Automatic Generation of Prime Length FF'T Programs

Ivan W. Selesnick* and C. Sidney Burrus

Department of Electrical and Computer Engineering - MS 366
Rice University

Houston, TX 77251-1892

September 20, 1995

Abstract

We describe a set of programs for circular convolution and prime length FFTs that are
relatively short, possess great structure, share many computational procedures, and cover a
large variety of lengths. The programs make clear the structure of the algorithms and clearly
enumerate independent computational branches that can be performed in parallel. Moreover,
each of these independent operations is made up of a sequence of sub-operations which can be
implemented as vector/parallel operations. This is in contrast with previously existing programs
for prime length FFTs: they consist of straight line code, no code is shared between them, and
they can not be easily adapted for vector/parallel implementations.

We have also developed a program that automatically generates these programs for prime
length FFTs. This code generating program requires information only about a set of modules

for computing cyclotomic convolutions.

Contact Address:
Ivan W. Selesnick
FElectrical and Computer Engineering - MS 366
Rice Unwversity,
Houston, TX 77251-1892
Phone: (713) 527-8101 x3508
FAX: (713) 524-5237

email: selesi@ece.rice.edu

To appear: IEEE Transactions on Signal Processing

*This work has been supported by DARPA under an NDSEG fellowship.

List of Figures

1 The flow graph for the computation of the DFT., 26
2 The flow graph for the bilinear form. 26
3 Plot of additions and multiplications incurred by prime length FFTs. 27

List of Tables

1 Operation counts for split nesting circular convolution algorithms 25

2 Operation counts for prime length FFTs0 0 ... 25

1 Introduction

The development of algorithms for the fast computation of the Discrete Fourier Transform in the
last 30 years originated with the radix 2 Cooley-Tukey FFT and the theory and variety of FFTs has
grown significantly since then. Most of the work has focused on FFTs whose sizes are composite,
for the algorithms depend on the ability to factor the length of the data sequence so that the
transform can be found by taking the transform of smaller lengths. For this reason, algorithms
for prime length transforms are building blocks for many composite length FFTs - the maximum
length and the variety of lengths of a PFA or WFTA algorithm depend upon the availability of
prime length FFT modules. As such, prime length Fast Fourier Transforms are a special, important
and difficult case.

Fast algorithms designed for specific short prime lengths have been developed and have been
written as straight line code [7, 9]. These dedicated programs rely upon an observation made in
Rader’s paper [15] in which he shows that a prime p length DFT can be found by performing a
p — 1 length circular convolution. Since the publication of that paper, Winograd had developed
a theory of multiplicative complexity for transforms and designed algorithms for convolution that
attain the minimum number of multiplications [20]. Although Winograd’s algorithms are very
efficient for small prime lengths, for longer lengths they require a large number of additions and
the algorithms become very cumbersome to design. This has prevented the design of useful prime
length FFT programs for lengths greater than 31. Although we have previously reported the design
of programs for prime lengths greater than 31 [16] those programs required more additions than
necessary and were long. Like the previously existing ones, they simply consisted of a long list of
instructions and did not take advantage of the attainable common structures.

In this paper we describe a set of programs for circular convolution and prime length FFTs
that are are short, possess great structure, share many computational procedures, and cover a
large variety of lengths. Because the underlying convolution is decomposed into a set of disjoint
operations they can be performed in parallel and this parallelism is made clear in the programs.
Moreover, each of these independent operations is made up of a sequence of sub-operations of the
form I ® A ® I where ® denotes the Kronecker product. These operations can be implemented
as vector/parallel operations [5, 19]. Previous programs for prime length FFTs do not have these
features: they consist of straight line code and are not amenable to vector/parallel implementations.

We have also developed a program that automatically generates these programs for circular
convolution and prime length DFTs. This code generating program requires information only

about a set of modules for computing cyclotomic convolutions. We compute these non-circular

convolutions by computing a linear convolution and reducing the result. Furthermore, because
these linear convolution algorithms can be built from smaller ones, the only modules needed are
ones for the linear convolution of prime length sequences. It turns out that with linear convolution
algorithms for only the lengths 2 and 3, we can generate a wide variety of prime length FFT
algorithms. In addition, the code we generate is made up of calls to a relatively small set of
functions. Accordingly, the subroutines can be designed and optimized to specifically suit a given
architecture.

The programs we describe use Rader’s conversion of a prime point DFT into a circular convo-
lution, but this convolution we compute using the split nesting algorithm [14]. As Stasinski notes
[17], this yields algorithms possessing greater structure, simpler programs and doesn’t generally
require more computation. We wish to note also, that Jones [10] has advocated the use of the

Agarwal-Cooley algorithm for prime length FFTs.

1.1 Preliminaries

Because we compute prime length DFTs by converting them in to circular convolutions, most of
this and the next section is devoted to an explanation of the split nesting convolution algorithm.
In this section we introduce the various operations needed to carry out the split nesting algorithm.
In particular, we describe the prime factor permutation that is used to convert a one-dimensional
circular convolution into a multi-dimensional one. We also discuss the reduction operations needed
when the Chinese Remainder Theorem for polynomials is used in the computation of convolution.
The reduction operations needed for the split nesting algorithm are particularly well organized. We
give an explicit matrix description of the reduction operations and give a program that implements
the action of these reduction operations.

The presentation relies upon the notions of similarity transformations, companion matrices
and Kronecker products. With them, we describe the split nesting algorithm in a manner that
brings out its structure. We find that when companion matrices are used to describe convolution,
the reduction operations block diagonalize the circular shift matrix.

The companion matrix of a monic polynomial, M(s) = mg+ mys+---+ Mpy_18" "L+ s"

is given by
1 —1ma
Cy = . - (1)
1 —Mp_1

Its usefulness in the following discussion comes from the following relation which permits a matrix

formulation of convolution:

Y(s) = (H()X(gy < y= (Z hka&) : (2)

k=0
where z, h and y are the coefficients and Cps is the companion matrix of M(s). In (2), we say y is

the convolution of z and h with respect to M (s). In the case of circular convolution, M(s) = s™ —1

and Cyn_q is the circular shift matrix denoted by S5,

S, =
1

Notice that any circulant matrix can be written as 3., hxSF [19, 21].
Similarity transformations can be used to interpret the action of some convolution algo-
rithms. If Cpy = T71AT for some matrix T (Cps and A are similar, denoted C'ay ~ A), then (2)

becomes

y="T"1 (nf hkAk) Tz. (3)

k=0

That is, by employing the similarity transformation given by 7T in this way, the action of Sffb
is replaced by that of A*. Many circular convolution algorithms can be understood, in part, by
understanding the manipulations made to 5, and the resulting new matrix A. If the transformation
T is to be useful, it must satisfy two requirements: (1) 7'z must be simple to compute, and (2) A
must have some advantageous structure. For example, by the convolution property of the DFT,
the DFT matrix F diagonalizes S, and therefore it diagonalizes every circulant matrix. In this
case, T’z can be computed by an FFT and the structure of A is the simplest possible: a diagonal.

