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ABSTRACT

We propose a hybrid approach to wavelet-based im-
age deconvolution that comprises Fourier-domain system
inversion followed by wavelet-domain noise suppression. In
contrast to conventional wavelet-based deconvolution ap-
proaches, the algorithm employs a regularized inverse fil-
ter, which allows it to operate even when the system is
non-invertible. Using a mean-square-error metric, we strike
an optimal balance between Fourier-domain regularization
that is matched to the system and wavelet-domain regular-
ization that is matched to the signal. Theoretical analysis
reveals that the optimal balance is determined by economics
of the input signal wavelet representation and the opera-
tor structure. The resultant algorithm is fast, O(V loga N)
where N denotes the number of samples, and is well-suited
to data with spatially-localized phenomena such as edges.
In addition to enjoying asymptotically near-optimal rates of
error decay for some systems, the algorithm also achieves
excellent performance at fixed data lengths. In simulations
with real data, the algorithm outperforms the conventional
LTI Wiener filter and other wavelet-based deconvolution
algorithms in terms of both visual quality and MSE perfor-
mance.

1. INTRODUCTION

Deconvolution is a recurring theme in a wide variety of sig-
nal and image processing problems such as image restora-
tion [1]. For example, satellite images obtained in practice
are often blurred due to limitations such as aperture effects
of the camera, camera motion, or atmospheric turbulence.
Deconvolution becomes necessary if we wish a crisp, de-
blurred image for viewing or further processing.

In its simplest form, the 1-d deconvolution problem
runs as follows. The desired signal z is input to a known
linear time-invariant (LTI) system A having impulse re-
sponse h. Independent identically distributed (i.i.d.) sam-
ples of Gaussian noise -y with variance o2 corrupt the out-
put samples of the system H. The observations at dis-
crete points t, are given by y(t») := (z ® h)(tn) + v(n),
where n = 0,...,N — 1. Given y, we seek to estimate
z. For simplicity, we assume circular convolution, denoted
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by ®. In the discrete Fourier transform (DFT) domain,
we equivalently have Y (fn) = H(fn) X(fn) + T'(fn). The
fr := 2mn/N denote the normalized frequencies in the DFT
domain. The problems formulation trivially extends to mul-
tidimensions.

If the system frequency response H(f,) has no zeros,
then we can obtain an unbiased estimate of z as X (fn) :=
H ' (f)Y(f) = X(fa) + H '(f)T(fa). However, if
H(f,) is small at any frequency, then enormous noise am-
plification results, yielding an infinite-variance, useless esti-
mate.

In situations involving such ill-conditioned systems,
some amount of regularization becomes essential. Regu-
larization reduces the variance of the signal estimate (noise
reduction) in exchange for an increase in bias (signal distor-
tion). The LTI Wiener filter exploits Fourier domain noise
attenuation to estimate the signal from X (f,). When z is
wide-sense stationary (WSS), the LTI Wiener filter provides
the optimal regularization in the minimum mean-squared-
error (MSE) sense [1].

Though the Fourier domain is ideal to represent to the
noise colored by H ™!, it is not appropriate to represent
many common signals such as images that contain spatially
localized phenomena such as edges because the Fourier basis
functions have support that extend over the entire spatial
domain. Scalar processing of the Fourier components em-
ployed by the LTI Wiener filter results in lack of spatial
selectivity, consequently important spatial features such as
edges get distorted.

Over the last decade, the wavelet transform has proven
to be an invaluable tool for dealing with a wide class of
signal including signals with spatially localized features.
Wavelets provide economical representations to a large class
of signals including many real-world images [2]. This prop-
erty of wavelets has been leveraged into powerful, spatially
adaptive, signal estimation algorithms that are based on
simply shrinking the wavelet coefficients of the noisy sig-
nal.

Motivated by the ability of wavelets to provide effi-
cient, economical representations to a wide class of sig-
nals, Donoho proposed the wavelet-vaguelette decomposi-
tion algorithm to solve some special linear inverse problems
[3]. With a slight abuse of notation, we will refer to the
wavelet-vaguelette decomposition applied to deconvolution
as wavelet-vaguelette deconvolution (WVD). In contrast to
the Wiener filter, the WVD employs wavelet-domain de-
noising to estimate the signal in the presence of noise col-
ored by H™*. In fact, for special classes of blurring opera-



tors such as the Radon transform, WVD possesses asymp-
totically (as N — o0) near-optimal rates of error decay for
a wide class of input signals as the number of observation
samples increases [3].

