stack seismic attribute analysis, and scale analysis of seismic reflection
data.

B.1 Time-frequency based attributes

Seismic attribute extraction based on TFRs has several advantages. Besides the fact that the TFR
provides a theoretical foundation for attribute extraction, it is also advantageous to extract at-
tributes in the time-frequency domain on practical grounds. Noise in the attribute section can be
suppressed by either processing in the time-frequency domain or the use of signal adaptive ker-
nels in the computation of the TFRs. TFR-based seismic attributes are considerably more robust
than complex-trace attributes. In Figure 3 we showed how a signal adaptive kernel time-frequency
representation result in a robust high-resolution instantaneous frequency measurement.

However, besides mean frequency there are a number of other parameters that characterize a
signal. The time-frequency or time-scale representation of a seismic signal or a well log consists
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Figure 4:Multi-dimensional seismic attributes. (a) Time slice image from a 3D seismic data set from the
Gulf of Mexico. (b) “Local dip” slice obtained from a 3D local slant-stack of the seismic data [79, 81]. A
salt dome (at left), several faults (extending radially from the salt dome), and several channels (to the right
of the salt dome) are distinctly visible.
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of sets of ridges. The orientations and widths of these ridges are characteristic for the signal. Once
computed, the TFR can be processed using edge detection and other image processing algorithms
to extract ridge orientations and widths. In this respect, thereassignmentmethod has provided very
promising results [70]. Another fruitful approach is to regard the TFR as a two-dimensional sta-
tistical distribution. Hence, we can use higher order statistical moments, such as local bandwidths
(proportional to1=Q), skewness and kurtosis to characterize seismic waveforms [79, 88].

� Aim: development of new seismic attributes based on TFRs.

� Short-term goals: implementation and further testing of new algorithms.

� Mid-term goals: development of robust and geological meaningful attributes.

� Status: a great number of algorithms are already available, including reassignment [70],
ridge tracking and higher order attributes [79].

B.2 Multi-dimensional local spectrum analysis

Three-dimensional local slant stack analysis has already resulted in very high resolution 3D dip
and azimuth attributes, as shown in Figure 4. The local slant stack is based on the extension
of time-frequency analysis to multi-dimensional local wavenumber-frequency analysis. The slant
stack in a three-dimensional geometry, wherex = fx1; x2; x3g, is given by

Rfug = �u(p; � ) =

Z
x
32IR3

u(x; � + pixi)dx; (10)

wherep = fp1; p2; p3g is a 3D slowness vector and� is the intercept time. The relation between
the wavenumber vectork = fk1; k2; k3g, slowness vectorp ,and temporal frequencyf is given by

k = fp: (11)

Hence, there is an intimate relation between the temporal Fourier transformation of the slant stack
and the wavenumber-frequency spectrum~u(k; f):

~u(k; f) = ~u(fp; f) = �u(p; f); f � 0: (12)

With this relation in mind, a local slant stack power spectrum has been defined in [79], based
on the multi-dimensional Wigner distributionW (x; t;k; f). The local slowness-frequency power
spectrum is obtained by interpolation of the local wavenumber-frequency representation on a(p; f)
grid

S(x; t;p; f) = W (x; t; fp; f) = W (x; t;k; f): (13)

The local slant stack is then obtained by an inverse Fourier transformation of (13) with respect to
the frequencyf

�S(x; t;p; � ) =

Z
f2IR

exp(j2�f� )W (x; t;p; f)df: (14)



22

With this definition, the theory of Cohen’s class time-frequency analysis applies to the local slant-
stack and time-frequency analysis techniques can be readily transferred to multi-dimensional anal-
ysis.

In [81] volume dip and azimuth attributes have been developed, based on a local slant stack
analysis of 3D seismic data. A data example of such a volume dip map is shown in Figure 4
(above). However, presently the algorithms are computationally too intensive for routine imple-
mentation. A short term goal of the research is the development of faster algorithms for the com-
putation of the local slant-stack power spectrum. A possible way to speed up the computation
of the global Radon transform is to perform the slant-stack operation in the wavelet domain [32].
By using only a few significant wavelet coefficients for the computation of the Radon transform
considerable reduction of computation time can be attained. More efficient algorithms may also
bring pre-stack 3D local spectral data analysis within reach.

The volume dip and azimuth developed in [81] are only two of many more attributes that can
be derived from a local slant-stack analysis. Local dip-frequency spectra can be used to extract
frequency attributes along or perpendicular to prevailing event dips. Taking structural dips into
account in the attribute extraction procedure will result in attributes that are more informative on
stratigraphic features in the data.

Seismic volume attributes can also be used to guide fault and event tracking in 3D seismic
data. The volume dip attribute can be used to delineate faults and other discontinuities. The
capability of the volume dip measurement for bringing forward faults and at the same time reducing
coherent reflections is illustrated in Figure 5. The result that is shown on this cross-section indicates
that further research aimed at automatic feature extraction using local slant-stacks may turn out to
be be very rewarding.

� Aim: 3D local spectrum analysis and processing of 3D seismic data.

� Short-term goals: faster algorithms and kernels for multi-D local spectral analysis.

� Long-term goals: event-based seismic attribute analysis, geological feature extraction, and
tracking guided by volume attributes.

� Status: Theoretical development of Wigner-Radon transformations complete [79]. Volume
dip and azimuth extraction algorithms have been developed [79, 88]. Many 1D algorithms
can be extended to the multi-dimensional case, for example, optimum kernel techniques
[5, 4] and reassignment [70].

B.3 Sequence analysis and event characterization

Local Fourier analysis is widely applied in various seismic data analysis problems (see [8, 24, 41],
for example). In many of these applications the difficulty of choosing an analysis window and the
multi-component nature of seismic signals leads to severe complications. Within the framework
of Cohen’s class TFRs, many of the these type of problems can be resolved or at least be better
understood.
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Figure 5:(a) Inline from a 3D seismic data set and (b) local 3D dip attribute. Faults clearly stand out in the dip image, a property that can
be exploited to guide fault recognition and tracking in 3D seismic data.
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The goal of seismic processing and imaging is to extract the (band-limited) reflectivity func-
tion of the subsurface from the seismic data. Once this band-limited reflectivity is obtained, it is
the task of the seismic interpreter to infer the geological significance of a certain reflectivity pat-
tern. The local frequency content of the data can serve as an indicator of the nature of subsurface
stratification. For instance, frequency tuning effects indicate layer thickness and phase changes
can be related to the nature of the reflecting boundary.

Seismic facies analysis is largely an assessment of the distribution of amplitude and fre-
quency characteristics in the seismic image: sudden transitions in signal amplitude mark important
geological boundaries, whereas the frequency characteristics of the interfering events between the
major boundaries indicate geological facies. Hence, a seismic facies description involves the ap-
praisal of non-stationary features in seismic data. Consequently, analysis methods that can handle
data non-stationarity will be most effective for studying and quantifying seismic facies. It is shown
in [80] that the nature of subsurface stratification can be deduced from the TFR of reflection pat-
terns. Results of synthetic models are shown in Figure 6. Note how well the TFR elicits the tuning
of the signal to subsurface stratification, which is not easily observed in the seismic images.

An example of how the observations in the synthetic models can be used to design new
seismic attributes is given in Figure 7. The signal is classified according to the type of tuning
that is observed in the TFR. The result is a subdivision into sequences of the seismic image that
confirms an earlier sequence stratigraphic interpretation of the data [79].

� Aim: quantitative seismic sequence analysis and event characterization.

� Short-term goals: model-based time-frequency and time-scale analysis of seismic sequences
and events.

� Mid-term goals: seismic event characterization in terms of time-frequency patterns, seismic
sequence characterization and classification.

� Status: preliminary results of time-frequency analysis are given in [80, 79]. Wavelet trans-
form analysis of seismic events is described in [22].

B.4 Pre-stack seismic data analysis and attribute extraction

The trend towards the pre-stack imaging and analysis of 3D seismic data has created a demand for
effective data analysis and feature extraction tools. The development of fast algorithms for feature
extraction will be a critical component in the development of more efficient velocity model build-
ing methods for pre-stack migration. In addition, the advent of 3D AVO analysis and the search
for additional pre-stack direct hydrocarbon indicators has created a need for robust parameter es-
timation algorithms. Amplitude versus angle analysis is generally based on a model in which the
impedance contrast can be represented by a step function. However, for impedance contrasts other
than step functions, such as gradual changes or in the presence of thin layers, there is not only a
change of amplitude as a function of angle, but phase or frequency changes may occur as well.
These changes of phase are not readily dealt with [12].
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Figure 6:Time-frequency analysis of seismic sequences. The first sequence is a alternation of high and low
velocity layers, resulting in frequency tuning of the seismic response to the frequency of the layering. The
second sequence is a randomly stratified velocity. No clear pattern can be observed in the TFR. The third
and the fourth sequence are models for a thickening upward and thinning upward layered sequence.
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models of Figure 6.
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Pre-stack local frequency and scale analysis can provide the tools for robust extraction of
frequency and phase versus angle parameters. Our aim is to develop new AVA-like attributes that
are better able to deal with different types of impedance models. Some interesting preliminary
results of scale versus amplitude analysis can be found in [90, 22]. Other interesting pre-stack
attributes that can be derived from TFRs are dispersion and attenuation characteristics (see [32]
for example). Rice has developed techniques for matching signal representations to dispersion
characteristics of signals [7]. These representations will be very well suited for instantaneousQ
analysis of seismic data.

The multi-dimensional local slowness spectra that have been developed in [79], can find
an application for automatic moveout or velocity analysis of pre-stack data. A local slant stack
analysis of a pre-stack data gather results in a slowness-frequency decomposition of signal energy
in each space-time sample. From this local slowness-frequency spectrum a velocity spectrum can
be derived, which can be used in 3D velocity model building. One of the short-term research goals
of the consortium is to further address the implementation of high-resolution local slant stack
analysis for this application.

� Aim: pre-stack attribute extraction and processing. Fully automatic velocity analysis.

� Short-term goals: tests of local slant-stack analysis on pre-stack data, application to velocity
analysis on synthetic and real data.

� Long-term goals: development of new AVA-like and “dispersion” attributes.

� Status: analysis tools are available. Promising results with regard to scale versus angle
analysis are given in [90, 22].

B.5 Seismic scale analysis

The role of scale in seismic wave propagation has only recently emerged as an important topic
of research. The scaling properties of geological media have been under investigation, for in-
stance, in [50]. However, the interaction of seismic waves with scaling media is little understood.
An empirical analysis of the scale content of seismic and well data is needed to assess the im-
portance of scale-based seismic analysis and processing techniques. Rice has developed several
high-resolution time-scale representations that are excellent tools to carry out such an analysis
[35, 36]. The short term goal of this research is the application of scale analysis techniques to a
wide range of well-log and seismic data, in order to understand and quantify the scaling behav-
ior seismic signals. One of the aims of our research is the extension of the traditional frequency
analysis techniques to scale-based analysis and attribute extraction procedures for seismic data
characterization. In addition, the results of the analysis will enable us to tune wavelet analysis and
processing techniques to the scale characteristics of seismic data, thus increasing the effectiveness
of wavelet and scale based signal processing and analysis.

� Aim: appraisal of the scaling properties of seismic and well-log data.
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� Short-term goals: development of seismic data analysis in the local scale domain, develop-
ment of scale-based seismic attributes.

� Mid-term goal: experimental analysis of seismic and well log data to assess the importance
and role of scaling properties.

� Long-term goal: introduction of scale as a parameter for seismic data analysis and process-
ing.

� Status: new time-scale representations have been developed at Rice [35, 36], preliminary
results of scaling analysis of well logs are reported in [50], and seismic time-scale analysis
is described in [22].
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C Wavelet-Based Seismic Data Processing

The wavelet transform has become a standard tool in many areas of signal and image processing,
because a broad range of functions and operators can be concisely represented in the wavelet
domain. For this reason, the wavelet transform is an excellent tool for data compression, signal
estimation (denoising), and feature detection for a wide class of signals. It is rather remarkable that
although the wavelet concept originated in seismic signal analysis [64], only a few cases have been
reported where the wavelet transformation significantly outperforms classical methods for seismic
data processing (see [32], for example).

One of the striking features of seismic and well-log signals is theirhighly non-stationary
character. Because of this property, one would expect that a non-stationary processing technique
based on wavelets could outperform Fourier-based techniques in many areas of seismic data pro-
cessing. Our goal is not simply to apply existing wavelet processing techniques to seismic data,
but rather to develop fundamentally new seismic processing algorithms based on wavelets. We
propose to develop wavelet-based algorithms that are tailor-made for seismic processing tasks, in
the sense that they take the specific properties of seismic signals into account. Based on our expe-
rience at Rice with regard to wavelet design, optimization and processing, we expect that our effort
in this direction will result in effective and efficient wavelet-based processing algorithms.

For many types of signals, such as radar, sonar and medical imagery, Rice has successfully
applied wavelet techniques for non-stationary filtering and analysis [68, 73, 71, 72, 75, 74, 58, 59,
60, 46, 48, 47, 44]. Adaptation of these techniques to seismic signal processing will certainly result
in effective algorithms for signal denoising and feature extraction.

Since the early 1980s, the theory of wavelet transforms has been continuously under de-
velopment. Recently, some important theoretical advances have been made that have important
practical consequences, For example, the result that wavelets provide unconditional bases for a
wide class of signal smoothness spaces means that wavelet transforms of real-world signals (seis-
mic and well-log signals included) will be sparse [26]. Results such as these justify a renewed
effort towards an effective deployment of the wavelet transform in seismic data processing.

It is important to investigate the potential advantages that a multiresolution representation
might provide for both processing and analysis of seismic data. Numerous aspects of wavelet
theory (discrete wavelet representation, continuous wavelet representation, time-scale representa-
tions, frames, lifting, to name a few) will play roles here. We will systematically analyze the data
in these various representations in order to learn about the peculiarities of the data that can be ex-
ploited using the wavelet framework. Results of this analysis will then be used to design optimal
wavelet bases for data processing.

One of the reasons for the limited success to date of wavelet transforms in seismic signal
processing may be the lack of multi-dimensional wavelet-based processing algorithms that take
the trace-to-trace coherence of seismic reflections into account. For instance, it is expected that
multi-dimensional wavelet transformations that are specifically designed for seismic signals will
be far more effective for the suppression of ground-roll and airblast in energy seismic shot-records
than algorithms than existing methods [21].

Wavelet transformations decompose signals into their scale content. As a result, the wavelet
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transform is very well suited for multi-resolution signal analysis and processing. The multi-
resolution decomposition of signals has applications in many areas of seismic signal analysis,
ranging from analysis and fusion of data measured at different scales (well logs, VSP, and surface
seismic, for example) to multi-scale migration [23].

� Aim: A comprehensive framework for non-stationary pre-processing of seismic data. Fast
and effective (data- and problem-adaptive approach) algorithms.

� Short-term goal: Design and optimization of matched wavelet systems.

� Mid-term goal: design of non-stationary noise suppression algorithms, space/time-variant
deconvolution, wavelet processing and reconstruction of irregular sampled data sets using
the lifting paradigm.

� Long-Term goal: General framework for non-stationary signal processing.

The following sections highlight a number of areas in which the Rice team have made signif-
icant contributions to the theory and application of wavelets.