The Winograd Structure can be described in this manner also. Suppose M(s) can be fac-
tored as M(s) = M;(s)My(s) where My and M; have no common roots, then Car ~ (Car, & Cary)
where @& denotes the matrix direct sum. Using this similarity and recalling (2), the original convo-
lution can be decomposed into disjoint convolutions. This is, in fact, a statement of the Chinese
Remainder Theorem for polynomials expressed in matrix notation. In the case of circular convolu-

tion, s" — 1 = [y, ®a(s), so that .5, can be transformed to a block diagonal matrix,
Co,

5 ~ Co, § _ (@C%) (4)

d|n
Cs

n

where ®4(s) is the d* cyclotomic polynomial. Here Cg, is the companion matrix of the dth
cyclotomic polynomial. In this case, each block represents a convolution with respect to a cyclotomic
polynomial, or a ‘cyclotomic convolution’.

The Agarwal-Cooley Algorithm utilizes the fact that

where n = nyng, (n1,n2) = 1 [1]. This converts the one dimensional circular convolution of length
n to a two dimensional one of length n; along one dimension and length ny along the second. Then
an ny point and an ngy point circular convolution algorithm can be combined to obtain an n point
algorithm. The Agarwal-Cooley convolution algorithm is described using tensor product formalism
in [19, chap. 7].

The Split-Nesting algorithm [14] combines the structures of the Winograd and Agarwal-

Cooley methods, so that 9, is transformed to a block diagonal matrix as in (4),
S, ~ P e(d). (6)
d|n

Here ¥(d) = @,4pep Cay) Where Hy(p) is the highest power of p dividing d, and P is the set of

primes.

Example 1:
1 -
Co,
C
545 ~ P CCI) (7)
5
Co, ® Co,

Co, @ Co, |

In this structure a multi-dimensional cyclotomic convolution, represented by ¥(d), replaces each
cyclotomic convolution in Winograd’s algorithm (represented by Cs, in (4)). Indeed, if the product
of by,...,by is d and they are pairwise relatively prime, then Cs, ~ C%l ®-® C%k-

The split nesting algorithm therefore combines cyclotomic convolutions to compute a longer

circular convolution. It is like the Agarwal-Cooley method but requires fewer additions [14].

1.2 Prime Factor Permutations

The permutation of the prime factor FF'T [1, 13] can be used to obtain 5,, ® 5, from 5, ,, when
(n1,n9) = 1. The permutation is described by Zalcstein [21], among others. Let ej, denote the k"

standard basis vector.

Lemma 1 Ifn =mny---ng and nq,...,n; are pairwise relatively prime, then S, = Pt(Snk ® - ®

Sny)P where P is the permutation matriz given by Pej = €(kYny +n1 (kY ny +-tn1 -1k 1 (K, -

This useful permutation will be denoted here as P, . ,,. If n = p{*p3? - - - p;* then this permutation

yields the matrix, Spel ® - ® Spek. This product can be written simply as ®f:1 Spei, so that one
1 k ;

has 5, = P’/il,...,nk (®§:15pfi) Pryoni

1.3 Reduction Operations

The Chinese Remainder Theorem for polynomials can be used to decompose a convolution of two
sequences (the polynomial product of two polynomials evaluated modulo a third polynomial) into
smaller convolutions (smaller polynomial products) [20]. The Winograd n point circular convolution
algorithm requires that polynomials are reduced modulo the cyclotomic polynomial factors of s —1,
®,4(s) for each d dividing n.

When n has several prime divisors the reduction operations become quite complicated and
writing a single program to implement them is difficult. However, when n is a prime power, the
reduction operations are very structured and can be done in a straightforward manner. Therefore,
by converting a one-dimensional convolution to a multi-dimensional one, in which the length along
each dimension is a prime power, the split nesting algorithm avoids the need for complicated
reductions operations. This is one advantage the split nesting algorithm has over the Winograd
algorithm.

By applying the reduction operations appropriately to the circular shift matrix, we are able to
obtain a block diagonal form, just as in the Winograd convolution algorithm. However, in the split
nesting algorithm, each diagonal block represents multi-dimensional cyclotomic convolution rather
than a one-dimensional one. By forming multi-dimensional convolutions out of one-dimensional
ones, it is possible to combine algorithms for smaller convolutions (see the next section). This is
a second advantage split nesting algorithm has over the Winograd algorithm. The split nesting
algorithm, however, generally uses more than the minimum number of multiplications.

Below we give an explicit matrix description of the required reduction operations, give a
program that implements them, and give a formula for the number of additions required. (No
multiplications are needed.)

To obtain the block diagonal form of (6) and (7) let 1, be a column vector of p 1’s and let

G'p be the (p — 1) X p matrix:

1 -1
1 -1
Gp = . . (8)
1 —‘1
then
R <Spi1 O ® szk) R = @ v(d) (9)
djn
where R = Rpfl,---,pzk is given by
1
Ryew | pox = HCQ(W,P?”M) (10)

. i—1 e k e
with m; = [’ p;7, ni = [Ij=i41 p;” and

e=1 [L, © 1 @ I,
Qa,p%c) =[] | L.® G, ® I (11)
J=0 1 (pe—pi+t)

ac

The number of additions incurred by R is given by 2n (k — Ele #) where n = pi* ... pk.

Example 2:

Co,

_ C

R(Se® 85)R™" = P Co (12)
5

Co, ® Co,
L Co, @ Co, |

where R = Rg 5 and can be implemented with 152 additions.

Fach block in eq (9) and (12) represents a multi-dimensional cyclotomic convolution.

