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Abstract— We propose a hybrid approach to wavelet-based deconvolution that comprises Fourier-domain
system inversion followed by wavelet-domain noise suppression. In contrast to other wavelet-based decon-
volution approaches, the algorithm employs a regularized inverse filter, which allows it to operate even
when the system is non-invertible. Using a mean-square-error (MSE) metric, we strike an optimal balance
between Fourier-domain regularization (matched to the convolution operator) and wavelet-domain regular-
ization (matched to the signal/image). Theoretical analysis reveals that the optimal balance is determined
by the Fourier-domain operator structure and the economics of the wavelet-domain signal representation.
The resulting algorithm is fast (O(N log N) complexity for signals/images of N samples) and is well-suited
to data with spatially-localized phenomena such as edges and ridges. In addition to enjoying asymptotically
optimal rates of error decay for certain systems, the algorithm also achieves excellent performance at fixed
data lengths. In real data experiments, the algorithm outperforms the conventional time-invariant Wiener
filter and other wavelet-based image restoration algorithms in terms of both MSE performance and visual

quality.
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Figure 1: Convolution model setup. The desired data x is first corrupted by convolution with the linear
time-invariant (LTI) system H, and then by the additive white Gaussian (AWGN) noise v before being

observed as y.

1 Introduction
Deconvolution is a recurring theme in a wide variety of signal and image processing problems,
from channel equalization [1] to image restoration [2]. For example, practical satellite images
are often blurred due to limitations such as aperture effects of the camera, camera motion, or
atmospheric turbulence. Deconvolution becomes necessary if we wish a crisp, deblurred image for

viewing or further processing.

1.1 Problem description

In this paper, we treat the classical deconvolution scenario (see Figure 1). Two degradations
corrupt our observation y of the desired data x: convolution with an linear time-invariant LTI
system H having impulse response h and additive white Gaussian (AWGN) noise  of variance

o? . In 1-d, we have
y(tn) == (@ @ h)(tn) + 7(n), n=0,...,N -1, (1)

where t,, denotes the discrete sample points; and ® denotes circular convolution, which is assumed
for simplicity but without loss of generality. Given y and h, we seek to estimate x.

In the discrete Fourier transform (DFT) domain, we equivalently have

Y (fn) = H(fn) X(fn) + T(fn), n=0,...,N -1, (2)

with Y, H, X and I" the respective length-N DFTs and f,, := %T" the normalized DFT frequencies.
The problem formulation trivially extends to multidimensional data.
If the system frequency response H has no zeros, then an unbiased estimate of x can be

obtained through

jz'(fn) = Hil(fn)y(fn)
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Figure 2: Three different deconvolution strategies. (a) Formally, Fourier-domain regularized deconvolution
(FoRD) estimates the signal in the presence of the noise colored by H ! using Fourier-domain shrinkage.
The amount of Fourier-domain shrinkage is controlled by the regularization parameter o. Wiener deconvo-
lution is a special case of FORD that shrinks according to the signal-to-noise-ratio (SNR) at each frequency
(o = 1). (b) Wavelet-vaguelette deconvolution (WVD) estimates the signal in the presence of the noise
colored by H~! using wavelet-domain shrinkage. (c) Our proposed wavelet-based regularized deconvolu-
tion (WaRD) exploits both the FoRD and WVD concepts to minimize the distortion of spatially localized

features in the signal.

X(fa) + H™ (fa) T(fn). 3)

However, if the system is ill-conditioned, i.e., if H(f,) is small at any f,, then the noise is

enormously amplified during inversion to yield an extremely noisy, useless estimate.

1.2 Fourier-domain regularized deconvolution (FoRD)

Noise amplification can be alleviated by using an approximate, regularized inverse instead of
a pure inverse. Regularization aims to provide a better solution by reducing noise in exchange
for some bias in the estimate [3]; regularization becomes essential in situations involving ill-
conditioned systems.

The LTI Wiener deconvolution filter is a classical example of what we will term Fourier-domain
regularized deconvolution (FoRD, see Figure 2(a)). Formally, the estimation procedure used by the
LTI Wiener deconvolution filter can be understood as inverting the convolution operator using

H~! to obtain a noisy estimate Z followed by shrinkage of each frequency component f, of T



according to the signal-to-noise-ratio (SNR) at f,, (shrink less/more when the SNR is high/low).!

The Fourier transform diagonalizes the convolution operator H; hence the Fourier domain is
ideally suited to represent the colored noise H~!T in X (see (3)). Consequently, the LTI Wiener
deconvolution filter, which employs Fourier-domain shrinkage, can precisely identify and attenuate
the noise that gets amplified during inversion of H, thereby fully exploiting the structure of the
blurring system. In fact, when the input signal can be modeled as wide-sense stationary (WSS)
and Gaussian, the LTT Wiener deconvolution filter is MSE-optimal over all estimators.

However, the Fourier domain is not well-suited for representing many common signals and im-
ages that contain spatially localized phenomena such as edges, because the Fourier basis functions
have support that extend over the entire spatial domain.? Scalar processing of the Fourier com-
ponents, employed by FoRD, lacks spatial selectivity; consequently, important spatially localized
features such as edges and ridges become distorted during FoRD. Such distortions are reflected

as ringing around the localized features.

1.3 Wavelets and wavelet-vaguelette deconvolution (WVD)

The wavelet transform is an invaluable tool for dealing with signals and images containing
spatially localized features such as edges and ridges. Wavelets provide economical representations
for these signals and in particular those belonging to Besov spaces [4], i.e., the wavelet expansion
captures most of the signal energy using a few large wavelet coefficients. This property has been
leveraged into powerful, spatially adaptive, signal estimation algorithms that are based on simply
shrinking the wavelet coefficients of the noisy signal [5, 6].

Motivated by the economy of wavelet representations, Donoho proposed the wavelet-vaguelette
decomposition algorithm to solve a special class of linear inverse problems [7]. With a slight abuse
of notation, we refer to the wavelet-vaguelette decomposition applied to deconvolution as wavelet-
vaguelette deconvolution (WVD). In contrast to FoRD, WVD employs wavelet-domain shrinkage
to estimate the signal in the presence of colored noise H~'T (see Figure (3) and 2(b)).

WVD exploits the economical wavelet representation of signals to effectively identify and

!The inversion and shrinkage is performed jointly in practice; hence FORD and Wiener deconvolution are appli-
cable even when the system H is not invertible. All through this paper, we have referred to any form of attenuation,

i.e., multiplication by a number between 0 and 1, as shrinkage.