C.1 Denoising of seismic and well-log data

We have made considerable progress in nonlinear wavelet processing for denoising (signal estima-
tion). Our early results were based on the work of Donoho and Johnstone’s SureShrink algorithm
[27, 29, 30] and involved nonlinear thresholding of the wavelet coefficients (see Figure 8). Ap-
plications investigated to date include: (1) speckle reduction in synthetic aperture radar (SAR)
[47, 48, 72, 68], (2) noise suppression in time-frequency images [3], (3) reduction of artifacts
from JPEG compressed images [39, 40, 68], and (4) reduction of speckle noise in TV holography
images [74]. In addition, we have generalized SureShrink by introducing a robust shift-invariant
(redundant/undecimated) wavelet transform [43, 59]. Redundant wavelet denoising has signifi-
cantly enhanced noise reduction capabilities compared to the SureShrink.

-

y
DWT - T� - IDWT -̂

x

Figure 8:Wavelet-based noise reduction algorithm. (DWT – discrete wavelet transform, IDWT – inverse
DWT, andT� – nonlinear threshold function.)

More recently, we have directed our attention towards wavelet-domain probability models
for statistical signal processing. Wavelet-domain Hidden Markov Models (HMMs) improve signal
processing in the wavelet-domain by characterizing both the properties of individual wavelet co-
efficients and the salient interactionsbetweenwavelet coefficients [18]. Applying these models to
signal estimation, we have achieved significant performance improvements over SureShrink and
other state-of-the-art denoising algorithms. Furthermore, using wavelet-domain HMMs, we can
model both signal and noise in order to denoise in structured (correlated) noise environments.
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C.2 Compression

Over the past number of years, we have developed considerable expertise in wavelet-based signal,
image, and video compression [45, 86, 87, 72, 92, 91, 94, 71, 72, 95, 93]. The challenges associ-
ated with compressing natural images and video are well known and extensively studied. In addi-
tion to working with natural images, we have also performed extensive research on wavelet-based
compression algorithms for synthetic aperture radar (SAR), medical, and seismic data/images.
Performance metrics are typically very different for these types of images.

Several groups have developed wavelet-based compression algorithms for seismic data suit-
able for limited usage in exploration [11, 98, 31, 89, 45, 1]). However, several key aspects of lossy
compression of pre-stack seismic data have to a large degree been ignored in these early attempts.
In [45] we demonstrated that lossy compression can render seismic data useless due to significant
phase distortion,which causes later processing to introduce severe image artifacts (“phantom” data
in locations where geology was not present).

While we do not foresee that this consortium will dedicate substantial effort towards devel-
oping new seismic data compression algorithms, we do intend to keep the consortium members
abreast of developments in compression technology. We strongly believe that much additional re-
search is required before compression technology will be optimally matched to the seismic data
application. However, the experiments in [45] give us confidence that good solutions exist and are
within reach. Rice University has been elected as an Associate Member of the Seismic Compres-
sion Diagnostic Initiative (SCDI), an industrially sponsored consortium for developing metrics for
evaluating compression algorithms on seismic data.

C.3 Lifting: Adaptive wavelets for non-uniformly spaced data

Lifting, a space-domain construction of wavelets [83, 16, 15], is based on a prediction-error de-
composition of the signal rather than the traditional filter bank (see Figure 9). This alternative
architecture results in two primary advantages: (1) the predictorP and updateU can be arbi-
trary (time-varying/nonlinear) operators and the transform remains invertible, and (2) the predictor
and update can work with non-uniformly sampled data. In concert, these two properties enable
flexible nonlinear and adaptive mulitscale signal and image decompositions on potentially non-
uniformly sampled grids. Such algorithms are ideally suited for adapting to the non-stationary,
oft-non-uniformly sampled seismic data.
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Figure 9:(a) Wavelet filter bank stage, withh andg low and high pass filters, respectively. (b) Equivalent
lifting stage, withP the predictor andU the update.
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Promising preliminary results on lifting-based denoising and compression can be found in
[16, 15]. In these papers, we investigate the capabilities of the lifting approach for adaptive wavelet
transforms that optimize (minimize) data-based prediction errors to match the characteristics of a
given signal. The motivation behind these transforms is that better predictors lead to a transform
that provides a more efficient representation of the signal. Since the compression property of
signal transformations is the key to successful signal processing, the adaptive transforms derived
here have the potential to improve transform-based processing.

C.4 Design and optimization of wavelet bases

Rice is leader in wavelet design and optimization [69, 85, 38, 37, 49, 61, 96, 62, 78]. Three com-
plementary approaches have been investigated: (1) signal dependent wavelet optimization (given
a signal or set of signal, find the optimal wavelet basis for representation and processing), (2) op-
timal design with respect to the wavelet filters (filter design), and (3) optimal design with respect
to the wavelet basis functions (function design). Using these design approaches, we have devel-
oped new wavelet systems having more vanishing moments, extra smoothness, better frequency
characteristics, more symmetry, and better approximation capabilities compared to conventional
systems.

C.5 Frames

In conventional orthogonal and biorthogonal wavelet systems, the basis functions are tightly con-
strained and resemble anything but seisic waveforms [20]. Clearly, matching the basis to the seis-
mic wavelet could improve the performance of wavelet-based analysis and processing algorithms.
In order to do this, we propose to expand signals onto aframe, a (slightly) overcomplete basis set.
In a frame, the redundancy provides added flexibility in the choice of analysis functions as well as
added robustness to noise, coefficient quantization, numerical errors [20, 76].

C.6 Deconvolution

By working in the wavelet domain, we can trade off between Fourier-domain division and time-
domain techniques such as minimum entropy deconvolution [97, 25]. Wavelet-domain deconvolu-
tion techniques with potential for geophysical applications include wavelet-domain Wiener filters
[67, 65, 66, 34] and the “wavelet-vaguelette” deconvolution technique of Donoho [28].
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Reviewed Journal Publications

[1] C. S. Burrus and J. E. Odegard. “Wavelet Systems and Zero Moments,”IEEE Trans. Signal Processing, to
appear, 1998.

[2] J. E. Odegard and C. S. Burrus “Wavelet design by constrained optimization using minimum moment objective
functions,”IEEE Trans. Signal Processing, to be submitted, Jan 1998.

[3] M. Lang, H. Guo, J. E. Odegard, C. S. Burrus, and R. O. Wells Jr. “Noise reduction using an undecimated
discrete wavelet transform,”IEEE Signal Processing Letters, Vol. 3, pp. 10–12, January 1996.

[4] R. A. Gopinath, J. E. Odegard, and C. S. Burrus, “On the optimal and robust wavelet representation of signals
and the wavelet sampling theorem,”IEEE Transactions on Circuits and Systems II, Vol. 41, pp. 262–277, April
1994.

Reviewed Conference Publications

[1] J. E. Odegard, R. G. Baraniuk and K. L. Oehler, “Instantaneous frequency estimation using the reassignment
method,” Submitted toSociety of Exploration Geophysicists Annual Meeting, Dallas, TX, Nov 1997

[2] C. S. Burrus and J. E. Odegard, “Generalized Coiflets, A New Wavelet System for DSP.,” InProceedings 29th
Symposium on the interface: Computing science and statistics; Mining and Modeling Massive Data Sets In
Science, Engineering, and Business, Houston, TX, May 1997

[3] C. S. Burrus and J. E. Odegard, “Generalized Coiflet Systems,” InProceedings IEEE International Conf. on
Digital Signal Processing, Santorini, Greece, July1997

[4] J. Tian, R. O. Wells, Jr., C. S. Burrus and J. E. Odegard, “,” Rolands BD.

[5] J. E. Odegard and C. S. Burrus, “Smooth biorthogonal wavelets for applications in image compression,” In
Proceedings IEEE Digital Signal Processing Workshop, Loen, Norway, September 1996.

[6] H. Guo, J. E. Odegard and C. S. Burrus, “Teaching wavelets with Java on the information superhighway,” In
Proceedings IEEE Digital Signal Processing Workshop, Loen, Norway, September 1996.

[7] I. W. Selesnick, J. E. Odegard and C. S. Burrus, “Nearly Symmetric Orthogonal Wavelets with Non-Integer DC
Group Delay,” InProceedings IEEE Digital Signal Processing Workshop, Loen, Norway, September 1996.

[8] J. E. Odegard and G. H. Kaufmann and A. Davila, “Wavelet-based methods for speckle noise reduction in TV
holography fringes,” InProceedings of the Applied Optics Divisional Conference of the Institute of Physics, pp.
251–256, Reading, UK, September 1996

[9] J. E. Odegard and C. S. Burrus, “New class of wavelets for signal approximation,” InProceedings IEEE
International Symposium on Circuits and Systems, Atlanta, GA, May 1996.

[10] J. Götze, J. E. Odegard, P. Rieder, and C. S. Burrus, “Approximate moments and regularity of efficiently
implemented orthonormal wavelet basis,” InProceedings IEEE International Symposium on Circuits and
Systems, Atlanta, GA, May 1996.

[11] J. E. Odegard and C. S. Burrus, “Discrete finite variation: a new measure of smoothness for the design of
wavelet basis,” InProceedings IEEE International Conference on Acoustics, Speech and Signal Processing,
Atlanta, GA, May 1996.

[12] J. Tian, R. O. Wells, Jr., H. Guo, C. S. Burrus and J. E. Odegard, “Evaluation of a new wavelet-based
compression algorithm for synthetic aperture radar images,” InSPIE: Conf. on Algorithms for Synthetic
Aperture Radar Imagery III at AeroSense ’96Orlando, FL, April 1996.
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[13] J. E. Odegard, G. H. Kaufmann, and A. Davila, “Nonlinear wavelet processing for reducing speckle noise in
electronic speckle pattern interferometry images,” InProceedings IEEE Image and Multidimensional Digital
Signal Processing, pp. 78–79, Belize City, Belize, March 1996

[14] J. E. Odegard, H. Guo, C. S. Burrus, and R. G. Baraniuk. “Joint compression and speckle reduction of SAR
images using embedded zerotree models,” InProceedings IEEE Image and Multidimensional Digital Signal
Processing, pp. 80–81, Belize City, Belize, March 1996

[15] C. S. Burrus, H. Guo, M. Lang, and J. E. Odegard, “Application of Wavelets to Denoising and Compression,”
Texas Systems Day, University of Houston, October 14, 1995.

[16] D. Wei, J. E. Odegard, H. Guo, M. Lang, and C. S. Burrus, “Simultaneous noise reduction and SAR image data
compression using best wavelet packet basis,” InProceedings IEEE International Conference on Image
Processing, Vol. III, pp. 200–203, Washington, DC, October 1995.

[17] D. Wei, M. Lang, H. Guo, J. E. Odegard, and C. S. Burrus, “Quantization noise reduction using wavelet
thresholding for various coding schemes,” InSPIE Mathematical Imaging: Wavelet Applications in Signal and
Image Processing, Vol. 2569, San Diego, CA, July 1995.

[18] M. Lang, H. Guo, J. E. Odegard, and C. S. Burrus, “Nonlinear redundant wavelet method for image
enhancement,” InProceedings IEEE Workshop on Nonlinear Signal and Image Processing, pp. 754–757, Neos
Marmaras, Halkidiki, Greece, June 20-22,1995.

[19] H. Guo, M. Lang, J. E. Odegard, and C. S. Burrus, “Nonlinear shrinkage of undecimated DWT for noise
reduction and data compression,” InProceedings IEEE International Conf. on Digital Signal Processing, pp.
332–337, Limassol, Cyprus, June 1995.

[20] J. E. Odegard, H. Guo, M. Lang, C. S. Burrus, R. O. Wells Jr., L. M. Novak, and M. Hiett. “Wavelet based SAR
speckle reduction and image compression,” InAlgorithms for Synthetic Aperture Radar Imagery II at AeroSense
’95, Vol. 2487, pp. 259–271, Orlando, FL, April 1995.

[21] M. Lang, H. Guo, J. E. Odegard, C. S. Burrus, and R. O. Wells, Jr. “Nonlinear processing of a shift-invariant
DWT for noise reduction,” InSPIE Conf. on Wavelet Applications, Vol. 2491, pp. 640–651, Orlando, FL, April
1995.

[22] D. Wei, H. Guo, J. E. Odegard, M. Lang, and C. S. Burrus, “Simultaneous speckle reduction and data
compression using best wavelet packet bases with application to SAR based ATD/R,” InSPIE Conf. on Wavelet
Applications, Vol. 2491, pp. 1131–1141, Orlando, FL, April 1995.

[23] R. A. Gopinath, M. Lang, H. Guo, and J. E. Odegard. “Wavelet-based post-processing of low bit rate transform
coded images,” InProceedings IEEE International Conference on Image Processing, Vol. II, pp. 913–917,
Austin, TX, November 1994.

[24] H. Guo, J. E. Odegard, M. Lang, R. A. Gopinath, I. W. Selesnick, and C. S. Burrus. Wavelet based speckle
reduction with application to SAR based ATD/R. InProceedings IEEE International Conference on Image
Processing, Vol. I, pp. 75–79, Austin, TX, November 1994.

[25] J. E. Odegard. Image enhancement by nonlinear wavelet processing. InProceedings Wavelets and Large Scale
Image Processing, International Press, Argonne National Laboratory, Invited lecture, October 1994.

[26] M. Lang, I. W. Selesnick, J. E. Odegard, and C. S. Burrus, “Constrained FIR filter design for 2-band filter banks
and orthonormal wavelets. InProceedings IEEE Sixth Digital Signal Processing Workshop, pp. 211–214,
Yosemite, CA, October 1994.

[27] R. A. Gopinath, M. Lang, H. Guo, and J. E. Odegard. “Wavelet-based post-processing of low bit rate transform
coded images,” InProceedings IEEE International Conference on Image Processing, Vol. II, pp. 913–917,
Austin, TX, November 1994.
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[28] H. Guo, J. E. Odegard, M. Lang, R. A. Gopinath, I. W. Selesnick, and C. S. Burrus, “Wavelet based speckle
reduction with application to SAR based ATD/R,” InProceedings IEEE International Conference on Image
Processing, Vol. I, pp. 75–79, Austin, TX, November 13-16 1994.

[29] R. A. Gopinath, M. Lang, H. Guo, and J. E. Odegard. “Enhancement of decompressed images at low bit rates,”
In SPIE Math. Imaging: Wavelet Applications in Signal and Image Processing, Vol. 2303, pp. 366–377, San
Diego, CA, July 1994.

[30] H. Guo, J. E. Odegard, M. Lang, R. A. Gopinath, I. W. Selesnick, and C. S. Burrus, “Speckle reduction via
wavelet shrinkage with application to SAR based ATD/R,” InSPIE Math. Imaging: Wavelet Applications in
Signal and Image Processing, Vol. 2303, pp. 333–344, San Diego, CA, July 1994.

[31] R. A. Gopinath, J. E. Odegard, and C. S. Burrus, “On the correlation structure of multiplicityM scaling
functions and wavelets,” InProceedings IEEE International Symposium on Circuits and Systems, Vol. 2, pp.
959–962, San Diego, CA, May 1992.

[32] J. E. Odegard, R. A. Gopinath, and C. S. Burrus, “Optimal wavelets for signal decomposition and the existence
of scale limited signals,” InProceedings IEEE International Conference on Acoustics, Speech and Signal
Processing, Vol. 4, pp. IV 597–600, San Francisco, CA, March 1992.