A Matlab program that carries out the operation R 1 e in eq (9) is KRED().
D

function x = KRED(P,E,K,x)
hP:P=[P),...,P(K)]
hE:E=[EK,...,EKI

h x : length(x) == prod(P."E)
for i = 1:K

a = prod(P(1:i-1)."E(1:i-1));
prod(P(i+1:K)."E(i+1:K));

P(i);

C

P

e = E(i);
for j = e-1:-1:0

x(1l:axcx(p~(j+1))) = RED(p,a,cx(p~j),x(1:a*xc*x(p~(j+1))));
end

end
It calls the Matlab program RED().

function y = RED(p,a,c,x)
h x : length(x) == axc*p
y = zeros(a*cxp,1);
for i = 0:c:(a-1)*c
for j = 0:c-1
y(i+j+1) = x(i*p+j+1);
for k = O:c:cx(p-2)
y(i+j+1) = y(i+j+1) + x(ixp+j+k+c+1);
y(ix(p-1)+j+k+akxc+l) = x(i*p+j+k+1) - x(ixp+j+c*(p-1)+1);
end
end

end

These two Matlab programs are not written to execute as fast as they could be. They are
a ‘naive’ coding of }%ﬁlpnmzk and are meant to serve as a basis for more efficient programs. In
particular, the indexing and the loop counters can be modified to improve the efficiency. However,
the modifications that minimize the overhead incurred by indexing operations depends on the
programming language, the compiler and the computer used. These two programs are written with
simple loop counters and complicated indexing operations so that appropriate modifications can
be easily made.

It will also be important to have a program that carry out the transpose of these reduction

operations. A Matlab program that carries out the operation R;el ook is tKRED().
e

function x = tKRED(P,E,K,x)
% x = tKRED(P,E,K,x);

% (transpose)

AP :P=[P1),... ,PXKI;
4 E:E=[E®X),.. . ,EX];

for i = K:-1:1

a = prod(P(1:i-1)."E(1:1i-1));
c = prod(P(i+1:K)."E(i+1:K));
p = P(i);
e = E(1);

for j = 0:e-1
x(1:axcx(p~(j+1))) = tRED(p,a,c*(p~j),x(L:axcx(p~(j+1))));
end

end
It calls the Matlab program tRED().

h y = tRED(p,a,c,x);
% (transpose)
y = zeros(a*cxp,1);
for i = 0:c:(a-1)*c
for j = 0:c-1
y(ixprj+c*(p-1)+1) = x(i+j+1);
for k = O:c:cx(p-2)
y(ixp+j+k+1) = x(i+j+1) + x(ix(p-1)+j+k+axc+l);
y(ixp+j+cx(p-1)+1) = y(ixp+j+ck(p-1)+1) - x(i*x(p-1)+j+k+axc+l);
end
end

end

In using the similarity (6) and (7) it is necessary to implement R™'. To this end we note

that the inverse of R, has the form

1 p—-1 -1 -1 -1
R TS B R
1
R; = 1 -1 -1 p-1 -1 |. (13)
1 -1 -1 -1 p-1
1 -1 -1 -1 -1

The inverse of the matrix R described by eqs (9), (10) and (11) is therefore given by

k

R_l = HQ(mi7pfi7ni)_1 (14)

=1

. i—1 e k e
with m; = [’ p;”, ni = [Ij=i41 p;” and

0 ¢ .
Qa,p%)™ =]I [Ia@lp@@lcpﬂ 1o @V ® Lep I (15)

j=e—1 ac(pe—pitt)
where V), denotes the matrix in eq (13) without its first column.
We have written programs for R~', R’ and R~*. They are similar to the programs for R

above. It should be noted that by using the matriz exchange property below, the relevant operations

that need to be implemented turn out to be R, R' and R,

2 Bilinear Forms for Circular Convolution

A basic technique in fast algorithms for convolution is interpolation: two polynomials are evaluated
at some common points, these values are multiplied, and by computing the polynomial interpo-
lating these products, the product of the two original polynomials is determined [2, 12, 14]. This
interpolation method is often called the Toom-Cook method and it is given by two matrices that
describe a bilinear form.

We use bilinear forms to give a matrix formulation of the split nesting algorithm. The split
nesting algorithm combines smaller convolution algorithms to obtain algorithms for longer lengths.
We use the Kronecker product to explicitly describe the way in which smaller convolution algorithms

are appropriately combined.

2.1 The Toom-Cook Method

Recall that the linear convolution of A and z can be represented by a matrix vector product. When

n=23:

ho
hl ho o
hg hl ho T (16)
h2 hl D)
ha
This linear convolution matrix can be written as hgHg + h1 H1 + hoHs where Hj, are clear. This
n—1
product y = Z hy Hyx can be found using the Toom-Cook algorithm. One writes
k=0
n—1
Ehkﬂkx = C{Ah*A:L‘} (17)
k=0

where * denotes point by point multiplication. The terms Ah and Az are the values of H(s) and

X (s) at some points ¢, .. .%2,—1. The point by point multiplication gives the values Y (¢1),...,Y (¢2,-1).

The operation of C' obtains the coefficients of Y'(s) from its values at these points of evaluation.

This is the bilinear form and it implies that
Hy, = Cdiag(Aeg)A. (18)

where e is the k** standard basis vector. However, A and C' do not need to be Vandermonde
matrices as suggested above. As long as A and C are matrices such that Hy = C'diag(Aeg)A, then
the linear convolution of z and h is given by the bilinear form y = C{Ah * Az}. More generally, as
long as A, B and C' are matrices satisfying Hy, = C'diag(Ber)A, then y = C{Bh * Az} computes
the linear convolution of A and z. For convenience, if C'{Bh * Az} computes the n point linear
convolution of A and & (both h and z are n point sequences), then we say “(A4, B,C') describes
a bilinear form for n point linear convolution.” For example, (A, A, C') describes a 2 point linear

convolution where

1 0 1 0 0
A=10 1 and C=|-1 -1 1]. (19)
1 1 0 1 0

Similarly, we can write a bilinear form for cyclotomic convolution. Let d be any positive
integer and let X (s) and H(s) be polynomials of degree ¢(d) — 1 where ¢(-) is the Euler totient
function. If A, B and C are matrices satisfying (Cg,)" = Cdiag(Bey)A for 0 < k < ¢(d) — 1, then
the coefficients of Y'(s) = (X (s)H(s))s,(s) are given by y = C{Bhx Az}. As above, for such A, B,
and C, we say “(A, B, (') describes a bilinear form for ®4(s) convolution.”