Though the wavelet transform efficiently represents the
input signal, it is not well-suited to represent general convo-
lution operators. Systems with zeroes in the frequency re-
sponse will result in infinite variance noise in many wavelet
coefficients, consequently deeming wavelet domain estima-
tion ineffective.

Motivated by the fact that the Fourier domain matches
the convolution operator while the wavelet domain matches
the input signal, we propose an improved hybrid wavelet-
based regularized deconvolution (WaRD) algorithm suit-
able for use with any ill-conditioned system. The basic
idea is simple: employ both Fourier-domain (Wiener-like)
regularized inversion and wavelet-domain signal estimation.
This tandem processing exploits Fourier-domain regulariza-
tion adapted to the convolution system to control the noise
but uses it sparingly to keep the accompanying smearing
distortions to the minimum required. The bulk of the noise
removal and signal estimation is achieved using wavelet
shrinkage.

By optimizing over an MSE metric,' we find the optimal
balance between local processing with wavelet basis and
global processing with Fourier basis.

Interestingly, one extreme of the balance is to per-
form no Fourier-domain regularization; this is similar to the
WYVD approach of Donoho [3] and the mirror wavelet basis
of Kalifa et al. [4]. Since WaRD subsumes WVD, the pro-
posed WaRD technique also possesses asymptotically near-
optimal error decay rates for special operators such as the
Radon transform. In addition, WaRD also improves on the
performance of WVD at any fixed samples by choosing the
optimal amount of regularization. Further, unlike WVD
and the mirror wavelet basis approach, WaRD is applicable
to any convolution operator.

Nowak et al. [5] have employed an under-regularized
system inverse and subsequently used wavelet domain signal
estimation. However they neither studied the implications
of using the regularization nor the choice of the optimal
amount of regularization. Banham et al. apply a multi-
scale Kalman filter to the deconvolution problem [6]. The
amount of regularization chosen for each wavelet scale is
the lower bound that allows for reliable edge classification.
While similar in spirit to the multiscale Kalman filter ap-
proach, in WaRD, the amount of regularization is chosen to
optimize the overall MSE performance of the deconvolved
estimate.

2. REGULARIZED INVERSE FILTERS

Consider a zero-mean, wide-sense-stationary (WSS) signal

x with power spectral density (PSD) P.(f). Given the gen-

eral deconvolution problem from the Introduction, a gen-

eral form for a Fourier-domain-regularized signal estimate
is given by

Ralf) = CalHY() (1)

1While the MSE metric does not capture the visual appeal

of images in general, we employ it for tractability reasons. In
practice, we have found that it yields satisfactory results.

with
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The regularization parameter a controls the tradeoff be-
tween the amount of noise suppression and the amount of
signal distortion. Setting a = 0 gives an unbiased but noisy
estimate. Setting o = oo completely suppresses the noise,
but also totally distorts the signal (Zoo = 0). For a = 1,
(2) corresponds to the LTI Wiener filter, which is optimal
in the MSE sense for a Gaussian input signal z.

The LTI Wiener filter does not provide a good estimate
when the input signal comprises of spatially localized phe-
nomena such as edges. The supports of the Fourier basis
functions extend over the entire spatial domain. So, scalar
operations on the Fourier coefficients lack spatial localiza-
tion. Hence, all spatial components of the input signal are
processed uniformly to result in a substantially distorted
estimate.

3. WAVELETS AND DECONVOLUTION
The joint time-frequency analysis of the wavelet basis ef-
ficiently captures non-stationary signal features. The dis-
crete wavelet transform (DWT) represents a 1-d signal z in
terms of shifted versions of a low-pass scaling function ¢ and
shifted and dilated versions of a prototype bandpass wavelet
function 9 [7]. For special choices of ¢ and v, the func-
tions 1 1 (t) == 22/ (27t — k), $jk(t) == 27/ ¢(27t — k),
j, k € Z form an orthonormal basis, and we have the repre-
sentation [7]

J
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with wjx == [o(t) ¢}, (t)dt and wj, = [z(t) ], (t)dt.
The parameter J controls the resolution of the wavelet rep-
resentation. For brevity, we will collectively refer to the set
of scaling and wavelet coefficients as {0; x } := {w;yk, wjr}.
Multidimensional DWTs are easily obtained by alternately
wavelet-transforming along each dimension.