2Such signals cannot be modeled as WSS.



estimate the signal. In fact, for special classes of blurring operators such as the Radon transform,
WYVD exhibits asymptotically (as N — oo) near-optimal rates of error decay for a wide class of
input signals [7].

However, the wavelet transform does not diagonalize the convolution operator 7. Conse-
quently, the noise frequency components amplified during inversion of H corrupt many wavelet
coefficients. For example, for a box-car impulse response? h — a common model for image blur-
ring due to camera motion [2] — the noisy estimate Z obtained after system inversion has infinite
noise variance at all wavelet scales. Thus, even though wavelets provide an efficient input signal
representation, signal estimation using scalar operations in the wavelet domain is futile and results

in a zero signal as the estimate.

1.4 Wavelet-based regularized deconvolution (WaRD)

Motivated by the fact that the Fourier domain matches the convolution operator while the
wavelet domain matches a large class of potential input signals, we propose an improved hybrid
wavelet-based regularized deconvolution (WaRD) algorithm suitable for use with any ill-conditioned
system. The basic idea is simple: employ the best of both FORD and WVD processing (see Fig-
ure 2(c)). In this tandem processing, Fourier-domain regularization adapted to the convolution
operator partially controls noise amplification. However, we use it sparingly to keep the accom-
panying smearing distortions to a minimum; the bulk of the noise removal and signal estimation
is achieved using wavelet shrinkage. Figure 3 illustrates the superior overall visual quality and
the mean square error (MSE) of the WaRD estimate as compared to the Wiener estimate.

By optimizing over an MSE metric, we will find that the optimal balance between local
processing with the wavelet basis and global processing with the Fourier basis is determined by
both the Fourier-domain convolution operator structure and the economy of wavelet domain signal

representation.

1.5 Related work

One extreme of our Fourier/wavelet balance is to perform no Fourier-domain regularization;

this is equivalent to the WVD approach of Donoho [7] and the mirror-wavelet basis approach of

3The Q x Q-point box-car impulse response is defined as h(n,m) = 517 forl < nm <

Q@; and h(n,m) = 0 otherwise.
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Figure 3: (a) Original Cameraman image = (256 x 256 samples). (b) Observed image y (blurred signal-
to-noise ratio (BSNR) = 40 dB). Smoothed by a 9x 9-point box-car blur + noise. (¢) Wiener filter (FORD
with a = 1) estimate (SNR = 20.7 dB, improvement in SNR (ISNR) = 5.5 dB). The | X (f,)|? required by
the Wiener filter was estimated using the iterative technique of [8]. The ripples in the image result because
the underlying Fourier basis elements have support over the entire spatial domain. (d) WaRD with a = 0.1
(SNR = 22.5 dB, ISNR = 7.3 dB). In contrast to the Wiener estimate, the smooth regions and most
edges are well preserved in the WaRD estimate, thanks to the spatially-localized wavelet basis functions.
However, some faint features such as parts of the grass are lost during wavelet-domain estimation. The
WVD algorithm is not applicable in this case since the box-car blurring operator used in the example is
non-invertible. For the same experiment, the multiscale Kalman filter of [9] provides an ISNR of 6.7 dB.

See Section 7 for more details.



Kalifa, Mallat, and Rougé [10]. We will show in Section 5 that WaRD subsumes WVD and thus
WaRD possesses the same asymptotically (as N — 0o0) near-optimal error decay rates as WVD for
special operators such as the Radon transform. However, at any fixed sample-size N, WaRD will
outperform WVD. Furthermore, unlike WVD, WaRD is applicable to any convolution operator.

The mirror-wavelet basis approach of Kalifa et al. [10] adapts to the frequency response of the
convolution operator . Though the adapted basis improves upon the WVD, it is not effective
for all types of ill-conditioned systems. For example, when H has a box-car impulse response h,
adapting to the sinc frequency response H using wavelets fails.

Nowak [11] have employed an under-regularized system inverse and subsequently used wavelet-
domain signal estimation. However, they did not address the implications of using the regular-
ization and the choice of the optimal amount of regularization.

Banham and Katsaggelos [9] apply a multiscale Kalman filter to the deconvolution problem.
Their approach employs an under-regularized constrained-least-squares prefilter to reduce the
support of the state vectors in wavelet domain, thereby improving the computational efficiency
of the multiscale restoration filter. The amount of regularization chosen for each wavelet scale is
the lower bound that allows for reliable edge classification.

While similar in spirit to the multiscale Kalman filter approach, in WaRD the amount of
regularization is chosen to optimize the overall MSE performance of the deconvolved estimate.
In addition, WaRD employs simple shrinkage on the wavelet coefficients of an over-complete
wavelet basis in contrast to more complicated prediction on edge and non-edge quad-trees over
an orthonormal wavelet basis [9]. As mentioned in Figure 3, WaRD outperforms the multiscale
Kalman technique in terms of the improvement in signal-to-noise-ratio (ISNR).

There is also a vast amount of literature on iterative techniques [12,13]. In this paper, we

have focused only on non-iterative deconvolution techniques.

1.6 Paper organization

After discussing regularization in more depth in Section 2, we briefly review wavelet transforms
and their properties in Section 3. We outline previous wavelet-based deconvolution techniques in
Section 4. We present our improved WaRD scheme in Section 5, elaborate on its implementation

in Section 6. Ilustrative examples lie in Section 7. We conclude by summarizing our work and



sketching future directions in Section 8.

2 Fourier-domain Regularized Deconvolution (FoRD)
2.1 The FoRD algorithm

Given the general deconvolution problem from the Section 1, FoRD can be understood formally

as follows (see Figure 2(a)):

1. Pure inversion: Treat the y with H~! to obtain a noisy, unbiased estimate Z of the input
signal = as in (3). This necessarily amplifies the noise components at frequencies where

|H(fr)| is small.

2. Fourier-domain signal estimation: Shrink each frequency component of the noisy signal

T using frequency-dependent weights

| H (fn)|* | Pa(fn)]

Rolln) = THGI P )] + ao?

(4)

where P,(f,) is the power spectral density (PSD) of the input signal.* This yields the input

signal estimate )?FORD(fn) = Ro(fn)H  (fn)Y (fn)-°

The parameter «, called the regularization parameter, controls the tradeoff between the amount
of noise suppression and the amount of signal distortion. Setting @ = 0 gives an unbiased but
noisy estimate. LTI Wiener deconvolution corresponds to @ = 1 [14]. Setting o = oo completely

suppresses the noise, but also completely distorts the signal (Trorp = 0).

2.2 Optimality of FoRD
For Gaussian wide-sense-stationary signals, the LTI Wiener deconvolution provides the glob-
ally MSE-optimal estimate for the input, since the Fourier domain provides the ideal representa-

tion for both the colored noise after inversion and the signal of interest.