Technical Reports

[1] J. E. Odegard, G. H. Kaufmann, and A. Davila. “Speckle reduction in TV holography fringes using wavelets,”
Technical report, Dept. of ECE, Rice University, Houston, TX, 1995. In Preparation.

[2] J. E. Odegard, M. Lang, H. Guo, R. A. Gopinath, , and C. S. Burrus, “Nonlinear wavelet processing for
enhancement of images,” Tech. Report CML TR94-04, Rice University, Houston, TX, May 1994.

[3] J. E. Odegard, H. Guo, M. Lang, C. S. Burrus, R. O. Wells Jr., L. M. Novak, and M. Hiett. “Speckle reduction
by wavelet thresholding combined with (spatial) polarimetric whitening of SAR for applications to ATD/R,”
Tech. Report CML TR94-08, Rice University, Houston, TX, April 1994.

[4] J. E. Odegard, R. A. Gopinath, and C. S. Burrus, “Design of linear phase cosine modulated filter banks for
subband image compression,” Tech. Report CML TR94-06, Rice University, Houston, TX, February 1994.

[5] J. E. Odegard. “The continuous wavelet transform for analysis of non-stationary signals,” Tech. Report CML
TR91-21, Rice University, Houston, TX, 1991.
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M. S. Crouse and R. G. Baraniuk, “Fast Synthesis of Long-Range Dependent Time Series,” In preparation.

R. L. Claypoole, R. G. Baraniuk, and R. D. Nowak, “Adaptive Wavelet Transforms using Lifting,” In prepa-

ration.

M. Bayram and R. G. Baraniuk, “Multiple Window Time-Varying Spectral Analysis,” Submitted toIEEE

Transactions on Signal Processing, 1997.

R. D. Nowak and R. G. Baraniuk, “Wavelet Domain Filtering for Photon Imaging Systems,” Submitted to

IEEE Transactions on Image Processing, 1997.

R. D. Nowak and R. G. Baraniuk, “Wavelet-Based Transformations for Nonlinear Signal Processing,” Sub-

mitted toIEEE Transactions on Signal Processing, 1997.

December 19, 1997



Richard G. Baraniuk Curriculum Vitae 50

M. Pasquier, P. Gonc¸alvès, and R. G. Baraniuk, “Hybrid Linear/Bilinear Time-Scale Analysis,” Submitted

to IEEE Transactions on Signal Processing, 1996.

K. A Farry, R. G. Baraniuk, and I. D. Walker, “Myoelectric Spectrum Estimation using Thomson’s Mul-

tiple Window Method: Time-Frequency Analysis,” Submitted toIEEE Transactions on Biomedical

Engineering, 1995.

K. A Farry, R. G. Baraniuk, and I. D. Walker, “Myoelectric Spectrum Estimation using Thomson’s Multiple

Window Method: Single Signal Stationary Analysis,” Submitted toIEEE Transactions on Biomedical

Engineering, 1995.

R. G. Baraniuk, “Joint Distributions of Arbitrary Variables Made Easy,” To appear inJournal of Multidi-

mensional Systems and Signal Processing(Special issue on Time-Frequency Analysis), 1998.

R. D. Nowak and R. G. Baraniuk, “Optimal Weighted Highpass Filters using Multiscale Analysis,” To appear

in IEEE Transactions on Image Processing, 1998.

M. S. Crouse, R. D. Nowak, and R. G. Baraniuk, “Wavelet-based Statistical Signal Processing using Hidden

Markov Models,” To appear inIEEE Transactions on Signal Processing(Special issue on Theory and

Applications of Filter Banks and Wavelet Transforms), 1998.

R. G. Baraniuk, “Beyond Time-Frequency Analysis: Energy Densities in One and Many Dimensions,” To

appear inIEEE Transactions on Signal Processing, 1998.

P. Gonçalvès and R. G. Baraniuk, “Pseudo Affine Wigner Distributions:Definition and Kernel Formulation,”

To appear inIEEE Transactions on Signal Processing, 1997.

R. G. Baraniuk and D. L. Jones, “Wigner-Based Formulation of the Chirplet Transform,”IEEE Transactions

on Signal Processing, Vol. 44, No. 12, pp. 3129–3135, December 1996.

K. A Farry, I. D. Walker, and R. G. Baraniuk, “Myoelectric Teleoperation of a Complex Robotic Hand,”

IEEE Transactions on Robotics and Automation, Vol. 12, No. 4, pp. 775–788, August 1996.

R. G. Baraniuk, “Signal-Dependent Time-Frequency Representations,” Section 6.3.3 inIntroduction to
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R. G. Baraniuk, “Covariant Time-Frequency Representations Through Unitary Equivalence,”IEEE Signal

Processing Letters, Vol. 3, No. 3, pp. 79–81, March 1996.

R. G. Baraniuk, “Limitations of the Kernel Method for Joint Distributions of Arbitrary Variables,”IEEE

Signal Processing Letters, Vol. 3, No. 2, pp. 51–53, February 1996.
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Transactions on Signal Processing, Vol. 42, No. 12, pp. 3530–3535, December 1994.
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M. S. Crouse, R. D. Nowak, and R. G. Baraniuk, “Hidden Markov Models for Wavelet-based Signal Process-

ing,” 30th Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, CA, November

1996.

R. G. Baraniuk, “Joint Distributions of Arbitrary Variables Made Easy,”Seventh IEEE Digital Signal Pro-

cessing Workshop, Loen, Norway, September 1996.

C. C. Carson and R. G. Baraniuk, “Window Design for Signal-Dependent Spectrogram using Optimal-

Kernel Techniques,”SPIE Technical Conference on Advanced Signal Processing Algorithms, Archi-

tectures, and Implementations VI, Denver, CO, August, 1996.

M. Bayram and R. G. Baraniuk, “Multiple Window Time-Frequency and Time-Scale Analysis,”SPIE Tech-
nical Conference on Advanced Signal Processing Algorithms, Architectures, and Implementations

VI , Denver, CO, August, 1996.

R. D. Nowak and R. G. Baraniuk, “Wavelet-based Decompositions for Nonlinear Signal Processing,”SPIE

Conference on Wavelet Applications in Signal and Image Processing, Denver, CO, August, 1996.

M. Pasquier, P. Gonc¸alvès, and R. G. Baraniuk, “Hybrid Linear/Bilinear Time-Scale Analysis,”IEEE-SP

International Symposium on Time-Frequency and Time-Scale Analysis, Paris, France, June 1996.

M. Bayram and R. G. Baraniuk, “Multiple Window Time-Frequency Analysis,”IEEE-SP International Sym-

posium on Time-Frequency and Time-Scale Analysis, Paris, France, June 1996.

L. F. Wisur-Olsen and R. G. Baraniuk, “Optimal Phase Kernels for Time-Frequency Analysis,”IEEE Inter-

national Conference on Acoustics, Speech and Signal Processing — ICASSP96, Atlanta, GA, May

1996.

P. Gonçalvès and R. G. Baraniuk, “Pseudo Affine Wigner Distributions,”IEEE International Conference on

Acoustics, Speech and Signal Processing — ICASSP96, Atlanta, GA, May 1996.

R. D. Nowak and R. G. Baraniuk, “Optimally Weighted Highpass Filters using Multiscale Analysis,”IEEE

Southwest Symposium on Image Analysis and Interpretation, San Antonio, TX, April 1996

M. Bayram and R. G. Baraniuk, “Multiple Window Time-Varying Spectral Analysis,”Proceedings of the

30th Annual Conference on Information Sciences and Systems — CISS 1996, Princeton, NJ, March

1996.

J. E. Odegard, H. Guo, C. S. Burrus, and R. G. Baraniuk, “Joint Compression and Speckle Reduction of SAR

Images using Embedded Zerotree Models,”Proceedings of the Ninth IMDSP Workshop on Image and

Multidimensional Digital Signal Processing, Belize City, Belize, March 1996.

R. G. Baraniuk, P. Flandrin, and O. Michel, “Measuring Time-Frequency Information and Complexity Using

the Rényi Entropies,”IEEE International Symposium on Information Theory, Whistler, BC, Septem-

ber 1995.
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K. A. Farry, R. G. Baraniuk, and I. D. Walker, “Stationary Myoelectric Spectral Estimates from a Nonpara-

metric, Low Bias, and Low Variance Estimator,”International Conference of the IEEE Engineering

in Medicine and Biology Society (EMBS), Montreal, September 1995.

K. A. Farry, R. G. Baraniuk, and I. D. Walker, “Nonparametric, Low Bias, and Low Variance Time-Frequency

Analysis of Myoelectric Signals,”International Conference of the IEEE Engineering in Medicine and

Biology Society (EMBS), Montreal, September 1995.

K. A. Farry, I. D. Walker, and R. G. Baraniuk, “Functional Separation of Myoelectric Signals using Thom-

son’s Multiple Window Method,”Myoelectric Control ’95 (MEC’95), Fredericton, NB, Canada, Au-

gust 1995.

R. G. Baraniuk, “Marginals vs. Covariance in Joint Distribution Theory,”IEEE International Conference on

Acoustics, Speech and Signal Processing — ICASSP95, Detroit, MI, May 1995.

R. G. Baraniuk, “Nonlinear Wigner-Ville Spectrum Estimation using Wavelet Soft-Thresholding,”SPIE

Technical Conference 2491 on Wavelet Applications for Dual-Use, Orlando, FL, April 1995.

R. G. Baraniuk, “Warping Time-Frequency and Time-Scale Representations to Match Signals,”SPIE Tech-

nical Conference 2488 on Visual Information Processing IV, Orlando, FL, April 1995.

R. G. Baraniuk, “Wavelet Soft-Thresholding Time-Frequency Representations,”IEEE International Confer-

ence on Image Processing — ICIP94, Austin, TX, November 1994.

R. G. Baraniuk, “Warped Perspectives in Time-Frequency Analysis,”IEEE-SP International Symposium on

Time-Frequency and Time-Scale Analysis, Philadelphia, PA, October 1994.

R. G. Baraniuk, “Wigner-Ville Spectrum Estimation via Wavelet Soft-Thresholding,”IEEE-SP International

Symposium on Time-Frequency and Time-Scale Analysis, Philadelphia, PA, October 1994.

O. Michel, R. G. Baraniuk, and P. Flandrin “Time-Frequency Based Distance and Divergence Measures,”

IEEE-SP International Symposium on Time-Frequency and Time-Scale Analysis, Philadelphia, PA,

October 1994.

L. Cohen and R. G. Baraniuk, “On Joint Distributions of Arbitrary Variables,”IEEE-SP International Sym-

posium on Time-Frequency and Time-Scale Analysis, Philadelphia, PA, October 1994.

R. G. Baraniuk, “Signal-Dependent Time-Frequency Representations,”Thematic Days on Time-Frequency,

Wavelets, and Multiresolution: Theory, Models, and Applications, Lyon, France, March 1994.

R. G. Baraniuk, “Beyond Time-Frequency Analysis: Energy Densities in One and Many Dimensions,”IEEE

International Conference on Acoustics, Speech and Signal Processing — ICASSP94, Adelaide, Aus-

tralia, April 1994.
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P. Flandrin, R. G. Baraniuk, and O. Michel, “Time-Frequency Complexity and Information,”IEEE Inter-

national Conference on Acoustics, Speech and Signal Processing — ICASSP94, Adelaide, Australia,

April 1994.

R. G. Baraniuk, P. Flandrin, and O. Michel, “Information and Complexity on the Time-Frequency Plane,”

14ème Colloque GRETSI, Juan-Les-Pins, France, September 1993.

R. G. Baraniuk and D. L. Jones, “Unitary Equivalence: A New Twist on Signal Processing,”Proceedings

of the International Symposium on the Mathematical Theory of Networks and Systems (MTNS),

Regensburg, Germany, August 1993.

R. G. Baraniuk and D. L. Jones, “Warped Wavelet Bases: Unitary Equivalence and Signal Processing,”IEEE

International Conference on Acoustics, Speech and Signal Processing — ICASSP93, Minneapolis,

MN, March 1993.

D. L. Jones and R. G. Baraniuk, “An Adaptive Optimal-Kernel Time-Frequency Representation,”IEEE

International Conference on Acoustics, Speech and Signal Processing — ICASSP93, Minneapolis,

MN, March 1993.

D. L. Jones and R. G. Baraniuk, “A Simple Scheme for Adapting Time-Frequency Representations,”IEEE-

SP International Symposium on Time-Frequency and Time-Scale Analysis, Victoria, BC, Canada,

October 1992.

R. G. Baraniuk and D. L. Jones, “New Signal-Space Orthonormal Bases Via the Metaplectic Transform,”

IEEE-SP International Symposium on Time-Frequency and Time-Scale Analysis, Victoria, BC, Canada,

October 1992.

D. L. Jones and R. G. Baraniuk, “An On-Line Signal-Dependent Time-Frequency Representation,”Fifth

IEEE Digital Signal Processing Workshop, Starved Rock, IL, September 1992.

R. G. Baraniuk and D. L. Jones, “New Dimensions in Wavelet Analysis,”IEEE International Conference on

Acoustics, Speech and Signal Processing — ICASSP92, San Francisco, CA, May 1992.

R. G. Baraniuk, D. L. Jones, T. Brotherton, and S. L. Marple, “Applications of Adaptive Time-Frequency

Representations to Underwater Acoustic Signal Processing,”25th Asilomar Conference on Signals,

Systems, and Computers, Pacific Grove, CA, November 1991.

D. L. Jones and R. G. Baraniuk, “Efficient Computation of Densely Sampled Wavelet Transforms,”SPIE

Technical Conference on Advanced Signal Processing Algorithms, Architectures, and Implementa-

tions II, San Diego, CA, July 1991.

R. G. Baraniuk and D. L. Jones, “A Radially Gaussian, Signal-Dependent Time-Frequency Representation,”

IEEE International Conference on Acoustics, Speech and Signal Processing — ICASSP91, Toronto,

Canada, May 1991.
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D. L. Jones and R. G. Baraniuk, “Signal Dependent Time-Frequency Representations,”Fourth IEEE Digital

Signal Processing Workshop, New Paltz, NY, September 1990.

R. G. Baraniuk and D. L. Jones, “Optimal Kernels for Time-Frequency Analysis,”SPIE Technical Confer-

ence on Advanced Signal Processing Algorithms, Architectures, and Implementations I, San Diego,

CA, July 1990.

INVITED PRESENTATIONS

“Wavelet-based Statistical Signal and Image Models,” International Wavelets Conference: Wavelets and

Multiscale Methods, Tangers, Morocco, April 17, 1998.

“Signal Analysis and Modeling using Time-Frequency Representations and Wavelets,” INRIA Rocquen-

court, France, October 2, 1997.

“An Introduction to Time-Frequency Analysis with Applications,” Statistics Colloquium, Rice University,

September 8, 1997.

“Time-Frequency Analysis Applications in Geophysics,” Shell Research, Houston, March 26, 1997.

“An Introduction to Time-Frequency Analysis,” Haliburton Geophysics, Houston, December 10, 1996.

“Time-Frequency Analysis: Theory and Application,” Department of Electrical Engineering, Michigan State

University, October 25, 1996.

“Time-Frequency Analysis for Geophysics,” Department of Mining and Petroleum Engineering, Technical

University of Delft, Netherlands, August 29, 1996.

“New Trends in Time-Frequency Analysis,” University of Colorado at Boulder, Department of Electrical

Engineering, August 9, 1996.