But since (X (s)H(s)),s) can be found by computing the product of X(s) and H(s) and
reducing the result, a cyclotomic convolution algorithm can always be derived by following a linear
convolution algorithm by the appropriate reduction operation: If G is the appropriate reduction
matrix and if (A, B, F') describes a bilinear form for a ¢(d) point linear convolution, then (A, B, G F)

describes a bilinear form for ®4(s) convolution. That is, y = GF{Bh+ Az} computes the coefficients
of (X (8)H(3))as)-

2.2 Circular Convolution

Consider p® point circular convolution. Since S, = R;el (—oCao z) Ry, the circular convolution
- P

is decomposed into a set of e 4 1 disjoint ®,(s) convolutions. If (A, B, C,:) describes a bilinear

form for ®,:(s) convolution and if

A = 1@A, 3 @A (20)
= 1¢B,®---@ Bpe (21)
C = 18C, & - ®Cpe (22)

10

where @ denotes the matrix direct sum, then (ARpe, BRye, RZ}}C) describes a bilinear form for p®
point circular convolution. In particular, if (Dg, £y, Fy) describes a bilinear form for d point linear

convolution, then A, B, and C,: can be taken to be
Ay = Dypiy Bpi = Eypiy Cpi = GpiF¢(pi) (23)

where (i represents the appropriate reduction operation and ¢(-) is the Euler totient function.
Specifically, (i has the following form
G = [I(—1)pi-1 -1, _,® 1 [I(p_Q)pi_l_l :|:| (24)
P p=1)p =p P 0pimt41,(p_2)pi-1_1
if p > 3, while

Gyi = [121-_1 [_12“1—1]] : (25)

01 9i-14
Note that the matrix R, block diagonalizes S, and each block on the diagonal represents a
cyclotomic convolution. Correspondingly, the matrices A, B and C of the bilinear form also have

a block diagonal structure.

2.3 A Matrix Formulation of the Split Nesting Algorithm

We now describe the split nesting algorithm for general length circular convolution [14]. Let n =

pi' -+ pyt where p; are distinct primes. We have seen that

S, = PR~ (@xp) (26)

d|n

where P is the prime factor permutation P = Ppel oK and R = Rpel ook Tepresents the reduction
1Py Ly

operations. For example, see eq (12). RP block diagonalizes 5, and each block on the diagonal
represents a multi-dimensional cyclotomic convolution. To obtain a bilinear form for a multi-

dimensional convolution, we can combine bilinear forms for one-dimensional convolutions as follows:

If (Ap;,Bp;,Cp;‘) describes a bilinear form for @ (s) convolution and if

J

A=@ynda B=8quBs C=®anCy (27)
with
Ag = ®p|d7p€7’AHd(p) (28)
By = ®p|d7p€7’BHd(p) (29)
Ca = ®plaperCHyp) (30)

11

where H(p) is the highest power of p dividing d, and P is the set of primes, then (ARP, BRP, P'R™1(C)

describes a bilinear form for n point circular convolution. That is
y=P'R'C{BRPh+ ARPz} (31)

computes the circular convolution of A and x.
As above (Ap;',Bp;,Cp;-) can be taken to be (Dé(pj% E¢(p;-), Gp;Fd)(p;)) where (Dg, Eq, Fy) de-
scribes a bilinear form for d point linear convolution. This is one particular choice for (Api B, Cpi)
J J J
- other bilinear forms for cyclotomic convolution that are not derived from linear convolution algo-

rithms exist [2, 14].

Example 3: A 45 point circular convolution algorithm:

y = P'R™'C {BRPh+ ARPz} (32)
where P = Py 5, R = Ry,
A = 13A33 A A5 B (A3 0 As) B (A9 ® As5) (33)
B = 18B3&By® B;@&(B3® Bs) @ (By ® Bs) (34)
C = 18038CiaC5d(C3®Cs5) B (Co® Cs) (35)

and where (A,i, Bi,C,i) describes a bilinear form for @ :(s) convolution.
J J J J

2.4 The Matrix Exchange Property

The matrix exchange property is a useful technique that allows one to save computation in carrying
out the action of bilinear forms [8]. When A is known and fixed in eq (31), BRPh can be pre-
computed and stored so that y can be found using only the operations represented by PPR~1C and
ARP and the point by point multiplications denoted by *. The operation of BRP is absorbed into
the multiplicative constants. Note that in eq (31), PYR™1C is more complicated than is BRP and
it is therefore advantageous to absorb the work of P!R™'C instead of BRP into the multiplicative
constants. Let J be the reversal matrix (the anti-identity matrix). Applying the matrix exchange

property to eq (31) one gets

y=JPRB{C' R PIh« ARPz} . (36)

Example 4: A 45 point circular convolution algorithm:
y = JP'R'B"{ux ARPz} (37)

12

where w = C'R™"PJh, P = Py5, R = Ry 5,

A = 1GA3B AP A B (A3@ A5) B (A9 ® As) (38)
B! = 1@ B! Bla BLa (BL® BY) @ (B:® BL) (39)
Ct = 1eClaCiaCla (CleCl) e (Cir CY) (40)

and where (A, B, Ci) describes a bilinear form for @ :(s) convolution.
J J J J

3 A Bilinear Form for the DFT

A bilinear form for a prime length DFT can be obtained by making minor changes to a bilinear
form for circular convolution. This relies on Rader’s observation that a prime p point DFT can be
computed by computing a p— 1 point circular convolution and by performing some extra additions
[15]. It turns out that when the Winograd or the split nesting convolution algorithm is used, only

two extra additions are required.

3.1 Rader’s Permutation

To explain Rader’s conversion of a prime p point DFT into a p— 1 point circular convolution [3, 15]
we recall the definition of the DFT

p—1

y(k) = > a(n)W™" (41)
n=0
with W = exp (—j27 /p). Also recall that a primitive root of p is an integer r such that (r™), maps

the integers m = 0,...,p — 2 to the integers 1,...,p — 1. Letting n = =™ and k = r!, where 7~

is the inverse of ™ modulo p, the DFT becomes

p—2
—-m plp—m
y(r) = 2(0) + Y e(r™™)W (42)
m=0
for l = 0,...,p—2. The ‘DC’ term is given by y(0) = i;é z(n). By defining new functions

2'(m) = z(r=™), y'(m) = y(r™) and W'(m) = W"" which are simply permuted versions of the

original sequences, the DFT becomes

p—2
Y1) =2(0)+ Y 2" (m)W'(l - m) (43)
m=0
for I =0,...,p— 2. This equation describes circular convolution and therefore any circular convo-

lution algorithm can be used to compute a prime length DFT. It is only necessary to (i) permute

13

the input, the roots of unity and the output, (iz) add z(0) to each term in (43) and (éii) compute
the DC term.