“This assumes the signal z to be a stationary random process. We will rather assume z to be deterministic and
substitute Py (f.) = | X (fn)|? in (4).

SConceptually, it is easier to understand FoRD as a two step process. However, in practice, Steps 1 and 2 are
implemented jointly. Since Ra(f»)H ™ '(f,) is defined even when H contains zeros in its frequency response, FoORD

is always applicable.



2.3 Drawbacks of FoRD

The LTI Wiener filter does not provide a good estimate when the input signal contains spatially
localized phenomena such as edges. Although the Fourier domain remains the ideal domain to
represent the colored noise H~'T (see (3)), it is not well-suited to represent the signal x. Since
the supports of the Fourier basis functions extend over the entire spatial domain, scalar operations
on the Fourier coefficients lack spatial adaptivity. Consequently, important spatial components

of the input signal such as edges and ridges become distorted.

2.4 Alternative solutions

Deconvolution techniques must take the spatial variations of the signal into account to pro-
duce the best possible results. One such technique is the best linear estimator, the time-varying
or matrix version of the Wiener inverse [15]. However, the time-varying Wiener filter is imprac-
tical, because it is not only computationally intensive (O(N?3)), but more importantly, requires
knowledge of the input signal cross-correlation matrix. Robust estimation of the input signal
cross-correlation matrix from the blurred and noisy observation 4 turns out to be formidable even

if matrix is approximated as block circulant [16].

3 Background on Wavelets and Signal Estimation
3.1 Wavelet transform

The joint time-frequency analysis of the wavelet transform efficiently captures spatially varying
features in a signal. The discrete wavelet transform (DWT) represents a 1-d signal z in terms of
shifted versions of a low-pass scaling function ¢ and shifted and dilated versions of a prototype

bandpass wavelet function ¢ [17,18]. For special choices of ¢ and v, the functions

Yipt) = 2292t —k), (5)

$ix(t) = 22P¢(t—k), withjkeZ (6)

form an orthonormal basis. A finite-resolution approximation x; to z is given by

J
Ti(t) = ) ik Giok® + DD wiktk(®), (M)
k Jj=jo k
with wavelet coefficients u;y = [z(t) ¢}, (t) dt and wjx := [z(t) 9] (t)dt. The parameter J

controls the resolution of the wavelet reconstruction x; of z; in fact, zo, = .



The wavelet transform can be extended to represent sampled signals as well. For a discrete-
time signal with N samples, the N wavelet coefficients {u,x,w;s} can be easily computed using
a filter bank consisting of low-pass filters, high-pass filters, and decimators. Due to the special
filter bank structure, the forward and inverse wavelet transform can be computed in O(N) op-
erations [18]. For simplicity of discussion alone, we will use the periodic DWT, which employs
circular convolutions in its filter bank.% For brevity, we will refer to the set of scaling and wavelet
coefficients collectively as {0, 1} := {uj, k, w;}. Multidimensional DWTs are easily obtained by
alternately wavelet-transforming along each dimension [17].

3.1.1 Multiresolution and time-frequency localization of wavelets. The wavelet trans-
form provides a multiscale representation of a signal, i.e., the wavelet coefficients capture the signal
features at different resolution levels. In (7), j indexes the scale or the resolution of analysis —
large j corresponds to higher resolution of analysis, while small j corresponds to the coarse scale
or lowest resolution of analysis. The scale j = J corresponds to the finest scale or highest reso-
lution of analysis. In (7), k indexes the spatial location of analysis. For a wavelet 1(t) centered
at time zero and frequency fo, the wavelet coefficient w;; measures the signal content around
time 277 k and around frequency 27 fy. Thus, wavelets exhibit simultaneous spatial and frequency
localization.

3.1.2 Wavelets as unconditional bases. In essence, the unconditional basis property of
wavelets means that signals are characterized by only the amplitudes of their wavelet coefficients
[4,7]. Wavelets provide an unconditional basis for spaces such as Besov spaces which contain
signals and images with edges and ridges [4]. L, spaces (for 1 < p < oo) and Sobolev spaces and
also belong to the Besov scale. In contrast, the Fourier basis is not an unconditional basis for
such a wide class of signal spaces.

The implications of this abstract notion of unconditional basis are extremely appealing. Un-
conditional basis provide economical signal representations by capturing most of the signal energy
in just a few large coefficients [19]. For example, the wavelet coefficients of signals in a Besov space
decay exponentially with scale. Such economical representations are desirable for signal estima-
tion and compression using non-linear approximation [20,21]. Furthermore, the unconditional

basis property also ensures that simple scalar operations are sufficient to achieve near-optimal

5For deconvolving non-circular convolution operators, a non-periodic DWT can be employed [17, 18].
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estimation.

3.2 Signal estimation by wavelet shrinkage

Wavelets provide a natural and effective solution to the problem of signal estimation in the
presence of white noise [5,22]. Many real-world signals have economical wavelet-domain repre-
sentations in which a few large wavelet coefficients capture most of the signal energy [17,23].
However, since a wavelet transform is orthonormal and linear, the energy of white noise remains
scattered over all of the wavelet coefficients. This disparity between the signal and noise repre-
sentation in the wavelet domain has been exploited in a number of powerful, near-optimal, signal
estimation techniques based on simply shrinking the wavelet coefficients of the noisy signal.” Sig-
nal estimation using wavelet shrinkage is a spatially adaptive process (it smoothes more in the
smooth regions of the signal) well-suited to signals with edges and other singularities.

Wavelet domain signal estimation techniques based on shrinkage can also be extended to
estimate signals in the presence of colored noise. The optimality of such a wavelet-based approach

now becomes dependent on the coloring of the noise in addition to the signal class [24].

4 Wavelet-Vaguelette Deconvolution (WVD)

Donoho [7] studied the application of wavelets to a special class of linear inverse problems and
proposed the wavelet-vaguelette decomposition. We will call wavelet-vaguelette decomposition

applied to deconvolution as wavelet-vaguelette deconvolution (WVD).
4.1 The WVD algorithm

WVD consists of the following steps (see Figure 2(b)):

1. Pure inversion: As in FoRD, obtain a noisy, unbiased estimate T of the input signal as in

(3)-

2. Wavelet-based signal estimation: In contrast to FoRD’s Fourier-domain shrinkage,

WVD estimates the signal from the noisy = by shrinking each wavelet coefficient of the

"The optimality is in terms of the rate of error decay as increasingly denser observation samples are obtained.
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noisy signal.® The variance of noise corrupting all wavelet coefficients in a particular scale is
the same, but varies with different scales [24]. Hence scale-dependent shrinkage is employed
to estimate the signal wavelet coefficients. The inverse DWT then yields the WVD estimate

from the estimated signal wavelet coefficients.