“Time-Frequency Signal Analysis,” Plenary atDynamics Days ’96, Lyon, France, July 12, 1996.

“Energy Densities Beyond Time-Frequency: Overview and Synthesis,” Invited tutorial atIEEE-SP Interna-

tional Symposium on Time-Frequency and Time-Scale Analysis, Paris, France, June 17, 1996.

“Wavelet-based Machinery Diagnostics,” Euclid Laboratories, Rockwell Automation, Cleveland, OH, June

4, 1996.

“Time-Frequency Analysis and Wavelets,” Texas Instruments, Houston, May 28, 1996.

“Seismic Attributes in Time-Frequency,” Mobil Exploration and Producing Technical Center, Dallas, TX,

April 22, 1996.

“Time-Frequency Analysis in Biomedical Engineering,” University of Houston, Department of Biomedical

Engineering, March 29, 1996.
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“Interplay between Marginals and Covariance in Joint DistributionTheory,” Office of Naval Research Time-

Frequency/Time-Scale Analysis Workshop, Princeton, NJ, March 19, 1996.

“Wavelet-based Seismic Features,” Exxon Production Research Company, Houston, February 26, 1996.

“Wavelets in Medicine and Biology,” 14th Annual Houston Conference on Biomedical Engineering Re-

search, February 8, 1996.

“Digital Signal Processing is Changing Your Life,” Major Gifts Committee Luncheon on Computational

Engineering, Rice University, January 24, 1996.

“Signal and Image Processing using Time-Frequency Representations,” Schlumberger Wireline and Testing,

Sugar Land, TX, August 3, 1995.

“New Directions for Time-Frequency Analysis,” Mobil-Exxon-Conoco-Arco Wavelets Consortium, Exxon

Production Research, Houston, July 10, 1995.

“New Time-Frequency Representations for Time-Varying Spectral Analysis,” Western Geophysical, Hous-

ton, July 6, 1995.

“Adaptive Time-Frequency Representations,” Acoustics and Radar Technology Laboratory, SRI Interna-

tional, Menlo Park, CA, March 10, 1995.

“Signal-Dependent Time-Varying Spectral Analysis,” Imaging and Detection Program, Lawrence Livermore

National Laboratory, Livermore, CA, March 8, 1995.

“Group Theory, Coordinates, and Time-Frequency Analysis,” Department of Electrical and Computer En-

gineering, University of Michigan, June 24, 1994.

“Répresentations Temps-Frequence Adaptatives,” Thematic Days on Time-Frequency, Multiresolution, and

Wavelets, INSA Lyon, France, March 10, 1994.

“Time-Frequency Analysis in the Frozen North,” IEEE Communications Chapter Seminar Series, University

of Manitoba, Canada, December 21, 1993.

“Unitary Equivalence: A New Twist on Signal Processing,” Western Atlas International, Houston, November

22, 1993.

“Twisting Signal Processing,” Texas Systems Day, University of Texas at Arlington, November 20, 1993.

“Unitary Equivalence: A New Twist on Signal Processing,” Joint IEEE Circuits and Systems and Signal

Processing Societies Colloquium, Houston Chapter, November 16, 1993.

“Warped Time-Frequency and Time-Scale Representations,” Department of Communications, Technical

University of Vienna, March 8, 1993.
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“Adaptivity, Metaplecity, and Warping in Time-Frequency Analysis,” Workshop on Wavelets, Department

of Mathematics, University of Vienna, March 6, 1993.

“Répresentations Temps-Frequence D´ependantes du Signal,” CNRS Groupe de Recherche GdR 134, Tele-

com Paris, France, January 19, 1993.

“The Karplus-Strong Sound Synthesis Algorithm,” CERL Sound Group Intensive Workshop on Sound Com-

putation, University of Illinois, July 15–24, 1992.

“Getting Lost in Time-Frequency,” Department of Electrical and Computer Engineering, University of

Wisconsin-Madison, June 29, 1992.

“New Techniques for Time-Frequency Analysis,” Department of Biomedical Engineering, The Johns Hop-

kins University, May 12, 1992.

“Signal-Dependent Time-Frequency Analysis or Else,” Department of Electrical and Computer Engineering,

The Ohio State University, March 27, 1992.

“Sound Synthesis and Time-Varying Signal Analysis,” CERL Sound Group Intensive Workshop on Sound

Computation, University of Illinois, May 22–31, 1991.
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CURRICULUM VITAE

Name: Charles Sidney Burrus
Address: 2336 University Blvd., Houston, TX 77005-2647

Telephone: (713) 529-3125, home; 527-4020, office; (713) 524-5237, FAX; e-mail: csb@rice.edu

Birthplace Abilene, Texas, October 9, 1934; ss# 465-54-5122

Family: Married to Mary Lee Powell, 1958; two adult children

Education: B.A., 1957; B.S. in E.E., 1958; M.S., 1960, Rice University
Ph.D., 1965, Stanford University

Honors: George R. Brown Teaching Awards1969, 1974, 1975, 1976, 1980 and 1989
IEEE ASSP SocietySenior Paper Award, 1974
Alexander von Humboldt Foundation Senior Award 1975
Senior Fulbright Fellow 1979
IEEE Fellow 1981
Humboldt Foundation Reinvitation Award 1982
Visiting Fellow at Trinity College, Cambridge, Summer 1984
IEEE ASSP SocietyTechnical Achievement Awardfor research in DSP, 1985
IEEE ASSP SocietyDistinguished Lecturer, 1990-91
IEEE CAS SocietyDistinguished Lecturer, 1991-92
IEEE Signal Processing SocietySociety Award, 1995
Appointed the Maxfield and Oshman Professor of Engineering at Rice, 1995
Meritorious Service Award, Assoc. of Rice Alumni, 1997.

Memberships: IEEE, ASEE, Tau Beta Pi, Sigma Xi, Scientia, Houston Philosophical Society

Editorships: Associate Editor: Circuits, Systems, and Signal Processing, 1984 –
Consulting Editor: Springer -Verlag Publishers, 1986 – 96.

Registration: Registered Professional Engineer in Texas, #26351, April 1967
Positions:

1960-62 U.S. Navy Nuclear Power School, Instructor
1964, 65 Stanford University, Lecturer in Elec. Engineering (Summers)
1965-70 Rice University, Assistant Professor of Electrical Engineering
1970-74 Rice University, Associate Professor of Electrical Engineering
1974-present Rice University, Professor of Electrical Engineering

1972-78 Master, Lovett College, Rice University
1984-92 Chairman, Electrical and Computer Engineering Dept., Rice University
1992-present Director of the Computer and Information Technology Institute, Rice Univeristy

1966-73 Baylor College of Medicine, Visiting Professor
1975-76, 79-80 University of Erlangen-N¨urnberg, Germany, Guest Professor
1982, 90, 97 University of Erlangen-N¨urnberg, Germany (Summers)
1989-90 MIT, Visiting Professor of Electrical Engineering

Consultant to: TI, NSF, Aware Inc., MathWorks Inc., M.D. Anderson Research
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Recent Grants: NSF: ENG 78-09033 for Digital Filtering, 3/78 – 2/81
NSF: ENG 78-11507 for Equipment in Signal Analysis, 8/78 – 80
NSF: ECS 81-00453 for Structures in Signal Processing, 2/81 – 11/83
NSF: ECS 83-14006 for Algorithms and Signals in DSP, 12/83 – 5/87
NSF: ECS 84-05435 for a Research Computer Facility, 1984–85
AFOSR: DARPA URI, Computational Mathematics Lab. 1990 – 2000
NSF: ECS-9018681 for Integration of Computing into the Engr. Classroom, 1990 – 93
Nortel: Grant for Research in Digital Filter Design, 1992–98
TI: Grant for Research on Wavelet Based DSP, 1993–94
NASA: Grant for Wavelet Based Signal Processing Research, 1994–95
Texas: ATP-Research grant, “Data Compression based on Wavelets”, 1994–96
NSF: MIP-9316588 “Digital Filter Design”, 1994–97.
NSF: Grant, “Multiprocessor Cluster Computing”, 1995-2000.
Texas: ATP-Research grant, “Wavelet based Image Processing”, 1996–98.

Courses Taught: Engineering 241/Electrical Circuits
Engineering/Sociology 360/World Dynamics
Electrical Engineering 342/Electronics
Electrical Engineering 401/Linear System Theory
Electrical Engineering 507/Nonlinear Analysis
Electrical Engineering 502/Network Synthesis
Electrical Engineering 531/Digital Signal Processing
Electrical Engineering 696/Seminar in Digital Filtering
EECS 6.341/Discrete -Time Signal Processing (MIT)

Mentor in the Rice Fellows Program

Masters, PhD, and Post Doctoral Fellows Supervised

1. R. R. Read, “A Method of Computing the Fast Fourier Transform,” M.S. Thesis, June 1968.

2. R. S. McKnight, “A Numerical Procedure for Distributed RC Network Synthesis,” M.S. Thesis, June 1969.

3. T. L. Chang, “Approximate Solutions of Nonlinear Systems using a Time Varying Linear Systems,”M.S. Thesis,
June 1969.

4. M. L. Fontenot, “Analytic Approximation of Galerkin’s Procedure for Computing Forced Oscillations of Non-
linear Systems,”Ph.D. Thesis, June 1970.

5. F. S. Souto, “A Mixed Flat and Equal Ripple Criterion for Filter Design,” Ph.D. Thesis, June 1970.

6. T. L. Chang, “Nonlinear Oscillations in Quantized Linear Discrete-Time Systems,” Ph.D., 1971.

7. R. R. Read, “Geometry of Partial Sums,” Ph.D. Thesis, May 1971.

8. R. C. Agarwal, “On Realization of Digital Filters,” Ph.D. Thesis,December1973.

9. R. A. Meyer, “Analysis and Design of Periodically Time-Varying Digital Filters,” Ph.D. Thesis, April 1974.

10. Jatinder Gulati, “Time Domain Design of Recursive Digital Filters with Prespecified Poles,”M.S. 1974.

11. Shuni Chu, “Application of Distributed Arithmetic to Digital Signal Processing,” M.S. Thesis, July 1979.

12. C. M. Loeffler, “Finite Register Effects in Block Digital Filters,” M.S. Thesis, May 1979.

13. Shuni Chu, “On Efficient Digital Filtering,” Ph.D. Thesis, May, 1981.
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14. C. M. Loeffler, “Analysis and Design of Periodically Time-Varying Digital Filters,” Ph.D. Thesis, 1982.

15. H. W. Johnson, “The Design of DFT Algorithms,” Ph.D. Thesis, April 1982.

16. M. T. Heideman, “Fast Algorithms for the DFT and Convolution with Constrained Inputs and Restricted Out-
puts,” Ph.D. Thesis, May 1986.

17. H. V. Sorensen, “FFT Algorithms for Constrained Data,” Ph.D. Thesis, May 1988.

18. R. A. Gopinath, “Analysis of Scale – Time Perturbed Signals Using Wavelets,” M.S. Thesis, May 1990.

19. A. W. Soewito, “Least Squared Error Methods in FIR Digital Filter Design,” Ph.D. Thesis, Dec. 1990.

20. José A. Barreto, “Lp-Approximation by the Iteratively Reweighted Least Squares Method and the Design of
Digital FIR Filters in One Dimension”, M.S. Thesis, August 1992.

21. R. A. Gopinath, “Wavelets and Filter Banks – New Results and Applications”, Ph.D. Thesis, August 1992.

22. Haitao Guo, “Theory and Applications of the Shift-Invariant, Time-Varying and Undecimated Wavelet Trans-
form”, MS Thesis, April 1995.

23. Dong Wei, “Image Data Compression Using Wavelet Decomposition”, MS Thesis, April 1995.

24. Jan Erik Odegard, “Moments, Smoothness and Optimization of Wavelet Systems”, Ph.D. Thesis, February 1996.

25. Ivan W. Selesnik, “New Techniques for Digital Filter Design”, Ph.D. Thesis, March 1996.

26. Haitao Guo, “Wavelet for Ajpproximate Fourier Transform and Data Compression”, Ph.D. Thesis, April 1997.

27. James Lewis, M.S. research in progress.

28. Markus Lang, Post doctoral fellow from University of Erlangen, 1993–95.

29. Jürgen Götze, Post doctoral fellow from the Technical University of Munich, 1995–96.

30. Ivan W. Selesnik, Post doctoral fellow from Rice Univerisity, 1996–97.

31. Hou Jin Chen, Visiting Scholar from Northern Jiaotong Universioty, Beijing, China, 1997–98

32. Nuria Gonzalez Prelcic, Visiting Scholar from Universidad de Vigo, Vigo, Spain, 1997–98.

Research Grants:

NSF Grant GK 807 for Research in Nonlinear Systems, 1966-1968, $18,700.

NSF Grant GK 23697, Digital Signal Representation and Filtering” (with T.W. Parks), 9/01/70 – 9/01/72, $86,300;
renewed through 9/01/75, $92,900.

A.P. Sloan Foundation Grant, “The Use of Macro-Simulators of Global Interactions in Motivation and Training of
Engineering Students,” (Sub-allotment) Sep. 1972 – Sep. 1975.

NSF Grant ENG 75-22862, “Digital Signal Representation and Filtering” (with T.W. Parks), March 1976 – Aug.
1978, $88,200.

DOD Grant DASG 60-77-C-0091 and 60-78-C-0082, for Ballistic Missile Defense Advanced Technology Center,
“Efficient Techniques for Signal Processing,” May 1977 – May 1979, (with T.W. Parks and P. Kazakos), $85,000.

NSF Grants ENG 78-09033 and ECS 81-00453, “Digital Signal Representation and Filtering”, and ”Efficient Struc-
tures for DSP”, (with T.W. Parks), 8/1/78 – 11/30/83, $264,520.
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NSF Grant ENG 78-11507, Equipment grant for research in Signal Analysis and Image Processing, Aug. 1978 – Jan.
1980, (with R.J.P. deFigueiredo and others), $62,200.

NSF CER Grant MCS-81-21884, “Rn : An Experimental Local Computer Network to Support Numerical Computa-
tion” (contributing investigator), 6/82 – 6/87; $2,336,700.

NASA Grant NGT 44-006-804, student support for “Research on Digital Signal Processing,” 4/83 – 4/86, $34,300.

NSF Grant ECS 83-14006, “Algorithms and Signal Representation for Digital Signal Processing” (with T.W. Parks),
12/15/83 – 5/31/87; $284,366.

NSF Grant ECS 84-05435, “Computer and Graphics Facility for Research in System Theory” (with five others),
1984 - 5, $64,800.

Texas Instruments, Inc., REDDI contract, “Development of FFT Algorithms for the TMS 320,” 1/88 – 11/88, $26,963.
Aware, Inc., REDDI contract ECE 114, “The Investigation of Wavelets and their Application to Signal Process-
ing,” 6/89 – 6/90, $29,400.

NSF Grant ECS-9018681, “Integration of Computational Resources into the Engineering Classrooms”, 7/1990 –
8/93, $49,977.

DARPA URI, “Computational Mathematics Laboratory for Multiscale Analysis”, (with R. O. Wells), 1990 – 93,
$600,000; renewed for 1993 – 96, $500,000.

Nortel (BNR), Inc., “Design of Digital Filters”, Research grant, 1992–98; $210,000.

Texas Instruments, Inc., “Wavelet Based Signal Processing”, Research grant, 9/1993–94; $20,000.