The DWT enjoys an enviable ability to represent many
real world signals economically [2]: Most of the energy of
many real-world signals is captured by just a few large
wavelet coefficients. However, white noise remains dis-
bursed over a large number of small coefficients. This dis-
parity can be exploited to distinguish signal from noise and
has given rise to a number of powerful denoising techniques
based on simple thresholding [7, 8, 9] that can suppress
noise while preserving time-localized signal structures.

Wavelet denoising figures prominently in a number of
recent advanced deconvolution algorithms [3, 7, 10]. All
three methods have the same two basic steps in common:

Inversion: N
Compute the noisy estimate Xo=H~*(f) Y (f). This
inversion necessarily amplifies noise components at
frequencies where H(f) is small.

Regularization by wavelet denoising:
Compute the DWT of Zo, then denoise using thresh-
olding and finally invert the DW'T to obtain the final
signal estimate Z. Note that the Inversion step colors
the white corrupting noise 7y; hence scale-dependent
thresholds [9] should be employed.
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Figure 1: Wavelet-based regularized deconvolution

(WaRD): partially regularized inverse filtering following by
wavelet denoising.

Donoho showed that such an approach possesses asymp-
totically near-optimal rates of error decay for a wide class
of signals (e.g., those in Besov spaces) when the linear op-
erator 7 satisfies h(t) ® y(at) = a® h(at) ® y(t), for some
exponent 3 e.g., the Radon transform [3].

However, such a wavelet-based approach has its limita-
tions. The noise variance 0]2 at scale j can be approximated

2
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where H(f) are the discrete Fourier coefficients of the blur-
ring operator H, and o is the variance of the AWGN +.

(From (4), it is clear that even if H(f,) is small at
any fn, the variance of the colored noise in the entire corre-
sponding wavelet scale explodes rendering wavelet denoising
ineffective.

4. WAVELET-BASED REGULARIZED

DECONVOLUTION (WaRD)
To simultaneously exploit the diagonalization of the con-
volution operator in the Fourier domain and the econom-
ical representation of the input signal in the wavelet do-
main, we propose the wavelet-based regularized deconvolu-
tion (WaRD) algorithm. Since a minute amount of regu-
larization (small « in (2)) can lead to a huge reduction in
the degree of noise amplification — all this at the expense
of only a slight increase in the signal distortion — we sim-
ply replace the Inversion step of the algorithms of [3, 7, 10]
with a regularized inversion step (see Fig. 1)2 to obtain the
WaRD algorithm.

4.1. Optimal regularization for each scale

But how to pick the right value for the regularization pa-
rameter a? The tradeoff is clear: On one hand, since reg-
ularization smears spatially localized signal features (bias),
we would prefer o as small as possible. On the other hand,
large « prevents excessive noise amplification (variance)
during inversion which aids the wavelet denoising.

To be more precise, we will determine the optimal reg-
ularization parameter for the WaRD system by minimizing
the overall MSEEhe overall MSE is well-approximated by a
cost function MSE(«) that includes the distortion error due
to the Fourier-domain regularized inversion stage and error
incurred during wavelgt-domain signal estimation stage:

BE(0) = D[ - Galfa) H(f) Pelfo)
+ Z min(|6j,k(§a)|2, af(a)) . (5)

7>k

2This approximation is valid only when the zeros in the fre-
quency response H are of sufficiently low order.

3Note that the Fourier-domain-regularized inverse (2) was
derived for WSS signals z only. With deterministic z, we set

Po(fn) =X (f)I%.

Here 6;,%(Za) denotes the wavelet coefficients of Za, o7} (a)
is the variance of the /lvivelet—domain noise at scale j.

The first term in MSE(«) is an estimate of the distortion
in the input signal due to the regularized Fourier-domain
inverse. This distortion is an increasing function of a. The
second term is an estimate of the error due to ideal wavelet
domain hard thresholding [8]. Ideal thresholding consists of
keeping a noisy wavelet coefficient only if the signal power in
that coefficient is greater than the noise power. Otherwise,
the coefficient is set to zero. Ideal thresholding assumes
that the signals under consideration are known. This error
is a decreasing function of a. The optimal regularization
parameter, denoted by a*, corresponds to the minimum of
M\STE(a).