In contrast to FoRD, WVD can be viewed as spatially varying regularization provided by the

spatial adaptivity of wavelets.

4.2 Optimality of WVD

Donoho [7] showed that a WVD deconvolution approach is near-optimal to recover a wide
class of signals (e.g., those in Besov spaces) when the linear operator # is dilation-homogeneous,
ie.,

h(t) ® y(at) = a™" |a| h(at) @ y(at), (8)

for some exponent v. The Radon transform is an important example of such an operator. To the
best of our knowledge, the optimality of WVD for general dilation-inhomogeneous operators is
unknown. Using wavelet-based techniques, Nowak et al. [11] observed impressive results for some
common LTT operators as well. Kalifa et al. [10] has advocated a similar philosophy and obtained
excellent performances in satellite image recovery.

Counsider the example of piecewise polynomial functions to gain insight into the advantages of
the WVD approach. Choose a wavelet system with basis functions whose number of zero-moments
is greater than or equal to the degree of all the polynomial segments. If the support of any wavelet
basis function lies within any polynomial piece, then the corresponding wavelet coefficient is zero.
Because the support of only O(log N) wavelet basis functions do not completely lie within any
polynomial piece, at most O(log N) wavelet coefficients are non-zero. Thus the wavelet transform
represents a length-N piecewise polynomial signal economically. Assuming an invertible low-
pass H whose frequency response decays polynomially, H(f) = f~, the error-per-sample in
a WVD system decays rapidly as N T log N as denser samples (N — o00) of the underlying

continuous-time observations are obtained [25] because wavelets economically represent a piece-

8Note that different shrinkage techniques such as hard thresholding or soft thresholding can be used on the noisy
wavelet coefficients, but the philosophy remains the same: Use wavelet-domain estimation instead of Fourier-domain

estimation.
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wise polynomial function; this is significantly faster than the rate ﬁ achieved by Fourier-domain

shrinkage.

4.3 Drawbacks of WVD

Such a strictly wavelet-based deconvolution approach has its limitations. These can be under-
stood by focusing on the variance of the colored noise H ' T (see (3)) at different wavelet scales.
The wavelet basis function frequency response at any scale j is nearly band-limited to [fyi-1, fo;)
and almost constant within this band. If the zeros in the frequency response H are of sufficiently
low order and the zeros occur at normalized frequency 0 or 0.5, then the noise variance 0]2- at scale

7 is well-approximated by

1 2() 1 1
2 ~ - -2
TR 2 TR ©)

where H(f,) are the discrete Fourier coefficients of the blurring operator 7, and o? is the variance
of the AWGN +. From (9), it is clear that if H(f,) is small at any isolated frequency f,, then
the noise variance in the corresponding wavelet scale is extremely high. This renders ineffective
the task of extracting the signal coefficients from this scale using any form of scalar shrinking of
the wavelet coefficients (see Step 2 in Section 4) . In general, the frequency response H ! outside
[foi-1, foi _1] influences the noise variance, but to a lesser extent. So, if the frequency response H
has a zero whose order is greater than the number of vanishing moments of the wavelet system, or
if the frequency response H goes to zero at any other arbitrary frequency, then the noise variance

is infinite at all wavelet scales. In such a case, WVD provides a zero estimate.

4.4 Best-basis solution improves performance

In cases when expression (9) holds, the noise variance at scale j is primarily influenced by the
singularities of H~! that lie in the corresponding frequency band. In such a case, Kalifa et al. [10]
advocate adapting the wavelet basis to H~' to improve on the performance of WVD. The adap-
tation is achieved by using a mirror-wavelet basis with a time-frequency tiling structure different
from that of conventional wavelets. Such a tiling isolates the frequency where the convolution
operator H approaches zero by using wavelet basis functions with narrower frequency responses.
This attenuates the noise in many wavelet coefficients, thereby facilitating better estimation of

the mirror-wavelet coefficients of the original signal.
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However, in general it is impossible to obtain a set of basis functions that can isolate all such
singular frequencies in H~', because the wavelet basis functions are not exactly band-limited. For
example, no adapted wavelet basis scheme can provide a satisfactory solution when the blurring
operator has a box-car system impulse response, since the sinc frequency response H has multiple
zeros. In such a case, the variance of colored noise H ! T is infinite in all wavelet scales, rendering

the signal estimation in any adapted wavelet basis domain ineffective.

5 Wavelet-based Regularized Deconvolution (WaRD)

To solve the deconvolution problem, we propose a wavelet-based regularized deconvolution
(WaRD) algorithm that simultaneously exploits the Fourier-domain representation of the con-
volution operator and the spatially adaptive wavelet-domain representation of the signal. The
Fourier domain is ideal for identifying and attenuating noise components amplified during in-
version of H, since it diagonalizes the convolution operator. However, since the supports of
Fourier basis elements extend over the entire spatial domain, the energy of signals containing
spatially localized phenomena such as edges spreads over many Fourier coefficients. Solely em-
ploying Fourier-domain shrinkage, as in FoRD, thus results in significant distortions reflected as
ringing around the edges in the estimate. In contrast, the WVD exploits the economical signal
representation in the wavelet domain. However, noise components that are severely amplified
during system inversion corrupt many wavelet coefficients, thereby limiting the effectiveness of
wavelet-domain signal estimation. In WaRD, a small amount of Fourier-domain regularization,
which attenuates the severely amplified Fourier noise components, is used to substantially reduce

the wavelet-domain noise variance without imparting significant signal distortion.
5.1 The WaRD algorithm
The WaRD algorithm consists of the following steps (see Figure 2(c)):

1. Pure inversion: Similar to FoRD and WVD, obtain a noisy, unbiased estimate z of the

input signal as in (3).

2. Fourier-domain noise attenuation: Employ a small amount of Fourier-domain shrinkage

using weights R, (f,) (see (4)) to achieve partial noise attenuation in the estimate Z,

)za(fn) = Ra(fn))?(fn)

14



1

= Ral(f) X(a) + (W) Ro(f) T(f), (10)

where X, and X are the length-N DFTs of %, and 7 respectively (see Figure 2(c))). Here
the regularization parameter «, which controls the amount of Fourier-domain shrinkage, is
typically much smaller than that used to obtain a Wiener estimate (i.e., « < 1). Even a
small amount of regularization ensures that the severely amplified Fourier noise components
in T are significantly attenuated. Section 5.5 discusses the choice of o in greater depth.