NASA grant, “Wavelet Based DSP”, (Wells PI), 1994–95, $60,000.

ATP grant from the Texas Higher Education Coordinating Board, “New Data Compression Techniques based on
Time-Varying and Data-Dependent Wavelets”, (with R. Baraniuk), 1994–96, $244,600.

NSF grant MIP-9316588, “Iterative Reweighted Least Squares Design of Digital Filters”, 1994–97, $251,000.

NSF grant, “Multiprocessor Cluster Computing”, 1995-2000, with Zwaenepoel (PI), Kennedy, Symes, and Vardi,
$1,153,000.

ATP grant from the Texas Higher Education Coordinating Board, “Compression, Recognition and Classification
Algorithms for Digital Images”, 1996–98, $150,000, (with Wells, Starkschall, and Cabrera).

NSF CISE Research Instrumentation grant CDA-96-17383, “Design and Evaluation of Architecture, Programming
Environments, and Applications for Shared-Memory Systems”, $83,000, (S. Adve, et al).

AFOSR grant F4962097-1-053 for “Wavelet Compression and Modeling for ATR Problems”, $744,000 for three
years. (Wells PI, with Baraniuk) 1997–2000.

Northrop Grummand subcontract from AFOSR – DARPA for work on SAR and sonar using wavelets. $75,000 over
three years. (with Wells and Baraniuk) 1997 – 2000.

NSF grant suppliment for undergraduate student research, $10,000, 1997.

Consortium in Geophysical Signal Processing, funded by Mobel, Arco, Conoco, and Halliburton, (with Baraniuk and
CML), $25,000 per year per company.

SBI grant from NIH, “Wavelet-Based Automated Chromosome Identification”, (with PSI, Inc and Ken Castleman),
$95,000, Sept. 1997.
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Services to University and Community:

Master of Lovett College, 1972-78
Acting Master of Will Rice College, Spring 1971
Associate of Will Rice College, 1966 - 72
Associate of Lovett College, 1980 - 89
Faculty Sponsor of Student Senate 1971-72
Faculty Sponsor of Student Radio Station KTRU, 1973-1988

Elected member of Faculty Council, 1971-74
Elected member of Rice Alumni Executive Board, 1970-73, 1983-86
Elected member of Rice Engineering Alumni Board, 1970-76
Elected member of University Council, 1977-81
Elected speaker of the Faculty Council, 1978-79
Elected member of the University Presidential Search Committee, 1984-85

University Committees:

Committee of College Masters, 1971-78
Undergraduate Teaching Committee, 1967-72, 1976-79, 1990-94
University Welfare Committee, 1968-71
Undergraduate Affairs Committee, 1968-72
Committee on Undergraduate Curriculum, 1973-1974
Committee on Student Affairs, 1976-77
Danforth Fellowship Selection Committee, 1978; Rhodes and Marshall, 1983-84
Computer Science Program Committee, 1981-1984
Computer Committee, 1982-83
Coordinator of the C.D. Broad Exchange program between Rice and Trinity College

at Cambridge University, 1983–85
Engineering Computer Facility Committee, 1985–87
Committee on Public Lectures, 1986–89, 93–
Ad Hoc Committee on Curriculum Reform, 1986–87
Member of Assoc. Provost and VP for Computing Search Committee, 1986–87, 1991–92
Member of Task Force on Substance Abuse, 1987–88
Member of Planning Board on Computing, 1987-
Chair of University Educational Computing Planning Committee, 1987-89
Member of Owl-Net Steering Committee, 1987 – 89
Member of Search Committee for the Chair of Computer Science, 1989
Member of CITI Steering Committee, 1988–
Member of Alumni Publication Editorial Board, 1991–94
University Self-Study Steering Committee, 1983–84, 1993–95
Member of Search Committee for Director of the Baker Institute on Public Policy, 1993–94
Member of Search Committee for the Dean of Humanities, 1994–95
Member of Search Committee for University Librarian, 1995–96
Member of Library Planning Committee, 1995–
Member of Search Committee for Freidkin Chair in the Jones School, 1995–96
Member of Ad Hoc University Curriculum Committee, 1996–98
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Professional

Elected to IEEE Signal Processing Society’s Ad-Com., 1991-93.

Member of the Technical Committee on Signal Processing of the IEEE Circuits and Systems Society, 1974 - 83
(Chair 1976-1979).

Member of Program Committee for the IEEE International Symposium on Circuits and Systems, Munich, 1976;
Phoenix, 1977; Houston, 1980. Session chair: Chicago, 1981; Espoo, 1988.

Session chair ICASSP: San Diego, CA, 1984, Tampa, FL, 1985, Tokyo, Japan, 1986, Dallas, TX, 1987, New
York, NY, 1988, Glasgow, 1989, Albuquerque, 1990; Toronto, 1991.

Session Chair and Organizer: IEEE ASSP Society1988 Digital Signal Processing Workshop,Stanford Sierra
Lodge, Tahoe, CA, September 16, 1988.

Member of the Technical Program Committee for the Asilomar Conference on Systems, Signals, and Computers,
Pacific Grove, CA, November 1987; November 1988.

IEEE representative for university accreditation of engineering programs, ABET,1980-85, 1986-91.

Member of NSF Panel to evaluate Research Initiation Grant proposals, 1979, 1992.

Member of NSF panel meeting on “Communications Systems and Signal Processing,” January 21-22, 1986.

Member of the NSF Advisory Committee for Electrical, Communications, and Systems Engineering Division,
1986-92; Tri–annual Oversight Committee, May 1987, 1990.

Member of NSF panel to evaluate Presidential Young Investigator Award proposals, 1987.

Member of National Research Council graduate fellowship evaluation panel, Feb. 1988, 1989, 1990.

Member of ONR Electronics Division Board of Visitors, 1992–93

Service, Short Courses, etc.

Texas Society of Professional Engineers teaching award,1968.

J. S. Fulton Service Award from Will Rice College, 1971.

Member of the Technical Advisory Committee of the Model City Program for Houston, 1969-70.

Member of Board of Directors, Citizens for Good Schools, 1974-76.

Science Fair Judge, Houston, TX, 1982-83.

Presented Short Course on “Digital Signal Processing” through the Office of Continuing Studies, May 1972,
May 1973, April 1975, and January 1977.

Taught advanced short course on “Efficient Algorithms for Convolutionand the DFT,” Ford Aerospace, Palo Alto,
CA, July 13-17, 1981; IBM - Federal Systems Div., Manassas, VA, June 1983.

Taught short course on Matlab at MathWorks, Inc., Natick, MA, Aug. 9, 1991.

Taught short course on Wavelets and Wavelet Transforms for Western Geophysical, Inc. Houston, Tx, May 25,
1995; for Halliburton Energy Services, Houston, Tx, Jan. 7, 1997.
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Reviewed Journal Publications

[1] C. S. Burrus, “Versatile FM Transducer,”Electronics, November 13, 1959, vol. 32, no. 46, p. 79; also inDesign
Manual for Transistor Circuits, edited by J. M. Carrol, McGraw-Hill, 1961, p. 207.

[2] C. R. Wischmeyer and C. S. Burrus, “The Varactor Upper-Sideband Up-Converter,”Microwave Journal, vol. 7,
no. 6, June 1964, pp. 87-92.

[3] C. S. Burrus and T. W. Parks, “Time Domain Design of Recursive Digital Filters,”IEEE Trans. on Audio and
Electroacoustics, vol. AU-18, no. 2, June 1970, pp. 137-141.

[4] C. S. Burrus, T. W. Parks, and T. B. Watt, “A Digital Parameter-Identification Technique Applied to Biological
Signals,”IEEE Trans. on Bio-Medical Engineering, vol. BME-18, no. 1, January 1971, pp. 35-37.

[5] C. S. Burrus, “Block Implementation of Digital Filters,”IEEE Trans. on Circuit Theory, vol. CT-18, no. 6,
November 1971, pp. 697-701.

[6] R. R. Read and C. S. Burrus, “Use of the Geometry of Partial Sums in Digital Filter Analysis,”IEEE Trans. on
Audio and Electroacoustics, vol. AU-20, no. 3, August 1972, pp. 213-218.

[7] C. S. Burrus, “Block Realization of Digital Filters,”IEEE Trans. on Audio and Electroacoustics, vol. AU-20, no.
4, October 1972, pp. 230-235.

[8] M. L. Fontenot and C. S. Burrus, “An Analytical Method for Approximating High Order Galerkin Solutions,”
The Journal of Mathematical Analysis and Applications, vol. 42, no. 1, April 1973, pp. 158-173.

[9] R. C. Agarwal and C. S. Burrus, “Fast One-Dimensional Digital Convolution by Multi-Dimensional Techniques,”
IEEE Trans. on Acoustics, Speech, and Signal Processing, vol. ASSP-22, no. 1, February 1974, pp. 1-10.

[10] R. C. Agarwal and C. S. Burrus, “Fast Convolution using Fermat Number Transforms with Applications to
Digital Filters,” IEEE Trans. on Acoustics, Speech, and Signal Processing, vol. ASSP-22, no. 2, April 1974, pp.
87-97.

[11] C. S. Burrus, “A Review ofDiscrete Time Systemsby Cadzow,” IEEE Trans. on Acoustics, Speech and Signal
Processing, vol. ASSP-23, no. 1, February 1975, p. 5. Also inProc. IEEE, vol, 63, no. 8, August 1975, p. 1262.

[12] R. A. Meyer and C. S. Burrus, “A Unified Analysis of Multirate and Periodically Time Varying Digital Filters,”
IEEE Trans. on Circuits and Systems, vol. CAS-22, no. 3, March 1975, pp. 162-168.

[13] R. C. Agarwal and C. S. Burrus, “Number Theoretic Transforms to Implement Fast Digital Convolution,”Proc.
of IEEE, vol. 63, no. 4, April 1975, pp. 550-560.

[14] C. S. Burrus, R. R. Read, and T. W. Parks, “Parameter Identification of Signals Composed of Delayed Exponen-
tials,” IEEE Trans. on Bio-Medical Engineering, vol. BME-22, no. 3, May 1975, pp. 246-248.

[15] R. C. Agarwal and C. S. Burrus, “New Recursive Digital Filter Structures Having Very Low Sensitivity and
Round-Off Noise,”IEEE Trans. on Circuits and Systems, vol. CAS-22, no. 12, December1975, pp. 921-927.

[16] T. B. Watt and C. S. Burrus, “Arterial Pressure Contour Analysis for Estimating Human Vascular Properties,”
Journal of Applied Physiology, vol. 40, no. 2, February 1976, pp. 171-176.

[17] R. A. Meyer and C. S. Burrus, “Design and Implementation of Multirate Digital Filters,”IEEE Trans. on Acous-
tics, Speech and Signal Processing, vol. ASSP-24, no. 1, February 1976, pp. 53-58.

[18] S. K. Mitra and C. S. Burrus, “A Simple Efficient Method for the Analysis of Structures of Digital and Analog
Systems,”Archiv für Elektronik undÜbertragungstechnik (AËU), vol. 31, no. 1, Jan. 1977, pp. 33-36.
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[19] C. S. Burrus, “Index Mapping for Multidimensional Formulation of the DFT and Convolution,”IEEE Trans. on
Acoustics, Speech and Signal Processing, vol. ASSP-25, no. 3, June 1977, pp. 239-242.

[20] J. K. Monts, M. S. Lynn, and C. S. Burrus, “Interdisciplinary Instruction of the Dynamic Simulation of Social
Systems,”Teaching Sociology, vol. 4, no. 4, July 1977, pp. 315-333.

[21] C. S. Burrus, “Digital Filter Structures Described by Distributed Arithmetic,”IEEE Trans. on Circuits and Sys-
tems, vol. CAS-24, no. 12, Dec. 1977, pp. 674-680.

[22] C. S. Burrus and P. W. Eschenbacher, “An In-Place, In-Order Prime Factor FFT Algorithm,”IEEE Trans. on
Acoustics, Speech, and Signal Processing, vol. ASSP-29, no. 4, Aug. 1981, pp. 806-817.

[23] S. Chu and C. S. Burrus, “A Prime Factor FFT Algorithm using Distributed Arithmetic,”IEEE Trans. on Acous-
tics, Speech and Signal Processing, vol. ASSP-30, no. 2, April 1982, pp. 217-227.

[24] C. S. Burrus, “Computation of the Discrete Fourier Transform,”Trends and Perspectives in Signal Processing,
vol. 2, no. 2, Apr. 1982, pp. 1-4.

[25] C. S. Burrus, “Comments on ‘Selection Criterion for Efficient Implementation of FFT Algorithms’,”IEEE Trans.
on ASSP, vol. ASSP-31, no. 1, Feb. 1983, p. 106.

[26] I. Pitas and C. S. Burrus, “Time and Error Analysis of Digital Convolution by Rectangular Transforms,”Signal
Processing, vol. 5, no. 2, March 1983, pp. 153-162.

[27] H. W. Johnson and C. S. Burrus, “The Design of Optimal DFT Algorithms using Dynamic Programming,”IEEE
Trans. on ASSP, vol. ASSP-31, no. 2, April 1983, pp. 378-387.

[28] S. Chu and C. S. Burrus, “Optimum FIR and IIR Multistage Multirate Filter Design,”Circuits, Systems and
Signal Processing, vol. 2, no. 3, July 1983, pp. 361-386.

[29] S. Chu and C. S. Burrus, “A Recursive Realization of FIR Filters, Part I: The Filter Structures,”Circuits, Systems
and Signal Processing, vol. 3, no. 1, Feb. 1984, pp. 3-20.

[30] S. Chu and C. S. Burrus, “A Recursive Realization of FIR Filters, Part II: Design and Application,”Circuits,
Systems and Signal Processing, vol. 3, no. 1, Feb. 1984, pp. 21-57.

[31] M. T. Heideman, D. H. Johnson, and C. S. Burrus, “Gauss and the History of the FFT,”IEEE ASSP Magazine,
vol. 1, no. 4, Oct. 1984, pp. 14-21.

[32] C. M. Loeffler and C. S. Burrus, “Optimal Design of Periodically Time Varying and Multirate Digital Filters,”
IEEE Trans. on ASSP, vol. ASSP-32, no. 5, Oct. 1984, pp. 991-998.

[33] S. Chu and C. S. Burrus, “Multirate Filter Designs using Comb Filters,”IEEE Trans. on Circuits and Systems,
vol. CAS-31, no. 11, Nov. 1984, pp. 913-924.

[34] S. Chu and C. S. Burrus, “Roundoff Noise in Multirate Digital Filters,”Circuits, Systems and Signal Processing,
vol. 3, no. 4, Nov. 1984, pp. 419-434.

[35] H. W. Johnson and C. S. Burrus, “On the Structure of Efficient DFT Algorithms,”IEEE Transactions on ASSP,
vol. ASSP-33, no. 1, Feb. 1985, pp. 248-254.

[36] H. V. Sorensen, D. L. Jones, C. S. Burrus and M. T. Heideman, “On Computing the Discrete Hartley Transform,”
IEEE Transactions on ASSP, vol. ASSP-33, no. 5, Oct. 1985, pp. 1231-1238.

[37] M. T. Heideman, D. H. Johnson, and C. S. Burrus, “Gauss and the History of the FFT,”Archive for History of
Exact Sciences, vol. 34, no. 3, 1985, pp. 265-277.
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[38] M. T. Heideman and C. S. Burrus, “On the Number of Multiplications Necessary to Compute a length-2
n DFT,”

IEEE Transactions on ASSP, vol. ASSP-34, no. 1, Feb. 1986, pp. 91-95.