A useful generalization has different regularization pa-
rameters for each wavelet scale. Such a generalization takes
advantage of the fact that the cost function is separable with
respect to each scale j. By minimizing the cost function
with respect to «, we have shown in [11] that the optimal
regularization parameter o} for the scale j satisfies

o = oot >oan).  ©

6;.k (Ta)

where Gj,k(:’fa;_) denotes the wavelet coefficients of the dis-
torted input signal T+ at scale j, and o7 (}) is the variance
of colored noise at scale j. In (6), # (|9j,k(§a;)|2 > U]?(a]*-))
denotes the number of wavelet coefficients Gj,k(a'ﬁa;_) that

have energy greater than the noise variance o7 ().

Condition (6) suggests that the noise variance be re-
duced using regularization so that sufficient number of
wavelet coefficients of the signal are greater than the noise
variance.

The optimal regularization parameter o is never zero.
If a; = 0 satisfies (6), it would imply that the noise vari-
ance is greater than the energy of each wavelet coefficient.
Hence all wavelet coefficients at scale j would be shrunk to
zero during wavelet domain estimation. For most real world
signals, a significant proportion of the wavelet coefficients
is & 0; so a; = 1 also will not satisfy (6). Hence o; = 1
also is not an optimal choice. We observed that choosing
a; sufficiently greater than zero (a; = 0.2) provided esti-
mates comparable to that obtained by choosing the optimal
a when the true | X (f.)|> was used.

By construction, WaRD includes the value @ = 0 in the
search-space for the optimal o*. Hence WaRD enjoys all
the desirable properties of Donoho’s WVD such as near-
optimal rate of error decay for special operators such as the
Radon transform. The optimal a* is never zero at a finite
resolution N (though it may approach zero with increasing
N). Hence, WaRD will outperform wavelet-based deconvo-
lution methods described in [4, 3, 10] in terms of MSE at a
given resolution. (assuming knowledge of | X (f.)|?). Tech-
niques based on WVD [3, 4] are in general not applicable
when 7 is not invertible. However, thanks to the optimally
regularized inversion, WaRD gives excellent estimates even
when 7 is not invertible.

4.2. WaRD implementation

The WaRD algorithm assumes knowledge of the variance
a? of the additive noise v and the Fourier spectrum | X (f)|



of the input signal. Since these are typically unknown in
practice, we estimate them from y using a median estima-
tor [12] and an iterative Wiener technique [13], respectively.
However, since the estimation of |X(f)|? is not robust at
frequencies where H(f,) =~ 0, we terminate the iterative
Wiener algorithm after 10 iterations and add a small posi-
tive constant to the estimate to boost the estimated | X ()|
at high frequencies.

Criterion (6) cannot be used in practice to determine the
regularization parameters because it assumes knowledge of
the distorted wavelet coefficients of the unknown original
signal and ideal thresholding. Since the final performance
of WaRD is observed to be quite insensitive to changes in
the value of the regularization parameter around the opti-
mal value, we estimate a common regularization parameter
for all wavelet scales from a plot of the norm of the WaRD
estimate with the amount of regularization (see [11] for fur-
ther details). This is quite accurate in practice.

A variety of wavelet-domain denoising techniques can
be employed. A redundant, shift-invariant DWT will yield
both a shift-invariant algorithm and improve the denois-
ing performance substantially [7], all at no significant in-
crease to the overall computational cost. Finally, instead
of a threshold, we can apply a Wiener filter to the wavelet
coefficients, as in [14].* Such processing has been shown to
outperform simple thresholding for denoising finite samples
of data.

The overall computational complexity of the algo-
rithm, given the regularization parameter and | X (f,.)|?, is
O(Nlog® N) [11].

5. EXAMPLES

We illustrate the performance of the WaRD algorithm us-
ing 2-d simulation described by Banham et al. [6] The in-
put z is the 256 x 256 Cameraman image and the discrete-
time system response h is a 9 X 9-point smoother. Such
a response is commonly used as a model for blurring due
to a square scanning aperture such as in a CCD camera
[1]. The blurred signal-to-noise-ratio (BSNR) is defined as
10logy, (||z ® h||3/No?). The noise variance o° was set so
that the BSNR is 40 dB.