Steps 1 and 2 together constitute a FoRD system (see Figure 2(a)), but with a small «.

3. Wavelet-domain signal estimation: Since the estimate Z, in (10) still contains some
residual noise, as in Step 2 of the WVD algorithm, we shrink the wavelet coefficients of Z,
at each scale according to the noise variance at that scale to obtain the WaRD estimate.
Wavelet-domain signal estimation remains effective, since the noise corrupting the wavelet

coefficients is not excessive, thanks to Step 2.

5.2 Tradeoff: Distortion vs. noise attenuation

Since Fourier-domain noise reduction comes at the cost of signal distortion, the amount of
Fourier-domain regularization needs to be controlled. This raises the question: how to choose
the best value for the regularization parameter a? The bias-variance tradeoff is clear: On one
hand, since Fourier-domain shrinkage smears non-stationary signal features such as edges (bias),
« should be as small as possible. On the other hand, large a prevents excessive noise amplification
during inversion (variance), which aids the wavelet-domain signal estimation.

We wish to determine the optimal regularization parameter o* for the WaRD system by
minimizing the overall MSE(«) with respect to a. This optimal regularization parameter o* will

balance the amount of Fourier-domain and wavelet-domain noise reduction.

5.3 Cost function

Since it is not possible to analytically express the exact MSE(a) of a WaRD system with
regularization parameter a conveniently due to WaRD’s inherent non-linearity, we propose an
approximation 1\71\81/3(04). The cost function 1\7[§/E(a) comprises the distortion error due to the
Fourier-domain regularized inversion and error incurred during wavelet-domain signal estimation.

The cost function assumes that oracle hard thresholding T is employed during signal estimation in

15



the wavelet domain [5, 6]. Oracle thresholding keeps a noisy wavelet coefficient only if the signal
power in that coefficient is greater than the noise power; otherwise, the coefficient is set to zero.
Defining 0; ;, as the wavelet coefficients of the input signal z, gﬁ i as the wavelet coefficients of the
noisy signal estimate Z,(f,) obtained after partially regularized inversion in (10), and o;(a) as

the standard deviation of the noise I;;((Jﬁ;”))l"( fn) from (10) at wavelet scale j, we set

. 0%, if 0k > oj(e)
T(05) = (1)
0, if |0j,k| < O'j(a).
Oracle thresholding assumes that the signal under consideration (and hence 6, ;) is known.

Our cost function 1\7[§E(a) is given by
. N-1
MSE(a) = ) [1—Ra(fu)?1X(fa)” + Y min(|8;l o}(a)). (12)
The first term is an estimate of the distortion in the input signal due to regularized inversion [26].
This distortion error is an increasing function of . The second term is an estimate of the error
due to wavelet-domain oracle thresholding [6]. This thresholding error is a decreasing function of
2

«, since the noise variance o7 (a) decreases as « increases.

5.4 Accuracy of the cost function

The cost function 1\7[%@(04) closely approximates the exact MSE(«a) of the WaRD system. To

see this, consider the following two cases:

Case (1) |0 x| > oj(a): The contribution due to the oracle thresholding error term (second term)

in 1\715@(04) is sz-(a) (see (11) and (12)). This is the ezact MSE incurred during the estimation

of 0 in the WaRD system.

Case (2) |0;x| < oj(a): The cost that B//f\ST*](a) associates with the estimation of 6, is [0 —

0;?fk|2 + 10|, while the exact incurred error is |0, x|2. The distortion is determined by
the SNR and the regularization parameter (see (14) in Appendix A). At coarse scales, the
distortion relative to the signal energy is small, because the SNR is typically large. At fine
scales, the region of interest is around small a’s; for small o’s, the distortion relative to the

signal energy is again small. Consequently, l\//I\S_E(a) ~ MSE(a).
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Figure 4: 1\7?8@(04) vs. MSE(a) as a function of the regularization parameter « for the experimental setup
described in Section 7. Clearly, the approximate error 1\7I\S/E(a) (dotted line) closely matches the exact
MSE(a) incurred using oracle thresholding (solid line) for different values of a. The respective global
minima, o* and a*, are marked by “o” and “+” respectively. Since a* and a* agree closely, we will
minimize 1\7[\STE(a) to determine the regularization parameter that balances the amount of Fourier-domain

and wavelet-domain noise reduction in the WaRD system.

Even in the worst case, MSE(«a) < l\//Igﬁ(a) < 2 x MSE(«), since [0, — Hjo-jk|2 < 10;x/%. Figure 4
confirms that the cost function 1\//I_§T5(a) closely approximates the actual error MSE(«) incurred us-
ing oracle thresholding for the experimental setup consisting of the input image, blurring function,
and noise level described in Section 7. Hence we will minimize l\//I\S/E(a) to find the regulariza-
tion parameter a* that balances Fourier-domain regularized inversion and wavelet-domain signal

estimation.?

5.5 Optimal « for each scale
In the previous sections, we assumed a single Fourier-domain regularized inverse with regu-
larization parameter o common for all wavelet scales. An interesting generalization is to employ

a different Fourier-domain regularized inverse with regularization parameter «; at each wavelet

9Ideally, we would like to determine o* that minimizes the exact MSE(«a), but the exact MSE(a) cannot be

quantified conveniently.
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Figure 5: Different regularization parameters for each wavelet scale. Blocks Hy and Hy denote the low-
pass and the high-pass filters of the usual wavelet filter bank [18, pp. 35]. FoRD, with different amounts of
Fourier shrinkage, is used in the different wavelet scales. Using different «; for each scale makes the cost

function MSE separable with respect to each a;.

scale j (see Figure 5). This generalization makes the cost function MSE separable with respect
to the regularization parameter at each scale, thereby simplifying the solution for the optimal «;
for each scale. By minimizing the cost function with respect to the o, we show in Appendix A

that the optimal regularization parameter &;- for scale j satisfies

~ 1 ~
& = #1050 > i@}, (13)

with # {|9j,k| > aj(&;f)} the number of wavelet coefficients 6, larger than the noise standard
deviation oj(a). In words, (13) means that the optimal regularization parameter equals the
proportion of the input signal wavelet coefficients larger in magnitude than the noise standard
deviation.