[39] H. V. Sorensen, M. T. Heideman and C. S. Burrus, “On Calculating the Split Radix FFT,”IEEE Transactions on
ASSP, vol. ASSP-34, no. 1, Feb. 1986, pp. 152–156.

[40] C. S. Burrus, “A Review ofFast Fourier Transform and Convolution Algorithmsby H.J. Nussbaumer,”Signal
Processing, vol. 12, no. 1, January 1987, pp. 106–107.

[41] H. V. Sorensen, D. L. Jones, M. T. Heideman and C. S. Burrus, “Real-Valued Fast Fourier Transform Algo-
rithms,” IEEE Transactions on ASSP,vol. ASSP-35, no. 6, June 1987, pp. 849–863.

[42] C. S. Burrus, “Unscrambling for Fast DFT Algorithms,”IEEE Transactions on ASSP,vol. ASSP-36, no. 7, July
1988, pp. 1086–1087.

[43] N. H. Wells, C. S. Burrus, G. E. Desobry, and A. L. Boyer, “Three-Dimensional Fourier Convolution with an
Array Processor,”Computers in Physics,Sept. 1990, pp. 507–513.

[44] C. S. Burrus, A. W. Soewito, and R. A. Gopinath, “Least Squared Error FIR Filter Design with Transition Bands,”
IEEE Trans. on Signal Processing,vol. 40, no. 6, June 1992, pp. 1327–1340.

[45] H.V. Sorensen and C.S. Burrus, “Efficient Computation of the DFT with only a Subset of Input or Output Points,”
IEEE Trans. on Signal Processing,vol. 41, no. 3, March, 1993, pp. 1184–1200.

[46] P. Steffen, P. Heller, R. A. Gopinath and C. S. Burrus, “Theory of Regular M-Band Wavelet Bases”,IEEE
Transactions on Signal Processing, vol. 41, no. 12, Dec. 1993, pp. 3497–3512. Special issue on wavelets. Also,
CML Technical Report No. TR-91-22, Nov. 1991.

[47] J. O. A. Robertsson, J. O. Blanch, W. W. Symes and C. S. Burrus, “Galerkin–Wavelet Modeling of Wave Propa-
gation: Optimal Finite Difference Stencil Design”,Mathematical and Computer Modelling, vol. 19, no. 1, 1994,
pp. 31–38.

[48] R. A. Gopinath and C. S. Burrus, “On Upsampling, Downsampling and Rational Sampling Rate Filter Banks,”
IEEE Trans. on Signal Processing, vol. 42, No. 4, April 1994, pp. 812–824. Also CML Technical Report No.
TR-91-25, Nov. 1991.

[49] R. A. Gopinath, J. E. Odegard and C. S. Burrus, “Optimal Wavelet Representation of Signals and the Wavelet
Sampling Theorem”,IEEE Transactions on Circuits and Systems II, vol. 41, no. 4, April 1994, pp. 262–277.
Also, CML Technical Report No. TR-92-8, April 15, 1992.

[50] R. A. Gopinath and C. S. Burrus, “Unitary FIR Filter Banks and Symmetry”,IEEE Transactions on Circuits and
Systems, II, vol. 41, no. 10, Oct. 1994, pp. 695–700. Also, CML Tech. Report No. TR-92-17, June 1992.

[51] C. S. Burrus, J. A. Barreto, and I. W. Selesnick, “Iterative Reweighted Least-Squares Design of Digital Filters”,
IEEE Transactions on Signal Processing,vol. 42, no. 11, Nov. 1994, pp. 2926–2936.

[52] R. A. Gopinath and C. S. Burrus, “On Cosine–Modulated Wavelet Orthonormal Bases”, IEEE Trans. on Image
Processing, vol. 43, no. 2, February 1995, pp. 162–176. Also, CML Technical Report No. TR-91-27, March
1992.

[53] C. S. Burrus, “Multiband Least Squares FIR Filter Design”,IEEE Transactions on Signal Processing, vol. 43,
no. 2, Feb. 1995, pp. 412–421.

[54] R. A. Gopinath and C. S. Burrus, “Factorization Approach to Unitary Time–Varying Filter Banks”,IEEE Trans-
actions on Signal Processing, vol. 43, no. 3, March 1995, pp. 666–680. Also, CML Tech. Report No. TR-92-23,
Dec. 1992.
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[55] R. A. Gopinath and C. S. Burrus, “Theory of Modulated Filter Banks and and Modulated Wavelet Tight Frames”,
Applied and Computational Harmonic Analysis: Wavelets and Signal Processing”,vol. 3, October 1995, pp.
3303–326. Also CML Technical Report No. TR-92-10, 1992.

[56] I. W. Selesnick and C. S. Burrus, “Automatic Generation of Prime Length FFT Programs”,IEEE Transactions
on Signal Processing”, vol. 44, no. 1, January, 1996, pp. 14–24.

[57] M. Lang, H. Guo, J. E. Odegard, C. S. Burrus, and R. O. Wells, Jr., “Noise Reduction Using an Undecimated
Discrete Wavelet Transform”,IEEE Signal Processing Letters, vol. 3, no. 1, January 1996, pp. 10–12.

[58] Markus Lang, Ivan W. Selesnick, and C. Sidney Burrus, “Constrained Least Squares Design of 2D FIR Filters”,
IEEE Transactions on Signal Processing, vol. 44, no. 5, May 1996, pp. 1234–1241.

[59] Ivan W. Selesnick, Markus Lang, and C. Sidney Burrus, “Constrained Least Square Design of FIR Filters without
Explicitly Specified Transition Bands”,IEEE Transactions on Signal Processing, vol. 44, no. 8, August 1996,
pp. 1879–1892.

[60] I. W. Selesnick and C. S. Burrus, “Exchange Algorithms for the Design of Linear Phase FIR Filters and Dif-
ferentiators Having Flat Monotonic Passbands and Equiripple Stopbands”,IEEE Transactions on Circuits and
Systems: II, vol. 43, no. 9, September 1996, pp. 671–675.

[61] I. W. Selesnick and C. S. Burrus, “Exchange Algorithms that Complement the Parks-McClellan Algorithm for
Linear Phase FIR Filter Design”,IEEE Transactions on Circuits and Systems: II, vol. 44, no. 2, February 1997,
pp. 137–143.

[62] Ivan W. Selesnick, Markus Lang, and C. Sidney Burrus, “Magnitude Squared Design of Recursive Filters with
the Chebyshev Norm using a Constrained Rational Remez Algorithm”,IEEE Transactions on Signal Processing,
to appear, 1997.

[63] H. Guo, G. A. Sitton and C. S. Burrus, “The Quick Fourier Transform, an FFT based on Symmetries”,IEEE
Transactions on Signal Processing”, vol. 46, no. 2, February 1998.

[64] Haitao Guo and C. Sidney Burrus, “Undecimated Discrete Wavelet Transform and Convolution”,IEEE Transac-
tions on Signal Processing, submitted Oct. 1997.

[65] I. W. Selesnick and C. S. Burrus, “Generalized Digital Butterworth Filter Design”,IEEE Transactions on Signal
Processing, under revision 1996.

[66] P. Rieder, J. G¨otze, J. A. Nossek, and C. S. Burrus, “Parameterization of Orthonormal Wavelet Transforms and
Their Implementation”,IEEE Transactions on Circuits and Systems: II, to appear 1997.

[67] Dong Wei, Jun Tian, R. O. Wells, Jr., and C. S. Burrus, “A New Class of Biorthogonal Wavelet Systems for
Image Transform Coding”,IEEE Transaction on Image Processing, to appear 1998.

[68] Ivan W. Selesnick and C. Sidney Burrus, “Nonlinear-Phase Maximally-Flat Lowpass FIR Filter Design”,IEEE
Transactions on Circuits and Systems: II, to appear 1997.

[69] J. Tian, R. O. Wells, J. E. Odegard, and C. S. Burrus, “Coifman Wavelet Systems: Approximation, Smoothness,
and Computational Algorithms”, inComputationalScience for the 21st Century, edited by Jacques Periaux, John
Wiley Publishers, New York, 1997.

[70] Ivan W. Selesnick, Markus Lang, and C. Sidney Burrus, “Constrained Least Square Design of FIR Bandpass
Filters”, IEEE Transactions on Signal Processing, to appear, 1997.

[71] C. Sidney Burrus and Jan E. Odegard, “Wavelet Systems and Zero Moments”,IEEE Transactions on Signal
Processing, to appear, 1998.
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[72] Haitao Guo and C. Sidney Burrus, “Fast Approximate Fourier Transform via Wavelet Tranforms”, to be submit-
ted.

[73] J. E. Odegard and C. S. Burrus, “Wavelet Design by Constrained Optimization Using Minimum Moment Objec-
tive Functions”,IEEE Transactions on Signal Processing, to be submitted Sept. 1977.

Articles selected for special publications

[1] C.S. Burrus and T.W. Parks, “Time Domain Design of Recursive Digital Filters,” in the bookDigital Signal
Processing, edited by L.R. Rabiner and C.M. Rader, IEEE Press, New York, 1972, pp. 138-143.

[2] R.C. Agarwal and C.S. Burrus, “Number Theoretic Transforms to Implement Fast Digital Convolutions,”Se-
lected Papers in Digital Signal Processing, II, edited by the Digital Signal Processing Committee, IEEE ASSP
Society, IEEE Press, New York, 1976, pp. 7-18.

[3] R.C. Agarwal and C.S. Burrus, “Fast One-Dimensional Digital Convolution by Multi-Dimensional Techniques,”
Selected Papers in Digital Signal Processing, II, edited by the Digital Signal Processing Committee, IEEE ASSP
Society, IEEE Press, New York, 1976, pp. 18-28; also inNumber Theory in Digital Signal Processing, written
and edited by McClellan and Rader, Prentice-Hall, 1979, pp. 179-188.

[4] R.C. Agarwal and C.S. Burrus, “Fast Convolution using Fermat Number Transforms with Applications to Digital
Filtering,” Number Theory in Digital Signal Processing, written and edited by McClellan and Rader, Prentice-
Hall, 1979, pp. 168-178.

[5] C.S. Burrus and P.W. Eschenbacher, “An In-Place, In-Order Prime Factor FFT Algorithm,”Digital Signal Pro-
cessing Software, written and edited by L.R. Morris, DSPS, Inc., August 1982, pp. 15-25; Editions: 1983, 1984,
1985.

Books

[1] C. S. Burrus and T. W. Parks,DFT/FFT and Convolution Algorithms, John Wiley and Sons, Inc., New York, NY
(1985).

[2] T. W. Parks and C. S. Burrus,Design of Digital Filters,John Wiley and Sons, Inc., New York, NY (1987).

[3] C. S. Burrus, J. H. McClellan, A. V. Oppenheim, T. W. Parks, R. W. Schafer, and H. W. Sch¨ussler,Computer-
Based Exercises for Signal Processing Using Matlab, Prentice-Hall, Upper Saddle River, NJ (1994), Second
edition (1998).

[4] H. V. Sorensen, C. S. Burrus, and M. T. Heideman, “Fast Fourier Transform Database,” PWS Publishing, Boston,
(1995).

[5] C. S. Burrus, R. A. Gopinath, and H. Guo, “Introduction to Wavelets and Wavelet Transforms”, Prentice-Hall,
Upper Saddle River, NJ, (1998).

[6] C. Sidney Burrus, “Digital Signal Processing and Filter Design”, manuscript in preparation, to be published
1998.

Book Chapters

[1] C. S. Burrus, “Block Structures,” Chap. IV inDigital Signal Processing, edited by J. K. Aggarwal, Western
Periodicals Co., N. Hollywood, CA, pp. 97-114 (1979).
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[2] C. S. Burrus, “Efficient Fourier Transform and Convolution Algorithms,” Chapter 4 inAdvanced Topics in Signal
Processing, edited by J. S. Lim and A. V. Oppenheim, Prentice-Hall, Englewood Cliffs, NJ (1988).

[3] R. A. Gopinath and C. S. Burrus, “Wavelet Transforms and Filter Banks”, Chapter inWavelets – A Tutorial in
Theory and Applications, Academic Press, San Diego, edited by Charles K. Chui, pp. 603–655. (1992).

[4] H. V. Sorensen and C. S. Burrus, “Fast DFT and Convolution Algorithms,” Chapter 8 inHandbook for Digital
Signal Processing, John Wiley and Sons, Inc., New York, edited by S. K. Mitra and J. F. Kaiser, (1993).

[5] I. W. Selesnick and C. S. Burrus, “FIR Filter Design”, Chapter inThe Digital Signal Processing Handbook, CRC
Press, Boca Raton, edited by V. K. Madessetti and D. B. Williams, to appear (1998).

[6] C. S. Burrus and I. W. Selesnick, “Fast Convolution and Filtering”, Chapter inThe Digital Signal Processing
Handbook, CRC Press, Boca Raton, edited by V. K. Madessetti and D. B. Williams, to appear (1998).

Reviewed Conference Publications

[1] R. S. McKnight and C. S. Burrus, “Distributed RC Network Synthesis,” presented at Second Annual Prince-
ton Conference on Information Science and Systems, Princeton, NJ, March 1968 and abstract published in the
Conference Proceedings, p.278.

[2] C. S. Burrus and T. L. Chang, “A Time-Varying Linear Approximation to Nonlinear Systems,” presented at
the Twelfth Midwest Symposium on Circuit Theory, Austin, TX, April 1969 and published in the Conference
Record, p. X.1.

[3] T. W. Parks and C. S. Burrus, “Applications of Prony’s Method to Parameter Identification and Digital Filtering,”
presented at Fifth Annual Princeton Conference on Information Sciences and Systems, Princeton, NJ, March
1971 and abstract published in Conference Proceedings, p.255.

[4] C. S. Burrus, “A Comparison of Block Processing Type Digital Filters,” presented at the Fifth Asilomar Confer-
ence on Circuits and Systems, Pacific Grove, CA, Nov. 9, 1971 and published in the Conference Proceedings,
pp. 360-365.

[5] T. L. Chang and C. S. Burrus, “Oscillations Caused by Quantization in Digital Filters,” presented at the 1972
International Symposium on Circuit Theory, Los Angeles, CA, April 18, 1972, and published in the Symposium
Proceedings.

[6] R. A. Meyer and C. S. Burrus, “Certain Properties of Periodically Time-Varying Digital Filters,” presented at the
25th Annual Southwestern IEEE Conference, Houston, TX, April 1973, and published in the Conference Record,
pp. 529-535.

[7] R. C. Agarwal and C. S. Burrus, “Fast Digital Convolution using Fermat Transforms,” presented at the 25th
Annual Southwestern IEEE Conference, Houston, TX, April 1973, and published in the Conference Record, pp.
538-543.

[8] T. B. Watt and C. S. Burrus, “Arterial Pressure Contour Analysis for Estimating Human Vascular Properties,”
presented at the 26th Annual Conference on Engineering in Medicine and Biology, Minneapolis, MN, Oct. 2,
1973. Abstract published in the Conference Record, p. 170.

[9] C. S. Burrus and R. C. Agarwal, “Efficient Implementation of Recursive Digital Filters,” presented at the 7th
Asilomar Conference on Circuits, Systems and Computers, Pacific Grove, CA, Nov. 5, 1973 and published in the
Conference Proceedings, pp.280-284.