Define a permutation matrix) for the permutation above. If p is a prime and r is a primitive
root of p, then let (), be the permutation matrix defined by Q€<7,k>p_1 =e for 0 < k< p-2
where e is the k" standard basis vector. Let the @ be a p — 1 point vector of the roots of
unity: @ = (W1,...,WP™1)! If s is the inverse of r modulo p (that is, rs = 1 modulo p) and
& = (z(1),...,z(p — 1)), then the circular convolution of eq (43) can be computed with the

bilinear form of eq (36):
QLIP'R'B' {C'R™ PJQb x ARPQ, G } . (44)

This bilinear form does not compute y(0), the DC term. Furthermore it is still necessary to add

the (0) term to each of the elements of (44) to obtain y(1),...,y(p — 1).

3.2 Calculation of the DC term

The computation of y(0) turns out to be very simple when the bilinear form (44) is used to compute
the circular convolution in eq (43). The first element of ARPQ,Z in eq (44) is the residue modulo
the polynomial s — 1, that is, the first element of this vector is the sum of the elements of Z.
Therefore, the DC term can be computed by adding the first element of ARP(Q),Z to z(0). Hence,
when the Winograd or split nesting algorithm is used to perform the circular convolution of eq
(44), the computation of the DC term requires only one extra complex addition for complex data.

The addition z(0) to each of the elements of (44) also requires only one complex addition. By
adding z(0) to the first element of {C*R™*PJQsw + ARPQ,%} in eq (44) and applying Q%JP'R’
to the result, 2(0) is added to each element.

Although the DFT can be computed by making these two extra additions, this organization of
additions does not yield a bilinear form. However, by making a minor modification, a bilinear form
can be retrieved. The method described above can be illustrated in fig 1 with v = C'R™*PJQ ;.
Clearly, the structure highlighted in the dashed box can be replaced by the structure in fig 2. By
substituting the second structure for the first, a bilinear form is obtained. The resulting bilinear

form for a prime length DFT is

v=|! Josfn |’ | |-}
QtJP'R'Bt| P C'R™tPJQ, ARPQ,

where w = (WO, ..., WP 1)t o = (2(0),...,2(p—1))!, and where U, and V,, are the matrices with

v, w U, [1 (45)

14

the forms

U,

[l
—_
-

|
—_
—~
e
D
—

4 Implementing Kronecker Products Efficiently

In the algorithm described above we encountered expressions of the form A4; ® A; ® - - - ® A, which
we denote by @i A;. To calculate the product (®;4;) it is computationally advantageous to
factor ®;A; into terms of the form I ® A; @ I [1]. For the Kronecker product @}, A; there are n!
possible different ways in which to order the operations A;. To find the best factorization of ®;A; it
is necessary only to compute the ratios (rows; —cols;)/cost; and to order them in an non-decreasing

order [1].

4.1 Vector/Parallel Interpretation

The command I @ A ® I where ® is the Kronecker (or tensor) product can be interpreted as
a vector/parallel command [5, 19]. In these references, the implementation of these commands
is discussed in detail and it was found that the tensor product is “an extremely useful tool for
matching algorithms to computer architectures [5].”

In the programs we have written in conjunction with this paper we implement the commands
y = (I®A®I)z with loops in a set of subroutines. The circular convolution and prime length FFT
programs we present, however, explicitly use the form I ® A ® I to make clear the structure of the
algorithm, to make them more modular and simpler, and to make them amenable to implementation

on special architectures. In fact, in [5] it is suggested that it might be practical to develop tensor

product compilers. The FFT programs described here will be well suited for such compilers.

5 Programs for Circular Convolution

In writing a program that computes the circular convolution of A and z using the bilinear form
(36) we have written subprograms that carry out the action of P, P*, R, R', A and B*. We are
assuming, as is usually done, that & is fixed and known so that « = C* R~ P.Jh can be pre-computed
and stored. To compute these multiplicative constants u we need additional subprograms to carry
out the action of C* and R~ but the efficiency with which we compute u is unimportant since this

is done beforehand and u is stored.

15

In section 1.2 we discussed the permutation P and a program implementing this permutation
is not difficult to write. The reduction operations R, R' and R~* we have described in section 1.3
and programs for these reduction operations we have described above. To carry out the operation
of A and B! we need to be able to carry out the action of A4, ®---® Ag, and this was discussed in
section 4. Note that since A and B! are block diagonal, each diagonal block can be done separately.
However, since they are rectangular, it is necessary to be careful so that the correct indexing is
used.

To facilitate the discussion of the programs we generate, it is useful to consider an example.
Take as an example the 45 point circular convolution algorithm. From eq (32) we find that we need
to compute z = Py sz and z = Rg5x.

We noted above that bilinear forms for linear convolution, (Dg, Fq, Fy), can be used for
cyclotomic convolutions - specifically we can take A, = Dypiy, Bpi = Eypiy and C: = GpiF¢(pi).

In this case eq (33) becomes
A=18D; 8 Ds® Dy ® (D3 ® Dy) & (Dg ® Dy). (47)

When we use bilinear forms for convolution obtained by nesting [2] one can take Dy = Dy ® Dy

and Dg = Dy ® D3. Then
A=18D;8 (D@ D3)d (D@ Dy) @ (D2® Dy ® Dy) & (D ® D3 @ D2 @ Dy). (48)

From the discussion above, we found that the Kronecker products like Dy ® Dy @ Dy appearing in
these expressions are best carried out by factoring the product in to factors of the form I, ® Do ® I.
Therefore we have written programs to program to carry out (I, ® Dy ® Ipy)z and (I, ® Dz ®
Iy)z. These function are called ID2I(a,b,x) and ID3I(a,b,x) and appear in the program in the
appendix. The transposed form, (I, ® D% ® I)z, is called ID2tI(a,b,x).

To compute the multiplicative constants we need C*. Using i = G i Fypiy we get

C' = 18 FG50 Gy @ FiG} © (F3G5 @ FiG5) @ (F5Gy @ FiGY) (49)
1@ PG5 ® FiGo @ FiG5 @ (Fy © Fy)(G5© G3) @ (Fg @ F)(Gs® GF). (50)

We have written programs to carry out the operation Fy, @ ---Fy, and Ger @ -+ G exc.
1 K

5.1 Operation Counts

Table 1 lists operation counts for some of the circular convolution algorithms we have generated.