Figure 6 captures the intuitive nature of this result. For signals with sparse wavelet-domain
representations (see Figure 6(a)), (13) advocates a small amount of Fourier regularization (¢ < 1),
since the optimal &}‘ is controlled by the number of wavelet coefficients exceeding the noise stan-
dard deviation in magnitude. Thus, (13) suggests that most of the noise attenuation in the
WaRD system should be performed in the wavelet domain, and not in the Fourier domain. For
signals with non-sparse wavelet representation (see Figure 6(b)), (13) advocates a large amount of
Fourier regularization (62; ~ 1), which implies that wavelet-domain processing plays a secondary
role. Thus, &; strikes the optimal balance between Fourier-domain processing and wavelet-domain

processing.
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Figure 6: Effect of the sparsity of the wavelet-domain signal representation on the value of the optimal
regularization parameter o* in WaRD. (a) Thisl-d signal (top) has a sparse wavelet-domain representation.
This is illustrated in the wavelet coefficient time-frequency plot (middle), where darker shades of gray
indicate larger magnitudes. The solid line in the middle plot denotes wavelet scale j. The plot of the
wavelet coefficients at scale j (bottom) indicates that most of the signal energy is concentrated in just
a few large coefficients. The solid line in the bottom plot denotes a typical noise standard deviation o;.
Since the number of signal wavelet coefficients exceeding o; is small, the optimal a; for this signal is small
(a% < 1), according to (13). Thus, we should rely primarily on wavelet-domain shrinkage in the WaRD
estimate. (b) In contrast, this signal does not enjoy an economical wavelet-domain representation, and the
number of wavelet coefficients exceeding any typical o; is large. Hence, according to (13), the optimal a;
for this signal is large (&; ~ 1), implying that we should employ a significant amount of Fourier-domain

shrinkage in the WaRD estimate.
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The optimal regularization parameter 82;? should never be set to 0. Multiple values of a; can
satisfy (13). The value a;; = 0 satisfies (13) when the noise variance at a;; = 0 is greater than each
wavelet coefficient energy at scale j. For a WaRD system with a; = 0, all wavelet coefficients
at scale j would be shrunk to zero during the wavelet-domain estimation stage in such a case.
However, the noise variance can be arbitrarily reduced by increasing «; so that not all wavelet
coefficients are shrunk to zero, and some signal coefficients are salvaged. Hence even if a; = 0
satisfies (13), aj should be set to some non-zero value that satisfies (13).10

Typically, a5 # 1. The value a;; = 1 satisfies (13) only when the noise variance at a; = 1 is
less than the energy of each wavelet coefficient at scale j. This happens rarely since at least some
of the wavelet coefficients are =~ 0 (particularly true for fine scales).

Finally, we experimentally verify the accuracy of (13) in predicting the MSE-optimal regu-
larization parameters a}* using the input signal, blurring function, and noise level described in
Section 7. We assume complete knowledge of the input signal to perform oracle thresholding (see
(11)). Table 1 tabulates the regularization parameters &;’s recommended by (13) for the different
wavelet subbands. We found the a§ that minimizes the exact MSE in subband j by searching
over all possible values for «;. The excess error due to using the &’J'-"s instead of oa;’s provides
a measure to compare the accuracy of (13). Even for the worst case (1st row of Table 1), the
increase in the overall error due to using &}‘ instead of oz;f is less than 1%. This substantiates our

claim that the balance between the Fourier-domain processing and wavelet-domain processing can

be struck by exploiting (13).

5.6 Optimality of WaRD

Similar to the WVD, the WaRD has asymptotically near-optimal rates of MSE decay for
dilation-homogeneous operators. WVD [7] and mirror-wavelet basis technique [10] are special
cases of WaRD!! with & = 0. By construction, WaRD includes the value o = 0 in the search
space for the MSE optimal o*. From the two cases analyzed in Section 5.4, it easily follows
that MSE < MSE < 2MSE. Since the MSE for a WVD system decays with asymptotically

near-optimal rates as the sampling density increases, WaRD also enjoys similar asymptotically

'%In the rare cases when a; = 0 is the only value that satisfies (13), @; should be set to 1.

" TFor comparisons with the mirror-wavelet basis approach [10], the use of a similarly adapted wavelet basis would

be required.
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Table 1: Experimental verification that (13) provides good estimates of the MSE-optimal regularization
parameter aj. The input image, blurring function, and the noise level are as described in Section 7.
The first column denotes the decomposition level of the wavelet transform with 5 denoting the finest
scale. The second column specifies the three different subbands of the 2D wavelet decomposition, viz.,
high-pass vertically and horizontally (HH), high-pass vertically and low-pass horizontally (HL), and low-
pass vertically and high-pass horizontally (LH). The third column contains the o that minimizes the
exact MSE of subband j (determined empirically by searching over all possible values for «.j). The fourth
column contains the & advocated by (13), which minimizes MSE in subband Jj. The fifth column contains
the percentage increase in the MSE of subband j due to using &} rather than o, while the sixth column
contains the percentage increase in the overall MSE due to using the o rather than aj. The percentage
change in the MSE provides a measure for the “distance” between the predicted and the exact optimal
regularization parameters. Clearly, we see that the a}’s provide near-optimal MSE performance. Even
for the worst case (row 1), the increase in the overall MSE is less than 1%. Thus, a; advocated by (13)

accurately strikes the balance between Fourier-domain and wavelet-domain processing in a WaRD system.

Decomposition | Subband | Exact MSE &; advocated | % increase in | % increase in
level type j | minimizer, o by (13) subband MSE | total MSE
HH 0.06 0.16 6.5 9.6x10~!
5 HL 0.14 0.16 4.7x107L 1.3x10~!
LH 0.16 0.23 4.7x107L 9.0x10~2
HH 0.16 0.18 5.7x107! 6.0x1072
4 HL 0.35 0.29 2.3x107! 2.0x10 2
LH 0.35 0.34 1.2x10°1 1.0x10 2
HH 0.55 0.33 5.4x107L 2.0x102
3 HL 0.65 0.5 6.2x107L 1.0x10~2
LH 0.75 0.55 6.0x107! 1.0x10 2
HH 0.75 0.84 1.0 4%x10~*
2 HL 1 0.95 1.1x1072 3.0x1076
LH 0.65 0.93 2.0 5.1x10~%
HH 0.55 0.98 3.2 1.6x104
1 HL 1 1 0 0
LH 1 1 0 0
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near-optimal error decay rates for dilation-homogeneous operators.

However, the optimal o* is never 0 at a finite resolution NV though it may approach zero with
denser sampling , i.e., increasing N. Hence, WaRD will outperform wavelet-based deconvolution
methods described in [7, 10, 27] in terms of MSE at any given resolution. Thus, WaRD has small
sample (i.e., finite resolution N) as well as asymptotic optimality properties.

Further, while the WVD is generally inapplicable when H is not invertible, WaRD gives
excellent estimates even when # is non-invertible. However, the optimality of WaRD cannot be

determined in such cases.