[10] C. S. Burrus, D. M. Johnson, and J. K. Monts, “An Experimental Course on Dynamic Modeling of Social
Systems,” presented at the 1975 Sixth Annual Modeling and Simulation Conference, Pittsburgh, PA, April 24,
1975 and published in the Conference Proceedings.
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[11] R. A. Meyer and C. S. Burrus, “Design of IIR Sample Rate Reduction Digital Filters,” presented at the 18th
Midwest Symposium on Circuits and Systems, August 1975, Montreal, Quebec, and published in the Conference
Record.

[12] C. S. Burrus, “Digital Filter Realization by Distributed Arithmetic,” IEEE International Symposium on Circuits
and Systems, Technical University of Munich, April 1976, published in the Conference Proceedings, pp.106-
109.

[13] C. S. Burrus, “High Speed Digital Correlation and Convolution,” IEEE International Symposium on Information
Theory, Ronneby, Sweden, June 22, 1976, Abstract published in Conference Record, p. 146.

[14] C. S. Burrus, “Index Mapping for Multidimensional Formulation of the DFT and Convolution,” IEEE Interna-
tional Symposium on Circuits and Systems, Phoenix, AZ, April 26, 1977, published in Conference Proceedings,
pp. 662-664.

[15] C. S. Burrus, “Recursive Digital Filter Structures Using New High Speed Convolution Algorithms,” IEEE Inter-
national Conference on Acoustics, Speech, and Signal Processing, Hartford, CT, May 10,1977, published in the
Conference Proceedings, pp.363-365.

[16] C. S. Burrus, “The Application of Fast Algorithms to Recursive Structures,” IEEE International Symposium on
Circuits and Systems, Summary in Proceedings, New York, NY, May1978, page 658.

[17] H. H. Coleman and C. S. Burrus, “Signal Processing Structures with Special Substructures,” presented at the
12th Asilomar Conference on Circuits, Systems and Computers, Pacific Grove, CA, Nov. 7, 1978 and published
in the Conference Proceedings, pp.249-252.

[18] H. H. Coleman and C. S. Burrus, “Substructure Filters and Generalized Delays,” presented at the 1980 IEEE
International Symposium on Circuits and Systems, Houston, TX, April 1980, and published in the Symposium
Proceedings, pp.609-612.

[19] C. S. Burrus, “A New Prime Factor FFT Algorithm,” IEEE International Conference on Acoustics, Speech and
Signal Processing, Atlanta, GA, March 1981, published in the conference proceedings, pp.335-339.

[20] C. M. Loeffler and C. S. Burrus, “Equivalence of Block Filter Representations,” presented at the 1981 IEEE
International Symposium on Circuits and Systems, Chicago, April 1981, and published in the Symposium Pro-
ceedings, pp.546-550.

[21] C. S. Burrus, “Structures for Periodically Time Varying Digital Signal Processors,” invited presentation at the
NSF U.S. – Italy workshop on digital signal processing, Portovenere, Italy, August 1981 and published in the
Proceedings, pp. 62-70.

[22] H. W. Johnson and C. S. Burrus, “New Organizations for the DFT,” presented at the Asilomar Conference on
Signals, Systems and Computers, Pacific Grove, CA, Nov. 1981 and published in the conference proceedings,
pp. 82-87.

[23] H. W. Johnson and C. S. Burrus, “The Design of Optimal DFT Algorithms using Dynamic Programming,” IEEE
International Conference on Acoustics, Speech, and Signal Processing, Paris, May1982, and published in the
conference proceedings, pp. 20-23.
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Amer. Math. Soc. Summer Institute, Stanford, 1973
Conference on Complex Analysis, Park City, UT, 1969
Complex Analysis Conference, Oberwolfach, Germany, 1965

Honors:

Fellow, American Association for the Advancement of Science, 1986
National Academy of Sciences Exchange Visitor:  Bulgaria, 1984
Guggenheim Fellow, 1974
Cosmos Club of Washington, 1978-present
Alexander von Humboldt Senior U. S. Scientist Award, 1974
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Fulbright Award, 1968

Professional Activities:

Member, AMS-MAA Committee on Teaching Assistants and Part-Time Instructors, 1992-Present
Member, Editorial Board, Sallyport, 1991-present
Member, Editorial Board, Expositions in  Mathematics, de Gruyter & Co., Berlin, 1988-present
Member, Steering Group, AAAS Section in Mathematics,  1989-1994
Member, Oversight Committee, Resources for Mathematics Reform Project, Educational 

Development Corp., Newton, MA,  1989-1992
Member, Advisory Committee, Mathematicians and Education Reform Network, 1988-1992
Member, Committee on Mathematics Enhancement for Teachers, Math Assoc. Amer., 1988-1992
Consultant and Fellow, Aware, Inc., Cambridge, MA, 1987-present
Member, Committee on Assessment, Council of Chief State School Officials, 1987–88
Chairman, Steering Committee, American Mathematics Project, Berkeley, 1987–1992
Delegate, International Math. Union General Assembly, Berkeley, 1986
Member, Nominating Committee, Amer. Math. Society, 1985–86
Member, U. S. Commission on Mathematical Instruction, 1985–1989
Member, Mathematical Sciences Advisory Board of College Board, 1985–88
Managing Editor, Mathematical Surveys and Monographs, Amer. Math. Society, 1985–88
Chairman, MAA–NCTM Teacher Support Network Project Steering Committee, 1984–1987
Member, U. S. National Committee on  Mathematics, 1984–87
Member, Organizing Committee, Summer Research Conference on Integral Geometry, Bowdoin 

College, Maine, August 1984
Member, Organizing Committee, Research Conference: Asymptotic Behavior of Mass and Space–
time, Oregon State University, October 1983
Managing Editor, Contemporary Mathematics, Amer. Math. Society, 1983–87
Editor, Mathematical Surveys and Monographs, Amer. Math. Society, 1983–85;

Managing Editor, 1985–1987
Member, Educational Testing Service, Committee on Achievement Tests, 1982–present; Chairman
1984–88
Member, Amer. Math. Society Committee on Summer Research Conferences, 1979–present; 

Chairman 1981–86
Member, Review Panel, NSF Program in Classical Analysis, October 1978
Member, Council of the Amer. Math. Society, 1979–88
Editor, Transactions and Memoirs of the Amer. Math. Society, 1979–82;

Managing Editor, 1983–85
Member, Steele Prize Committee, Amer. Math. Society, 1978–82
Member, Amer. Math. Society Committee to select hour speakers for Western Sectional Meetings,
1976–78; Chairman 1977–78
Member, Organizing Committee, Bicentennial History of Mathematics Conf. Series, 1974–77
Member, Organizing Committee of the Amer. Math. Committee Summer Institute on Several 

Complex Variables,  Williamstown, MA, 1975
Elected member, Amer. Math. Society Nominating Committee, 1975–77; Chairman 1976–77
Member, Regional Conference Board of Mathematical Sciences, 1974–77
Co–organizer, Conference on Complex Analysis, Rice University, 1972
Classifier, Mathematics articles in complex analysis for Amer. Math. Society, 1967–74
Co–organizer, Conference on Complex Analysis, Rice University,  1969
Co–organizer, Conference on Complex Analysis, Rice University, 1967

Post-Doctoral Students Supervised:
Kathrin Berkner, 1997
Xiaodong Zhou, 1990-1995



Raymond O. Wells, Jr. Curriculum Vitae

December 18, 1997

81

Andreas Rieder, Feodor von Lynen Fellow, 1992-1993

Graduate Students Supervised:
Yuan Wang, 1998
Jun Tian, 1996
Oscar Garcia-Prada, MA, 1988
Carl Haske, Ph.D., 1986
Victoria Yasinovskaya, Ph.D., 1983
Robert Pool, Ph.D., 1981
Eric Swartz, MA, 1981
David Johnson, Ph.D., 1978
Oscar Melendez, MA, 1977
James Drouilhet, Ph.D., 1974
J. Becker, Ph.D., 1971
R. Carmignani, Ph.D., 1970
Michael Windham, Ph.D., 1970
L. R. Hunt, Ph.D., 1970
Joseph E. Krueger, MA, 1966

University Activities:
             Chairman, Education Department, 1994-present
             Chairman, Education Council, 1994-present

Rice University Press, Editorial Board, 1991-1993
Director, Computational Mathematics Laboratory, 1989-present
Education Council, 1987-1991
Director, Rice University School Mathematics Project,

1987–present
Baker College Associate, 1985–1991
Chairman, G. C. Evans Committee, 1985–86
Rice University Press, Editorial Board, 1985–88
Member, SCIENTIA (An Institute for the History of Science and Culture), 1980–
present; Director, 1982–88
Chairman, Graduate Committee, Math. Dept., Fall 1975; 1982–83;  1986–present
Chairman, Curriculum Committee, Math. Dept., 1980–82
Rice University Studies Review Board, 1980–85
Jones College Associate, 1968–80
Chairman, Department of Mathematics, 1976–79
Chairman, Appointments Committee, Math. Dept., Jan.–March 1974
Member, University Library Committee, 1977–77;  Chairman 1975–77
Rice University Self Study Committee, Jan. 1973–May 1974;  Chairman, Library and
Computer Subcommittee

Honorary and Professional Societies:

American Association for the Advancement of Science
American Mathematical Society
Association of Members of the Institute for Advanced Study
Houston Philosophical Society
Mathematical Association of America
National Council of Teachers of Mathematics
Phi Beta Kappa
Society for Industrial and Applied Mathematics
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Civic Activities:
Stages Repertory Theater, Board of Directors, 1988-present, Secretary 1988-89,
President, 1989-91.
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PUBLICATIONS

Books:
1. (with Resnikoff, H. L., editors) Proceedings of the Conference on Complex Analysis, Rice University, 1967, )

Rice University Studies, 54, No. 4, 1968.
2. (with Resnikoff, H. L., editors) Proceedings of the Conference on Complex Analysis, Rice University, 1969,

Rice University Studies, 56, No. 2, Complex Analysis, 1970.
3. (with Resnikoff, H. L., editors) Rice University Studies, 59, Nos. 1, 2,  Proceedings of the Conference on

Complex Analysis, Rice University, March 1972, 1973.
4. (with Resnikoff, H. L.) Mathematics in Civilization (Preliminary edition 1971), Holt, Rinehart, and

Winston, Inc., New York, 372 pp., 1973.
5. Differential Analysis on Complex Manifolds, Prentice Hall, Inc., Englewood Cliffs, NJ, 252 pp., 1973.
6. Differential Analysis on Complex Manifolds, (Russian translation by E.M. Chirka), MIR, Moscow, 283 pp.,

1976.
7. Several Complex Variables. (Proc. Sympos. Pure Math., Vol.XXX, Parts 1,2, Williams College, 1975), Amer.

Math. Soc., Providence, RI, 1977.
8. (with Stanton, R.J.) History of  Analysis, Rice University Studies, 68, Nos. 2, 3, ,1978.
9. Differential Analysis on Complex Manifolds, 2nd Edition, Springer–Verlag, Berlin–Heidelberg, New

York, 1980.
10. Complex Geometry and Mathematical Physics, University of Montreal Press, Montreal, 1982.
11. (with Resnikoff, H.L.) Mathematik in Wandel der Kulturen, (German ed. of Math. in Civilization,

including supplement), Vieweg Verlag, Braunschweig–Wiesbaden, 338 pp., 1983.
12. (editor of translation from Russian) Monastyrskii, M. I. Riemann, Topology, and Physics, Birkhauser

Boston, Boston, 1985.
13. (with Chance, Jane, editors) Mapping the Cosmos, Rice University Press, Houston, Texas, 1985.
14. (with Resnikoff, H.L.) Mathematics in Civilization, (second edition), Dover Books, New York, 1985.
15. (with Bryant, R.L., Guillemin, V., and Helgason, S., editors) Integral Geometry, Amer. Math. Soc.,

Providence, RI, 1985.
16. (with Shnider,  S.) Supermanifolds, Super Twistor Spaces and Super Yang–Mills Fields, University of

Montreal Press, 1989.
17. (Editor) The Mathematical Heritage of Hermann Weyl, Amer. Math. Soc., Providence, RI, 1989.
18. (with Ward, Richard) Twistor Geometry and Field Theory, Cambridge University Press, 1990.
19. (with Resnikoff, H. L.) Wavelet Analysis, Springer-Verlag (to appear), 1998.
20. (with Penrose, Roger) A Changing View of Geometry, W. H. Freeman (in preparation, to appear), 1998.

Articles:
1. (with Gutzwiller, M. C.) The electronic states around a dislocation, J. Phys. Chem. Solids, 27, 349–352,

1966.
2. On the local holomorphic hull of a real submanifold in several complex variables, Comm. Pure Appl.

Math., 19, 145–165, 1966.
3. Locally holomorphic sets, J. Analyse Math., 17, 337–345, 1966.
4. Holomorphic approximation on real–analytic submanifolds of a complex manifold, Proc. Amer. Math.

Soc., 17, 1272–1275, 1966.
5. (with Nirenberg, R.) Holomorphic approximation on real submanifolds of a complex manifold, Bull.

Amer. Math. Soc., 73, 378–381, 1967.
6. Holomorphic hulls and holomorphic convexity of differentiable submanifolds, Trans. Amer. Math.

Soc., 132, 245–262, 1968.
7. Holomorphic hulls and holomorphic convexity, Rice University Studies, 54, No. 4, 75–84, 1968.
8. (with Harvey, Reese) Compact holomorphically convex subsets of a Stein manifold, Trans. Amer.

Math. Soc., 136, 509–516, 1969.
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9. Compact real submanifolds with nondegenerate holomorphic tangent bundles, Math. Ann., 179, 123–
129, 1969.

10. Real–analytic subvarieties and holomorphic approximation, Math. Ann., 179, 130–141, 1969.
11. (with Nirenberg, R.) Approximation theorems on differentiable submanifolds of a complex manifold,

Trans. Amer. Math. Soc., 43, 15–36, 1969.
12. Concerning the envelope of holomorphy of a compact differentiable sub-manifold of a complex

manifold, Annali Scuola. Norm. di Pisa, 23, 347–361, 1969.
13. (with Bigolin, Bruno) Concerning the refined Chern classes of a holomorphic vector bundle, Ati Accad.

Naz. Lincei Rend., 46, 379–384, 1969.

14. (with Hunt, L. R.) The envelope of holomorphy of a 2–sphere in C2,  Rice University Studies, 56, No.
2, 51–62, 1970.

15. Parametrizing the compact submanifolds of a period matrix domain by a Stein manifold, Lecture
Notes in Mathematics, 184, Symposium on Several Complex Variables, Park City, Utah, 1970, Springer–
Verlag, Berlin–Heidelberg–New York, 121–150, 1971.

16. (with Harvey, Reese) Holomorphic approximation on totally real submanifolds of a complex
manifold, Bull. Amer. Math. Soc., 77, 824–828, 1971.

17. (with Harvey, Reese) Holomorphic approximation and hyperfunction theory on a C1 totally real
submanifold of a complex manifold, Math.  Ann., 197, 287–318, 1972.

18. (with Harvey, Reese) Zero sets of nonnegative strictly plurisubharmonic functions, Math. Ann., 201,
165–170, 1973.