The operation counts do not include any arithmetic operations involved in the index variable

16

or loops. They include only the arithmetic operations that involve the data sequence z in the
convolution of z and h.

Table 3.5 in [14] for the split nesting algorithm gives very similar arithmetic operation counts.
For all lengths not divisible by 9, the algorithms we have developed use the same number of
multiplications and the same number or fewer additions. For lengths which are divisible by 9, the
algorithms described in [14] require fewer additions than do ours. This is because the algorithms
whose operation counts are tabulated in table 3.5 in [14] use a special ®¢(s) convolution algorithm.
It should be noted, however, that the efficient ®g9(s) convolution algorithm of [14] is not constructed
from smaller algorithms using the Kronecker product, as is ours. As we have discussed above, the
use of the Kronecker product facilitates adaptation to special computer architectures and yields a
very compact program with function calls to a small set of functions.

It is possible to make further improvements to the operation counts given in table 1 [13, 14].
Specifically, algorithms for prime power cyclotomic convolution based on the polynomial transform,
although more complicated, will give improvements for the longer lengths listed [13, 14]. These

improvements can be included in the code generating program we have developed.

6 Programs for Prime Length FFTs

Using the circular convolution algorithms described above, we can easily design algorithms for
prime length FFTs. The only modifications that needs to be made involve the permutation of
Rader [15] and the correct calculation of the DC term (y(0)). These modifications are easily made
to the above described approach. It simply requires a few extra commands in the programs. Note
that the multiplicative constants are computed directly, since we have programs for all the relevant
operations.

In the version we have currently implemented and verified for correctness, we precompute
the multiplicative constants, the input permutation and the output permutation. From eq (45),
the multiplicative constants are given by V,(1® C*R™*PJQ;)w, the input permutation is given by
1@ PQ,, and the output permutation is given by 1 & Q!JP!. The multiplicative constants, the
input and output permutation are each stored as vectors. These vectors are then passed to the
prime length FFT program which consists of the appropriate function calls (see the appendix). In
previous prime length FF'T modules, the input and output permutations are completely absorbed in
to the computational instructions. This is possible because they are written as straight line code.
It is possible to modify the code generating program we have implemented so that it produces

straight line code and absorbs the permutations in to the computational program instructions.

17

In an in-place in-order prime factor algorithm for the DFT [4, 18], the necessary permuted
forms of the DFT can be obtained by modifying the multiplicative constants. This can be easily
done by permuting the roots of unity, w, in the expression for the multiplicative constants [4, 8],
nothing else in the structure of the algorithm needs to be changed. By changing the multiplicative
constants, it is not possible, however, to omit the permutation required for Rader’s conversion of

the prime length DFT in to circular convolution.

6.1 Operation Counts

Table 2 lists the arithmetic operations incurred by the FFT programs we have generated. Note
that the number of additions and multiplications incurred by the programs we have generated are
the same as previously existing programs for prime lengths up to and including 13. For p = 17
a program with 70 multiplications and 314 additions has been written, and for p = 19 a program
with 76 multiplications and 372 additions has been written [9]. Thus for the length p = 17, the
program we have generated requires fewer total arithmetic operations, while for p = 19, ours uses
more.

The focus of [11] is the implementation of prime point FFT on various computer architectures
and the advantage that can be gained from matching algorithms with architectures. Although we
have not executed the programs described in this paper on special architectures, they are, as
mentioned above, designed to be easily adapted to parallel/vector computers.

There are several tables of operation counts in [11], each table corresponding to a different
variation of the algorithms used in that paper. For most variations, the algorithms we have de-
scribed use fewer additions and fewer multiplications. According to table VIII of [11], however, a
13 point DFT can be implemented using 172 additions and 90 multiplications. This is 16 fewer
additions but 50 more multiplications than the operation counts of table 2 here for this length.
On many RISC processors the 13 point algorithm of [11] is the more efficient, because on such

machines, multiplications can often be hidden in additions via dual operations.

6.2 On the Row-Column Method

In the context of the DFT, the row-column method computes the transform of a data array by
computing the DFT of the rows and by then computing the DFT of the columns. Some algorithms
for prime length FFTs for which operation counts are given [17] assume that a row-column method
can be used for multi-dimensional convolution. Unfortunately, however, the convolution of two

sequences can not be found in general by forming two arrays, by convolving their rows, and by

18

then convolving their columns. It should be noted that the row-column convolution method of [11]

apparently refers to the nested polynomial multiplication method.

7 Conclusion

We have found that by using the split nesting algorithm for circular convolution a new set of
efficient prime length DFT modules that cover a wide variety of lengths can be developed. We have
also exploited the structure in the split nesting algorithm to write a program that automatically
generates compact readable code for convolution and prime length FFT programs.

The resulting code makes clear the organization and structure of the algorithm and clearly
enumerates the disjoint convolutions into which the problem is decomposed. These indepen-
dent convolutions can be executed in parallel and, moreover, the individual commands are of
the form I ® A ® I which can be executed as parallel/vector commands on appropriate computer
architectures[19]. By recognizing also that the algorithms for different lengths share many of the
same computational structures, the code we generate is made up of calls to a relatively small set
of functions. Accordingly, the subroutines can be designed to specifically suit a given architecture.

The number of additions and multiplications incurred by the programs we have generated are
the same as or are competitive with existing prime length FFT programs. We note that previously,
prime length FFTs were made available for primes only up to 29. As in the original Winograd
short convolution algorithms, the efficiency of the resulting prime p point DFT algorithm depends
largely upon the factorability of p — 1. For example, if p — 1 is two times a prime, then an efficient
p point DFT algorithm is more difficult to develop.

It should be noted too that the programs for convolution developed above are useful in the
convolution of long integer sequences when exact results are needed. This is because all multiplica-
tive constants in an n point integer convolution are integer multiples of 1/n and this division by n
can be delayed until the last stage or can simply be omitted if a scaled version of the convolution
is acceptable.

By developing a library of prime point FFT programs we can extend the maximum length
and the variety of lengths of a prime factor algorithm or a Winograd Fourier transform algorithm.
Furthermore, because the approach taken in this paper gives a bilinear form, it can be incorporated
into the dynamic programming technique for designing optimal composite length FFT algorithms
[7]. The programs described in this paper can also be adapted to obtain discrete cosine transform

(DCT) algorithms by simply permuting the input and output sequences [6].