6 WaRD Implementation

The theoretical analysis in Section 5 assumes an ideal WaRD setup with knowledge of several
quantities that are typically unavailable in practice. Here we overview the practical aspects of the

WaRD algorithm.

6.1 Estimation of 0% and | X (f)[?

The variance o2 of the additive noise vy and the Fourier spectrum | X (f)|? of the input signal
are unknown in practice and must be estimated from the blurred observation y. The noise variance
can be reliably estimated using a median estimator in the finest wavelet scale [22]. To estimate
| X (f,)?, we employ the iterative Wiener technique of [8]. However, since this estimate is not
2

robust at frequencies where H(f,) =~ 0, we boost the estimated |X(f,)|* at these frequencies by

adding a small positive constant to the estimate obtained after 10 iterations of the algorithm.

6.2 Choice of wavelet-domain estimation scheme

Oracle thresholding cannot be employed in practice, because it assumes knowledge of the
wavelet coefficients of the unknown original signal. Hence empirical wavelet-domain estimation
schemes need to be employed as a substitute. The choice of the estimation scheme influences
the final performance of the WaRD system significantly. We have found that the wavelet-domain
Wiener-shrink estimation algorithm [28, 29] outperforms in the MSE sense conventional wavelet-
domain estimation schemes that employ hard and soft thresholding. Wiener-shrink estimation
works as follows: First obtain a rough estimate of the input signal using a conventional wavelet-

domain thresholding technique. Then, use this estimate to obtain a final refined estimate by
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employing Wiener estimation on each wavelet coefficient.

Wavelet-domain estimation schemes based on the DWT are not shift-invariant, i.e., transla-
tions of y will result in different estimates. The redundant, shift-invariant DW'T yields significantly
improved estimates [30] by averaging over all possible shifts of the observation y. We employ a

redundant, shift-invariant DWT with wavelet-domain Wiener-shrink to estimate the input signal.

6.3 Choice of «

The theoretical analysis in Section 5 climaxed with expression (13), which helps us quanti-
tatively understand the influence of the wavelet-domain signal representation on the choice of
the optimal regularization parameters in the ideal case. However, the derivation of condition
(13) (in Appendix A) assumes oracle thresholding, which is not possible practically. Since the
choice of wavelet-domain estimation algorithm influences the value of the optimal regularization
parameter o, we cannot employ (13). This necessitates the use of empirical techniques to set the
regularization parameters a;’s.

First, we note that the improvement gained by using a different «; for each wavelet scale j
(see Figure 5) as compared to using a common « for all the scales is negligible; for the setup
described in Section 7, using a common « = 0.2 for all scales increased the error by a meager 3%.
Hence we empirically determine a common regularization parameter for all wavelet scales.

To determine a good value for a, we exploit our observation that the MSE of a WaRD system
changes very gradually for a near and above o* (the MSE decreases rapidly when a < o*). Since
the MSE, the ls norm of the WaRD estimate, and the I, norm of the desired signal satisfy the
triangle inequality, the region of insignificant change in the MSE coincides with the region of
insignificant change in the [, norm of the WaRD estimate with «. Hence, from a plot of the Iy
norm of the WaRD estimate versus «, we choose the smallest « from the region of insignificant

change in the WaRD estimate norm to obtain near-optimal results (see [25] for more details).

6.4 Computational Cost

The overall computational complexity of the WaRD algorithm is primarily determined by the
complexity of calculating the Fourier transform and the redundant DWT}; both require O(N log N)
operations, with IV the number of samples. Hence, given the regularization parameter and an

estimate of | X (f,,)|?, the computational cost of the WaRD algorithm is also O(N log N).
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7 Results

We illustrate the performance of the WaRD algorithm using a 2-d simulation as described by
Banham et al. [9]. The input z is the 256 x 256 Cameraman image and the discrete-time system
response h is a 2-d, 9 x 9-point box-car blur. Such a response is commonly used as a model for
blurring due to a square scanning aperture such as in a CCD camera [2]. Define the blurred SNR
(BSNR) as 101logy, (||(z ® h) — E[z ® h)]||3/No?), where IE[z ® h)] denotes the mean value of the
blurred image; N = 256 x 256 for this experiment. We set the additive noise variance o such that
the BSNR was 40 dB. Figure 3 illustrates the original x, the observed ¥, the Wiener filter estimate
(FoRD), and the WaRD estimate for o* = 0.1 (determined empirically as described in Section 6).
The WVD [7] and mirror wavelet basis [10] methods are not applicable in this situation, due to
the many zeros in frequency response H.

As seen in Figure 3, WaRD clearly outperforms FoRD in overall visual quality and MSE. The
WaRD estimate also outperforms the multiscale Kalman estimate proposed by Banham et al. [9])
in terms of improvement in the SNR (ISNR) as well as visual quality (compare Figure 7(d) in
Banham et al. [9] with Figure 3(d)). ISNR is defined as 10log;, (||lz — §|13/|lz — Z[|3), with Z the
estimate, and 7 denotes the shifted version of the observation that minimizes the ISNR. For the
reported experiment, 7 is cyclically shifted with respect to y by (4,4) towards the top left corner.
Banham et al. report an ISNR of 6.7° dB using their the multiscale Kalman filter. In contrast,
the proposed WaRD technique provides an ISNR of 7.3 dB.

The difference in the quality of the estimates obtained using FoRD and WaRD is highlighted
in the cross-sections through row 160 of images shown in Figure 7. The FoRD estimate cross-
section shown in Figure 7(c) illustrates the failure of the FoRD to adapt to the smooth regions
and the edges in the image simultaneously. This lack of spatial-localization reflects as ripples in
the FoRD estimate. In contrast, Figure 7(d) clearly illustrates the spatial-adaptivity of WaRD.

We observe that the smooth regions and the edges are preserved simultaneously.

8 Conclusions

In this paper, we have proposed an efficient multiscale deconvolution algorithm that optimally
combines Fourier-domain regularized inversion and wavelet-domain signal estimation. WaRD

can be potentially employed in a wide variety of applications such as satellite imagery, seismic
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(a) Original x (b) Observed y

(c) Wiener (FoRD) estimate (d) WaRD estimate

o ST

Figure 7: (a) Cross-section of original image x (row 160 from Figure 3(a)) contains both smooth regions

and discontinuities. (b) Cross-section of the blurred and noisy observed image y. (c) Cross-section of
estimate obtained using the spatially invariant Wiener filter (FoRD with o = 1.0) exhibits ringing artifacts
in the smooth regions. (d) Cross-section of the hybrid WaRD estimate shows that smooth regions and

edges are simultaneously preserved.

deconvolution, and channel equalization to obtain enhanced deconvolution estimates.