Figure 2 illustrates the original image z, the blurred
and noisy observed image y, the Wiener filter estimate us-
ing the estimated | X (f.)|?, and the WaRD estimate with
o = 0.1 determined empirically as described in [11]. The
methods of [3, 4] are not applicable in this situation, due
to the many zeros in frequency response of the blurring
operator H. The visual quality of the Wiener estimate is
severely affected by ripples which result because the Fourier
basis have support over the entire spatial domain. In con-
trast to the Wiener estimate, the smooth regions and most
edges are simultaneously well-preserved in the WaRD esti-
mate, thanks to the spatially-localized wavelet basis func-
tions. However, some faint features such as the grass are lost
during wavelet-domain estimation in WaRD. The WaRD
estimate also outperforms the Wiener estimate in terms of
MSE. The improvement in the SNR (ISNR) is defined as
101logy, (|lz — yl|3/llx — Z||3) where Z is the estimate. The
Wiener filter provides an ISNR of 8.8 dB. In contrast, the

4Do not confuse wavelet-domain Wiener filtering with the
Fourier-domain Wiener filtering discussed above.

proposed WaRD technique provides an ISNR of 10.6 dB.
For the same experiment, Banham et al. [6] report an ISNR
of 6.68 dB using their the multiscale Kalman filter. The vi-
sual quality of the WaRD estimate as compared to the pub-
lished multiscale Kalman filtering results also seems much
improved (see Figure 7(d) in [6]).

6. CONCLUSIONS

In this paper, we have proposed an efficient multiscale
deconvolution algorithm WaRD that optimally combines
Fourier-domain regularized inversion and wavelet-domain
signal estimation. The WaRD could be employed in a wide
variety of applications, including satellite imaging, to ob-
tain enhanced deconvolution estimates.

For spatially varying signals, WaRD outperforms the
LTI Wiener filter and WVD in terms of both visual qual-
ity and MSE performance. Since WaRD subsumes WVD,
WaRD also enjoys asymptotically near-optimal rates of er-
ror decay with increasing samples for convolution operators
such as the Radon transform. In addition, WaRD also im-
proves on the performance of the WVD at any fixed res-
olution. Furthermore, WaRD continues to provide a good
estimate of the original signal even with ill-conditioned sys-
tems. The computational complexity of the WaRD algo-
rithm, given the regularization parameters and | X (f.)|?, is
just O(N logZ N), with N the number of samples.

Theoretical analysis of the ideal WaRD algorithm re-
veals that the optimal regularization parameter at each
wavelet scale is determined by the frugality of the wavelet
representation of the input signal and the Fourier-domain
structure of the convolution operator. From (6) it follows
that for finite data samples, using @ = 0 (no regulariza-
tion) in wavelet-based deconvolution systems such as WVD
is never optimal. Further, using a regularization parameter
a = 1, which corresponds to employing a Wiener decon-
volution filter for inversion, is also sub-optimal for many
real-world signals.

We have found the final performance of WaRD quite
insensitive to changes in the values of the regularization
parameters around the optimal values. So, a near-optimal
regularization parameter can be obtained from the norm
of the WaRD solution for different regularization parame-
ters. As a guide, in simulations spanning many real-world
images and convolution systems, a* almost always lay in
the range [0.2,0.3] when the true spectrum |X(f.)|> was
available. However, if the true spectrum is not available,
then the optimal regularization parameter becomes depen-
dent on the quality of the spectral estimate and must be
determined empirically.

There are several avenues for future WaRD related re-
search. We are currently working on combining WaRD con-
cepts with hidden Markov model (HMM) tree-based wavelet
estimation [15] to exploit statistical dependencies between
the wavelet coefficients so that the edges and other spatially
localized phenomena are preserved better.®

5We would like to thank R. Nowak for many productive dis-
cussions. A big thanks is also due to J. Romberg for help with
implementation.



(d)

Figure 2: (a) Cameraman image z. (b) Observed image
y. (c) Wiener filter estimate (ISNR = 8.8 dB). (d) WaRD
estimate (ISNR = 10.6 dB).
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