19

A A 31 Point FFT Program

As an example, we list a 31 point FFT program. The matrix D, used in the program, is part of

the bilinear form for 2 point linear convolution in eq (19):

1 0
Dy=1(0 1
1 1

function y = £fft31(x,u,ip,op)
%y = £ft31(x,u,ip,op)

%y : the 31 point DFT of x
% u : a vector of precomputed multiplicative constants
% ip : input permutation
% op : output permutation
y = zeros(31,1);
x = x(ip); % input permutation
x(2:31) = KRED([2,3,5],[1,1,1],3,x(2:31)); % reduction operations
y(1) = x(1)+x(2); % DC term calculation
h o mmmm - block : 1 ==== = e e e e
y(2) = x(2)*u(1);
h = block : 2 ————=——————————
y(3) = x(3)*u(2);
h = block : 3 ——————————————— -
v = ID2I(1,1,x(4:5)); % v = (I(1) kron D2 kron I(1)) * x(4:5)
v = v.*%u(3:5);
: = t ,1,v); o : = ron ron * v
y(4:5) = ID2tI(1,1,v) % y(4:5) = (I(1) k D2’ k 1(1))
h = block : 6 = 2 ¥ 3 ———————————————— -
v = ID2I(1,1,x(6:7)); % v = (I(1) kron D2 kron I(1)) * x(6:7)
v = v.*%u(6:8);
: = t ,1,v); A : = ron ron * Vv
y(6:7) = ID2tI(1,1,v) % y(6:7) = (I(1) k D2’ k 1(1))
h = block : B =====mm e e
v = ID2I(1,2,x(8:11)); % v = (I(1) kron D2 kron I(2)) * x(8:11)
v = ID2I(3,1,v); % v = (I(3) kron D2 kron I(1)) * v
v = v.*%u(9:17);
v = ID2tI(1,3,v); % v = (I(1) kron D2’ kron I(3)) * v
y(8:11) = ID2tI(2,1,v); % y(8:11) = (I(2) kron D2’ kron I(1)) * v
h o mmmm - block : 10 = 2 #% 5 === ——— e e
v = ID2I(1,2,x(12:15)); % v = (I(1) kron D2 kron I(2)) * x(12:15)
v = ID2I(3,1,v); % v = (I(3) kron D2 kron I(1)) * v
v = v.*%u(18:26);
v = ID2tI(1,3,v); % v = (I(1) kron D2’ kron I(3)) * v
y(12:15) = ID2tI(2,1,v); % y(12:15) = (I(2) kron D2’ kron I(1)) * v
h = block : 156 = 3 * 5 —————————————— -
v = ID2I(1,4,x(16:23)); % v = (I(1) kron D2 kron I(4)) * x(16:23)
v = ID2I(3,2,v); % v = (I(3) kron D2 kron I(2)) * v
v = ID2I(9,1,v); % v = (I(9) kron D2 kron I(1)) * v
v = v.*u(27:53);
v = ID2tI(1,9,v); % v = (I(1) kron D2’ kron I(9)) * v
v = ID2tI(2,3,v); % v = (I(2) kron D2’ kron I(3)) * v
y(16:23) = ID2tI(4,1,v); % y(16:23) = (I(4) kron D2’ kron I(1)) * v
h —mm block : 30 =2 * 3 * 5 —-—-———-————————
v = ID2I(1,4,x(24:31)); % v = (I(1) kron D2 kron I(4)) * x(24:31)
v = ID2I(3,2,v); % v = (I(3) kron D2 kron I(2)) * v
v = ID2I(9,1,v); % v = (I1(9) kron D2 kron I(1)) * v
v = v.*u(54:80);
v = ID2tI(1,9,v); % v = (I(1) kron D2’ kron I(9)) * v
v = ID2tI(2,3,v); % v = (I(2) kron D2’ kron I(3)) * v
y(24:31) = ID2tI(4,1,v); % y(24:31) = (I(4) kron D2’ kron I(1)) * v

% DC term calculation

20

y(2:31) = tKRED([2,3,5],[1,1,1],3,y(2:31)); % transpose reduction operations
y = y(op); % output permutation

% For complex data -
% Total Number of Real Multiplications : 160
% Total Number of Real Additioms: 776

The multiplicative constants for the 31 point FFT are given by

-1.033333333333333
0.185592145427667*1
0.251026872929094
0.638094290379888

-0.296373721102994

-0.462201919825109%1I
0.155909426230360%I
0.102097497864916*1

-0.100498239164838

-0.217421331841463

-0.325082164955763
0.798589508696894

-0.780994042074251

-0.256086011899669
0.169494392220932
0.711997889018157

-0.060064820876732

-1.235197570427205*1I

-0.271691369288525%1
0.541789612349592%1
0.329410560797314%1
1.317497505049809%*1

-0.599508803858381*1
0.093899154219231*1I

-0.176199088841836*1
0.028003825226279%1
1.316699050305790
1.330315270540553

-0.385122753006171

-2.958666546021397

-2.535301995146201
2.013474028487015

.081897731187396
0.136705213653014

-0.569390844064251

-0.262247009112805
2.009855570455675

-1.159348599757857
0.629367699727360
1.229312102919654

-1.479874670425178

-0.058279061554516

-0.908786032252333
0.721257672797977

-0.351484013730995

-1.113390280332076
0.514823784254676

—_

21

0.776432948764679
0.435329964075516
-0.177866452687279
-0.341206223210960
0.257360272866440
-0.050622276244575
-2.745673340229639%1
2.685177424507523*1
0.880463026400118%I
-5.028851220636894*1
-0.345528375980267*1
1.463210769729252#*1
3.328421083558774%1
-0.237219367348867*1
-1.086975102467855%1
-1.665522956385442%1
1.628826188810638*1
0.534088072762272%1
-3.050496586573981*1
-0.209597199290132%1I
0.887582325001072*1I
2.019017208624242%1
-0.143897052948668*1
-0.659358110687783*1
1.470398765538361%1
-1.438001204439387*1
-0.471517033054130*1I
2.693115935736959%1
0.185041858423467*1
-0.783597698243441%1
-1.782479430727672%1
0.127038806765845*1
0.582111071051880%1I

]
The input permutation is given by
ip=1[1217 9532629 158 20 6 19 10 21 11 31 16 24 28 30 7 4 18 25 13 27 14 23 12 22].
The output permutation is given by
op = [13130229 266 19 28 23259 57 18 12 27 3 22 20 24 10 8 13 4 21 11 14 17 15 16].
References

[1] R. C. Agarwal and J. W. Cooley. New algorithms for digital convolution. IFFFE Trans. on
Acoust., Speech, Signal Proc., 25(5):392-410, October 1977.