For spatially varying signals, the WaRD outperforms the LTI Wiener filter and WVD in terms
of both visual quality and MSE performance. Since WaRD subsumes WVD, WaRD also enjoys
asymptotically near-optimal rates of error decay with increasing samples for convolution operators
such as Radon transform. In addition, WaRD also improves on the performance of the WVD at
any fixed resolution. Furthermore, WaRD continues to provide a good estimate of the original
signal even when the convolution system is non-invertible. The computational complexity of the
WaRD algorithm is just O(N log N), with N is the number of samples.

Theoretical analysis of the ideal WaRD algorithm reveals that the optimal regularization pa-
rameter at each wavelet scale is determined by the proportion of distorted input signal wavelet
coefficients that exceed the variance of noise colored by Fourier-domain regularized inversion.
For finite data samples, inversion without Fourier-domain regularization in a wavelet-based de-
convolution system is never optimal. Further, using a regularization parameter o = 1, which
corresponds to employing a Wiener deconvolution filter for inversion, is also typically sub-optimal
for most real-world signals. In essence, the balance between Fourier-domain and wavelet-domain

processing is simultaneously determined by the frugality of the wavelet representation of the input
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signal and the Fourier-domain structure of the convolution operator. All results obtained in this
paper trivially extend to colored noise denoising, because deconvolution is equivalent to signal
estimation in the presence of colored noise (see (3)).

There are several avenues for future WaRD related research. We have focused on scalar pro-
cessing during wavelet-domain estimation. However, there exist dependencies between the wavelet
coefficients that can be exploited. We are currently working towards combining WaRD concepts
with the hidden Markov tree model-based wavelet estimation [31]. We believe that exploiting such
inter-dependencies in the wavelet domain will help preserve edges and other spatially localized
phenomena better consequently leading to better deconvolution estimates.

An interesting twist to WaRD would be to first exploit the wavelet domain to estimate z ® h
from the noisy observation y and then invert the convolution operator. This technique, called
the vaguelette-wavelet decomposition (VWD), has been studied by Silverman and Abramovich
[32]. The salient point of such a technique is that the wavelet-domain estimation now deals with
white noise instead of more complicated colored noise. However, now the reconstruction basis is
no longer a signal-adapted wavelet-basis, but rather a hybrid basis that is not spatially localized.
Like the WVD, this technique is also not applicable when # is non-invertible. The residual noise
after wavelet-domain estimation of x ® h, but before inversion of the convolution operator, is
time-varying. Hence, unlike in WaRD, FoRD may be inappropriate to perform the inversion.
Construction of a universally applicable, hybrid deconvolution scheme that lies between WVD
and VWD appears both promising and challenging.

In WaRD, we have assumed knowledge of the convolution operator. However, in many cases
such as most practical imaging systems, the convolution operator is also unknown. In such
blind deconvolution problems, the convolution system must be estimated from the observation.
Though WaRD can be used to perform the deconvolution after estimating the convolution system,
an interesting open problem is to adapt the WaRD framework to perform the estimation and

deconvolution interdependently to obtain better estimates.

A Derivation of the Optimal Regularization Parameters

Our goal is to show (13). We approximate the WaRD estimate MSE as the sum of the distor-

tion incurred during Fourier-domain regularized inversion and the error due to oracle thresholding
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of the wavelet coefficients (see (12)):

N 4 X
W) = S TR e 3 S unule). 9

Jj=jo k=1

The scale j = jo denotes the coarsest wavelet scale, and j = J denotes the finest scale. Since
wavelets form an orthonormal basis, we have
J 2
Yo Tl = 1, (15)
J=jo k=1
where ¥, ;(f,) denote the DFT-domain representations for the wavelet basis functions 1; ;(t).
Combining (14) and (15), we obtain

2ot X (fn U 1 (fu)? .
W) - 35 (S Ry st oo

Jj=jo k=1

A.1 Different ax for each wavelet scale

l\//Igﬁ(a) in (16) assumes that a common regularization parameter « is employed for all wavelet
scales. More generally, we can employ different regularization parameters o for each wavelet
scale j (see Figure 5). The cost function can then be expressed as a function of the different
regularization parameters as

—~ o 26X (£ 195 e (F
MSE(ejq, - - -, 7-1) Z Z (Z | ‘2f§(()}ng‘2]ﬁ(£j37‘2) ) + min (|6 % o (a]))

Jj=jo k=1

We will find the optimal regularization parameter at each scale by partially differentiating MSE

with respect to a; and setting the derivative to zero.

A.2 Differentiating the distortion terms

Denote the total distortion error (first term in (17)) by

LT,
Do = 3329 i

j=jo k= 1n1

Taking the partial derivative with respect to o, we have

9 D 200" [ H(f) P1X (f) [V F)
o (o= +209) kZZ (HF)PIX )+ ajo?® (18)

For the sake of convenience, define

204 [H ()P X (f)I*| 9k (fn)|2
ZZ THGPIX )P + a0

k=1n=1
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thus,

0
B—%D (ajo,...,aJ) :ajC(aj). (20)

A.3 Differentiating the oracle thresholding terms

Denote the total oracle thresholding error (second term in (17)) by

J 2
O (ajp,---,ay) == Z Zmin (|0-’k|2,aj2-(aj)). (21)
J=jo k=1
Taking the partial derivative of O (e, ..., ay) with respect to a;, we have
0
TO(O{J’O,...,@J) = Zmln |93k| , J(ozj))
@ @;j
k=1
0
= s ( Z U?’(“j))
7 N0 k1>0(ay)
dajz-(ozj)
= # {10k > 0j(ay)} —7—— (22)
@

with # {|60; x| > 0j(c;)} the number of wavelet coefficients greater than the noise standard devi-
ation o;(a;) at scale j.
The noise variance at scale j is equal to

) PIX G Tk (FP
Z (H P ()P + 0ge?” (23)

Since the noise variance 0]2 is independent of the location k£ within a given scale, we can rewrite
(23) as
21 N
1 F) PIX () 195k (fn) 5
= ok . 24
() = g ZE PP+ 002" 20
Differentiating a?-(ozj) with respect to «; gives
do?(a)) 1
g\
= —— . 2
o 55Cay) (25)
Combining (22) and (25) yields
0 1
B, (O(ajo;---ra0)) = =5 # {105kl > o)} Clay). (26)

Now, using (20) and (26), we have
0 (e 1
B (MSE(5,, iy - @1)) = 05 Clay) = 5 {1634l > a5(03)} Clay)
1
= (o= g#0u > (@)} ) Cles). 2)
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Finally, setting (27) to zero, we obtain the optimal regularization parameter of (13).
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