19. Automorphic cohomology on homogeneous complex manifolds, Rice University Studies, 59, No.  2,
147–155, 1973.

20. Function theory on differentiable submanifolds, Contributions to Analysis, Academic Press, Inc., 407–
441, 1974.

21. Moisezon spaces and the Kodaira embedding theorem, Proceedings of the Tulane University Program on
Value–Distribution Theory, Part A, Marcel–Dekker Inc., 29–41, 1973.

22. Comparison of deRham and Dolbeault cohomology for proper surjective mappings, Pac. J. Math., 53,
281–300, 1974.

23. (with Hunt, L.R.) Holomorphic extension for nongeneric CR–submanifolds, Proceedings of Symposia in
Pure Mathematics, 27, Pt. 2, American Math. Soc., Providence, RI, 81–88, 1975.

24. (with Hunt, L.R.) Extensions of CR–functions, Am. J. of Math., 98, 805–820, 1976.
25. (with Polking, John) Hyperfunction boundary values and a generalized Bochner–Hartogs' Theorem,

Proceedings of Symposia in Pure Mathematics, 30, Pt. 1, Amer. Math. Soc., Providence, RI, 187–194, 1977.

26. (with Wolf, Joseph A.) Poincaré theta series and  L1  cohomology, Proceedings of Symposia in Pure
Mathematics, 30, Pt. 2, Amer. Math. Soc.,  Providence, RI, 55–68, 1977.

27. Deformations of strongly pseudoconvex domains in  C2,  Proceedings of Symposia in Pure Mathematics,
30, Pt. 2, Amer.  Math. Soc.,  Providence, RI, 125–128, 1977.

28. The invariants of E. Cartan–Chern–Moser  for a real hypersurface in  Cn,  Analyse Complex et Geometrie
Analytique (1973–75), (ed.: P. Dolbeault), Univ. of Paris VI, Paris, X–1–X.12, 1976.

29. (with Wolf, Joseph A.) Poincaré series and automorphic cohomology on flag domains, Ann. of Math.,
105, 397–448, 1977.

30. (with Polking, John) Boundary values of Dolbeault cohomology classes and a generalized Bochner–
Hartogs' Theorem, Abhand. Math. Sem., Univ. Hamburg, 47, 1–24. 1978.

31. (with Burns, Daniel, and Snider, Steven) Deformations of strongly pseudoconvex domains, Invent.
Math., 46, 237–253, 1978.

32. Function theory on differentiable submanifolds, Uspehki. Math. Nauk. 33, (Russian translation by
G. Henkin), 152–193, 1978.

33. Deformationes des domaines strictement pseudoconvexes, Lecture Notes in Mathematics, 670,
Fonctions de Plusier Variables Complexes III, (ed.: F. Norguet), Springer–Verlag, Berlin–Heidelberg–New
York, 404–409, 1978.

34. Complex manifolds and mathematical physics, Bull. Amer. Math. Soc. (NS), 1, 296–336, 1979.
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35. Cohomology and the Penrose transform, Complex Manifold Techniques in Theoretical Physics, (eds. D.
Lerner, P. Sommers), Pitman, London, 92–114, 1979.

36. Chern retires from Berkeley, almost!, Mathematical Intelligencer, 2, No. 2, 78–80, 1980.
37. (with Eastwood, Michael and Penrose, Roger) Cohomology and massless fields, Comm. Math. Phys.,

78, 305–351, 1981.
38. Hyperfunctions solutions of the zero–rest–mass field equations, Comm. Math. Phys., 78, 567–600, 1981.
39. The conformally invariant Laplacian and the Instanton vanishing theorem, Seminar on Differential

Geometry, (ed.: S.T. Yau), Princeton Univ. Press, Princeton, NJ, 483–498, 1982.
40. The Cauchy–Riemann equations and differential geometry, Bull. Amer. Math. Soc., (NS), 6, 187–199,

1982.
41. The Cauchy–Riemann equations and differential geometry, Proc. of Symposia in Pure Mathematics,

39.1, The Mathematical Heritage of Henri Poincaré, (ed.: F. Browder), Amer. Math. Soc., Providence, RI,
423–435, 1983.

42. (with Bailey, T. and Ehrenpreis, L.) Weak solutions of the massless field equations, Proc. Roy. Soc.
Lond., A 384, 403–425, 1982.

43. Extensions of holomorphic vector bundles and coupled cohomology equations, Proceedings of Symposia
in Pure Mathematics, 41, (ed.: Y. T. Siu), Amer.  Math. Soc., Providence, RI, 209–216, 1984.

44. Nonlinear field equations and twistor theory, Mathematical Intelligencer, 7, No. 2, Springer–Verlag,
New York, 26–32, 1985.

45. The twistor–geometric representation of classical field theories, Lecture Notes in Mathematics, Springer–
Verlag, Berlin–Heidelberg–New York, 1985.

46. Complex manifolds and mathematical physics, Twistor Theory and Its Applications (in Russian), (ed.:
V.S. Vladimirov), MIR, Moscow, 28–77, 1983.

47. (with Eastwood, M.G. and Penrose, Roger) Cohomology theory and massless fields, (in Russian),
Twistor Theory and Its Applications (in Russian), (ed.: V.S. Vladimirov), MIR, Moscow, 250–308, 1983.

48. Hyperfunction solutions of the massless field equations (in Russian), Twistor Theory and Its
Applications (in Russian), (ed.: V.S. Vladimirov), MIR, Moscow, 309–348, 1983.

49. (with Eastwood, M.G. and Pool, R.) The inverse Penrose transform of a solution to the Maxwell–
Dirac–Weyl field equations, J. Funct. Anal., 60, No. 1, Academic Press, New York and London, 16–35,
1985.

50. Geometry and the Universe, Mapping the Cosmos, Rice University Studies, Houston, Texas, 1985.
51. Twistor geometry and classical field theory (Russian), Uspehki Math. Nauk, 40, No. 4, 1985.
52. Integral geometry and twistor theory, Contemporary Mathematics, Integral Geometry (Proceedings of

Conference, Bowdoin College, 1984), Amer. Math. Soc., Providence, RI, 1985.
53. (with Haske, Carl) Serre duality for complex supermanifolds, Duke Math. J., 54, No. 2, 1987.
54. "A critique of ICME-6", American Perspectives in the Sixth International Congress on Mathematical

Education, National Council of Teachers of Mathematics, p. 56, 1989.
55. (with LeBrun, Claude and Poon, Y.S.) "Projective embeddings of complex supermanifolds," Commun.

Math. Physics, 126, 433-452, 1990.
56. (with Austin,  J. D.  and Herbert,  Elizabeth)  Master teachers as teacher role models, Mathematics and

Education Reform, Amer. Math. Soc., 189-196, 1990.
57. Supermanifolds, Twistor Geometry, and Wavelets, Proceedings of Summer School, Physics and

Geometry, Lake Tahoe, CA., 1989.
58. Projective embeddings of complex supermanifolds, Proceedings of Conference, Differential Geometric

Methods in Physics -- Physics and Geometry, (Ed: L.L. Chau and W. Nahm), Plenum, 669-680, 1990.
59. Parametrizing smooth compactly supported wavelets, Trans. AMS, 338, No. 2, 919-931, 1993.
60. (with Resnikoff, Howard L.) Wavelet Analysis and the Geometry of Euclidean Domains, Journal of

Geometry and Physics (Penrose Festschrift) (8) 1-4, 273-282, 1992.
61. (with Glowinski, R., Periaux, J., Ravachol, M., Pan, T.W., and Zhou, X.) Wavelet Methods in

Computational Fluid Dynamics, in Hussainy et al. (ed.), Algorithmic Trends in Computational Fluid
Dynamics, Springer-Verlag, 259-276, 1993.
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62. (with Zhou, X.) Wavelet Interpolation and Approximate Solutions of Elliptic Partial Differential
Equations, in Noncompact Lie Groups and Some of their Applications (R. Wilson and E. A. Tanner,
editors), Kluwer Acad. Press, pp. 349-366, 1994.

63. (with Zhou, X.) Wavelet Solutions for the Dirichlet Problem.  Numer. Mathematik, 70, 379-396, 1995.
64. (with McCormick, Kent ) Wavelet Calculus and Finite Difference Operators. Mathematics of

Computation, Vol 63, No. 207, pp. 155-173, 1994
65. (with Zhou, Xiaodong) Representing the geometry of domains by wavelets with applications to

partial differential equations, Curves and Surfaces in Computer Vision and Graphics III, International
Society for Optical Engineering, 1992.

66. (with P. Heller, and H. L. Resnikoff), Wavelet matrices and the representation of discrete functions,
(Ed: C. K. Chui), Wavelets--A Tutorial in Theory and Applications, Academic Press, 15-50, 1992.

67. (with Glowinski, R., Pan, T.W., and Zhou, X.) Wavelet Solutions for the Neumann Problem, J. Comp.
Physics Vol 126, pp. 40-51, 1996.

68. (with Glowinski, R., Rieder, A., and Zhou, X.) A preconditioned CG-method for wavelet-Galerkin
discretizations of elliptic problems. Z. Angew. Math. Mech. 75, 683-684, 1995.

69. (with Glowinski, R., Rieder, A., and Zhou, X.)  A wavelet multigrid preconditioner for Dirichlet
boundary value problems in general domains, Mod’elisation Math’ematique et Analyse Num’erique, 1996.

70. (with Rieder, A., and Zhou, X.) A wavelet approach to robust multilevel solvers for anisotropic elliptic
problems. Applied and Computational Harmonic Analysis, 1,pp. 355-367, 1994.

71. (with Heller, P.) The spectral theory of multiresolution operators and applications, in Wavelets: Theory,
Algorithms, and Applications, (Edited by C. K. Chui, L. Montefusco, L. Puccio), Academic Press, pp. 13-
31, 1994.

72. Wavelets and Wave Propagation Modeling. Proceedings of SPIE OE/Aerospace Sensing Conference,
Orlando, 1994. Proc SPIE 2242, 88-99, 1994.

73. Adaptive wave propogation modeling, Optical Engineering, Vol 33, No. 7, 2224, 1994.
74. Multiscale applications of wavelets to solutions of partial differential equations, Proceedings of the

Lanczos Conference, Raleigh, NC, (1993), 1994.
75. (with A. Rieder and X. Zhou), On the wavelet frequency decomposition method.  Wavelet Applications,

Harold H. Szu (ed.), Proc SPIE 2242, 14-18,1994.
76. Recent advances in wavelet technology, Proceedings of Dual-Use Technology Conference, 1994. NASA

Conference Publication 3263, Vol 2, 625-632, 1994.
77. (with H. Bray, K. McCormick, and X. Zhou), Wavelet variations of the Shannon sampling theorem ,

Bio Systems, Vol 34, Nos.1-4, pp.249-257, 1994.
78. (with P. N. Heller and J. Shapiro), Image compression using optimal wavelet basis, Wavelet

Applications for Dual-Use,  SPIE Proceedings, Vol 2491, 119-130, 1995.
79. (with J. E. Odegard, H. Guo, M. Lang, C. S. Burrus, L.. M. Novak, M. Hiett), Wavelet-based SAR

speckle reduction and image compression, Algorithms for Synthetic Aperture Radar Imagery II,
Proceedings of SPIE, Vol 2487, 259-271, 1995.

80. (with M. Lang, H. Guo, J. E. Odegard, C. S. Burrus,  Nonlinear processing of a shift-invariant DWT for
noise reduction, Wavelet Applications for Dual-Use,  SPIE Proceedings, Vol 2491, 1995.

81. (with Jun Tian), Vanishing moments and biorthogonal Coifman wavelet systems, Proc. Of 4th

International Conference on Mathematics in Signal Processing, University of Warwick, England, 1996.
82. (with J. Tian,  Image data processing in the compressed wavelet domain,  Proc of 3rd International

Conference on Signal Processing, Beijing, China, 1996.
83. (with M. Lang, H. Guo, J. E. Odegard, C. S. Burrus),  Noise reduction using an undecimated discrete

wavelet transform, IEEE  Signal Processing Letters,  Vol. 3, No.1, 10-12, 1996.
84. (with Dong Wei, Jun Tian and C. S. Burrus), A new class of biorthogonal wavelets for signal

processing, IEEE Transactions on Image Processing, (to appear), 1997.
85. (with Jun Tian), A lossy image codec based on index coding, Proceedings of IEEE Data Compression

Conference, Utah 1996 (to appear).
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86. (with Jun Tian, H. Guo, C. S. Burrus, and J. E. Odegard, Evaluation of a new wavelet-based
compression algorithm for synthetic aperture radar images.  In SPIE’s AeroSense ‘96 Symposium,
Algorithms for Synthetic Aperture Radar Imagery III, 1996.

87. (with T. Netsch, Jun Tian, M. Lang, C. Evertsz, H. Juergens, and H.-O Peitgen), Automatic detection
of microcalcification clusters on compressed digitized mammograms, RSNA Annual meeting,
Chicago, 1996 (proceedings, to appear) 1997.

88. (with Anne Papakonstantinou, Joe Austin and Scott Berger), Rice University Affiliates Program: the
Marshall Plan, Schools in the Middle: Theory into Practice (National Assn. of Secondary School
Principals),  1996.

89. (with Jun Tian), A remark on vanishing moments, Proc. Of 30th Asilomar Conference on signals, systems,
and computers, Pacific Grove, CA 1996.

90. (with J. Ko, A. J.  Kurdila, and X. Zhou, On the Stability of Numerical Boundary Measures in Wavelet
Galerkin Methods,’ Communications in Numerical Methods in Engineering, 12, 281-294,1996.

91. (with J. Tian, J. E. Odegard, and C. S. Burrus), Coifman wavelet systems: approximation, smoothness,
and computational algorithms, Computational Science for the 21st Century, John Wiley & Sons Ltd., 831-
840, 1997.

92. (with Kathrin Berkner), A fast approximation to the continuous wavelet transform with applications,
Proc. Of the 31st Asimolar Conference on Signals, Systems and Computers, IEEE Computer Society Press,
Pacific Grove, CA 1997.



Raymond O. Wells, Jr. Curriculum Vitae

December 18, 1997

88

Unpublished Reports

1. The Role of Technology in Mathematical Research. RUSMP Report, Rice University, 1994.
2. (with M. Dial, Joe Austin, and Anne Papakonstantinou), Improving student achievement via teacher

enhancement, RUSMP Report, Rice University, 1994.
3. (with X. Zhou), Wavelet solutions of the least gradient flow, Proceeding of Engineering Conference,

Texas A&M Univ., (Oct 1994).
4. (with Jun Tian), Dyadic rational biorthogonal Coifman wavelet systems, 1966.
5. (with Jun Tian), Image compression by reduction of indices of wavelet transform coefficients,

Technical Report CML TR 95-16, Computational Mathematics Laboratory,  October 1995.
6. (with Jun Tian), Factoring wavelet transforms into zero degree, March 1997
7. (with Peter N. Heller), Sobolev regularity for rank M wavelets, submitted to SIAM J. Mathematical

Analysis (Oct 1996). TR96-08,
8. (with K. Berkner), A new hierarchical scheme for approximating the continuous wavelet transform

with applications to edge detection, submitted to IEEE Signal Processing Letters, July 1997.
9. (with K. Berkner), A scale-redundant discrete wavelet transform and its applications to multiscale

edge detection (in preparation, July 1997)
10. (with K. Berkner), A geometrical characterization of singularities in the wavelet domain (in

preparation, July 1997)