[2] R. E. Blahut. Fast Algorithms for Digital Signal Processing. Addison-Wesley, 1985.

[3] C. S. Burrus. Efficient Fourier transform and convolution algorithms. In Jae S. Lim and

Alan V. Oppenheim, editors, Advanced Topics in Signal Processing. Prentice Hall, 1988.

22

[4]

[5]

[6]

[7]

[12]

[13]

C. S. Burrus and P. W. Eschenbacher. An in-place, in-order prime factor FFT algorithm.
IFEE Trans. on Acoust., Speech, Signal Proc., 29(4):806-817, August 1981.

J. Granata, M. Conner, and R. Tolimieri. The Tensor product: A mathematical programming
language for FFTs and other fast DSP operations. IEEE Signal Processing Magazine, 9(1):40~-
48, January 1992.

M. T. Heideman. Computation of an odd-length DCT from a real-valued DFT of the same
length. IEEFE Trans. on Signal Processing, 40(1):54-59, January 1992.

H. W. Johnson and C. S. Burrus. The design of optimal DFT algorithms using dynamic
programming. IEEE Trans. on Acoust., Speech, Signal Proc., 31(2):378-387, April 1983.

H. W. Johnson and C. S. Burrus. On the structure of efficient DFT algorithms. IFEE Trans.
on Acoust., Speech, Signal Proc., 33(1):248-254, February 1985.

H. W. Johnson and S. Burrus. Large DF'T Modules: 11, 13, 17, 19, 25. Technical Report 8105,
Rice University, 1981.

K. J. Jones. Prime number DFT computation via parallel circular convolvers. IFE Proceedings,

Part F, 137(3):205-212, June 1990.

C. Lu, J. W. Cooley, and R. Tolimieri. FFT algorithms for prime transform sizes and their
implementations of VAX, IBM3090VF, and IBM RS/6000. [EEE Trans. on Acoust., Speech,
Signal Proc., 41(2):638-648, February 1993.

D. G. Myers. Digital Signal Processing: Efficient Convolution and Fourier Transform Tech-
niques. Prentice Hall, 1990.

H. J. Nussbaumer. Fast polynomial transform algorithms for digital convolution. IFEE Trans.

on Acoust., Speech, Signal Proc., 28(2):205-215, April 1980.

H. J. Nussbaumer. Fast Fourier Transform and Convolution Algorithms. Springer-Verlag,

1982.

C. M. Rader. Discrete Fourier transform when the number of data samples is prime. Proc.

IEEE, 56(6):1107-1108, June 1968.

I. W. Selesnick and C. S. Burrus. Automating the design of prime length FFT programs. In
Proc. IEFE Inl. Symp. Circuits and Systems, volume 1, pages 133-136, 1992.

23

[17] R. Stasinski. Easy generation of small-n discrete Fourier transform algorithms. IEE Proceed-

ings, Part G, 133(3):133-139, June 1986.

[18] C. Temperton. Implementation of a self-sorting in-place prime factor FFT algorithm. Journal

of Computational Physics, 58:283-299, 1985.

[19] R. Tolimieri, M. An, and C. Lu. Algorithms for Discrete Fourier Transform and Convolution.
Springer-Verlag, 1989.

[20] S. Winograd. Arithmetic Complezily of Computations. SIAM, 1980.

[21] Y. Zalcstein. A note on fast cyclic convolution. IEEE Trans. on Comput., 20:665-666, June
1971.

24

Table 1: Operation counts for split nesting circular convolution algorithms

N muls adds | N muls adds | N muls adds| N muls adds
2 2 4 24 56 244 | 80 410 1546 | 240 1640 6508
3 4 11 |27 94 485 | 84 320 1712 | 252 1520 7920
4 5 15 |28 80 416 | 90 380 1858 | 270 1880 9074
5 10 31 |30 &0 386 | 106 640 2881 | 280 2240 9516
6 8 34 |35 160 707 | 108 470 2546 | 315 3040 13383
7 16 71 136 95 493 | 112 656 2756 | 336 2624 11132
8 14 46 | 40 140 568 | 120 560 2444 | 360 2660 11392
9 19 82 |42 128 718 | 126 608 3378 | 378 3008 16438
10 20 82 |45 190 839 | 135 940 4267 | 420 3200 14704
1220 92 |48 164 656 | 140 800 3728 | 432 3854 16430
14 32 170 | 54 188 1078 | 144 779 3277 | 504 4256 19740
15 40 163 | 56 224 1052 | 168 896 4276 | 540 4700 21508
16 41 135 | 60 200 952 | 180 950 4466 | 560 6560 25412
18 38 200 | 63 304 1563 | 189 1504 7841 | 630 6080 28026
20 50 214 | 70 320 1554 | 210 1280 6182 | 720 7790 30374
21 64 317 | 72 266 1250 | 216 1316 6328 | 756 7520 38144
Table 2: Operation counts for prime length FFTs

P muls adds | P muls adds P muls adds

3 4 12 41 280 1140 | 241 3280 13020

5 10 34 43 256 1440 | 271 3760 18152

7 16 72 61 400 1908 | 281 4480 19036

11 40 168 | 71 640 3112 | 337 5248 22268

13 40 188 | 73 532 2504 | 379 6016 32880

17 82 274 | 109 940 5096 | 421 6400 29412

19 76 404 | 113 1312 5516 | 433 7708 32864

29 160 836 | 127 1216 6760 | 541 9400 43020

31 160 776 | 181 1900 8936 | 631 12160 56056

37 190 990 | 211 2560 12368 | 757 15040 76292

25

1
0] . : ¥(0)
1 1
_1_2&
1 1
X(1) ——0)

— w) I
— f— — —
— f— — —
X(p-1) w— f— — e y(p-1)
f— —
f— —
)

Figure 1: The flow graph for the computation of the DFT.

Figure 2: The flow graph for the bilinear form.

26

4 Operation Counts for Prime Length FFTs
35 T T T T

adds and muls

0 50 100 150 200 250 300 350 400 450

Figure 3: Plot of additions and multiplications incurred by prime length FFTs.

27

