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ABSTRACT

In this paper we propose a novel method based on wavelet
thresholding for enhancement of decompressed transform
coded images. Transform coding at low bit rates typically
introduces artifacts associated with the basis functions of
the transform. In particular, the method works remark-
ably well in “deblocking” of DCT compressed images. The
method is nonlinear, computationally efficient, and spa-
tially adaptive and has the distinct feature that it removes
artifacts yet retain sharp features in the images. An impor-
tant implication of this result is that images coded using
the JPEG standard can efficiently be postprocessed to give
significantly improved visual quality in the images. The al-
gorithm can use a conventional JPEG encoder and decoder

for which VLSI chips are available.
Also Technical Report Rice University, CML TR94-15

1. INTRODUCTION

By applying lossy compression methods for image compres-
sion it is possible to achieve compression ratios of 10 and
more (gray scale images) with only a small noticeable per-
ceptual deterioration [11]. For considerably higher compres-
sion ratios the perceptual image quality decreases rapidly.
There are essentially two undesired effects: (i) loss of im-
age details and (i¢) blocking. The former is a result of disre-
garding high frequency components during the quantization
process and is hence lost information. The latter is due to
the DCT coding of 8 x 8 blocks in the JPEG standard.
Several algorithms have been developed to deal with these
coding artifacts. Niss [10] proposed a prediction scheme for
the low-frequency AC coefficient from the DC coefficient
changes within a 3 x 3 array of blocks. This method consid-
erably reduces blocking effects in smooth areas but might
introduce large artifacts elsewhere (e.g., at the edges [11]).
In another approach Wu and Gersho propose a suboptimal
decoder jointly minimizing the least squared reconstruction
error in the actual image block as opposed to minimizing
the individual errors separately [13, 14]. Assuming that the
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encoder is given they use a table lookup for the set of in-
dices similar to that in a vector quantizer. This approach
requires a novel decoder based on the design of suitable
codevectors. Wu and Gersho report an improvement of the
peak SNR between 1.7% and 4.6% for selected images out-
side the training set using relatively small compression ra-
tios of 5.8-12.3. However, it is interesting to notice that
the performance of their method is sensitive to the choice
of the training set [13].

2. IMAGE ENHANCEMENT BY DENOISING

Let y be the decompressed version of the original image
z. A model for the image enhancement problem is then
given by y = z + e where e is the reconstruction error. The
artifacts in y associated with the compression procedure at
the given bit rate is incorporated in e. The goal is to obtain
a procedure, £(y), to generate an estimate of the original
image which “smoothes” out the effects of € on y, yet retain
the important features in z. A measure of performance
could be the mean squared error (mse).

Assuming that the error e is Gaussian and uncorrelated
(both spatially and with z), then finding z from y is a clas-
sical statistical estimation problem. Since the procedure
#(y) should work for a variety of images z € X, the goal is
to find & such that sup, l|Z(y) — =|| is minimized. If one
wants to avoid spurious oscillations or, equivalently, main-
tain the smoothness of the signal = one has to impose the
condition [3]

Wi(y)l < [Wal. (1)

This classical problem has a solution which is asymptot-
ically near optimal (simultaneously) for a wide variety of
classes, X [3]. A procedure, #(y), satisfying the above
minimax problem with the given smoothness condition is
given by soft-thresholding in the wavelet domain where the
threshold depends on the variance of e. Let W and W™!
denote the wavelet and inverse wavelet transform operators
respectively. Then the nonlinear procedure is given by

i(y) = W' Ts(Wy) (2)

where the nonlinear soft thresholding operation is defined

by
s—6 fors>6

Ts(s) = sgn(s)(|s|—6)y =< 0 for -6 <s<é6  (3)
s+6 fors< —6
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The threshold é is typically obtained through an estima-
tion from the observed image y. Two important qualitative
features of the method are: (i) the reconstruction is noise-
free in the sense that no spurious oscillations are introduced
(other than in the data y) and (it) relatively sharp features
in y are maintained [3].

It has been shown [3] that wavelet soft-thresholding is
() nearly a minimax MSE procedure (no currently known
better one) and (b) there is no better estimator satisfying
the smoothness condition in Eqn. 1. The threshold § is
related to the actual noise level which is constant according
to the assumption of e being uncorrelated and is assumed
to be known. The Gaussian assumption is needed only for
computing an asymptotically optimal value § depending on
the variance and the data size [3].

In our problem of image enhancement it is evident that
e is correlated both spatially and with z. Consequently,
the stochastic assumptions on e are not valid. However, we
can still successfully apply the algorithm for the following
reasons (heuristic). The wavelet transform tends to whiten
the data and hence while e is not uncorrelated, We might
be. Secondly, Donoho [3] also shows that if the error is
bounded (which is clearly the case for most signal processing
problems) then soft-thresholding is optimal. Finally, we
propose to apply nonuniform/adaptive soft-thresholding to
compensate for data correlation.

3. ENHANCEMENT ALGORITHM

Fig. 1 schematically shows the basic steps of our algorithm
for image enhancement. The input y of our procedure is a

£(y)

—

=z 5 W T5 W—l

Figure 1. Algorithm for image enhancement.

decompressed image resulting from a standard JPEG codec.
In attempting to implement this algorithm there are several
parameters that needs to be determined: (7) a suitable error
measure, (i) the type of the transform W like M-band
wavelets [4], wavelet packets [2], space-varying wavelets [1,
5], (217) given the kind of transform W we need to determine
the degree and the type of wavelet filter (i.e., Daubechies’
filters, optimal I, filters, etc.), (1v) the number of levels to
use, (v) the best thresholding scheme and (vi) the choice of
the threshold parameter 6.

It is obvious that optimizing over all parameters is not
feasible. Thus we restrict our attention to those parameters
which experimentally seems to have the greatest impact on
the performance.

Error measure: An error measure which shows high
correlation to perceptual image quality is desirable but in
reality nonexistent at present time. Although there are nu-
merous approaches for which advances have been made in
recent years [8], most of them are highly specific. Hence,
we have chosen to use a simple two step approach. First we
search for the optimum parameter set minimizing the mean
squared error. We then refine the parameters by using sub-
jective criteria such as perceptual quality.

Transform: To simplify the search we limited the anal-
ysis to 2-band wavelet bases.

Choice of wavelet: There is a number of possible
choices for the wavelet analysis. From the standpoint of im-
plementation the wavelet filters to be used should be short
to keep the computational burden low and furthermore us-
ing long filters tends to smear image details. Furthermore,
experimentation shows that regularity of the wavelet basis
plays an important role for removing the blocking artifacts.
Thus we chose to optimized over a very small subset —
Daubechies’ filters of length 4, 6, and 8.

Number of levels: We limited the investigation to con-
sider only 5 level wavelet expansions. Experimentation in-
dicates that the important scales are those which reduce
the unwanted artifacts to roughly single pixels.

Thresholding scheme: The choice with the greatest
impact on the performance of the postprocessing algorithm
is in our opinion the thresholding scheme and the corre-
sponding parameters. As we pointed out in Section 2 and
is confirmed by our experiments the shrinkage condition in
Eqn. 1 is essential to avoid artifacts introduced by the post
processing scheme.* We consequently use soft-thresholding
throughout all our experiments. There remains the prob-
lem of finding an optimal threshold and possibly adapt it
to the local error level.

Threshold: It is relatively simple to find a uniform
threshold, 6, in the case of uncorrelated (Gaussian) noise
e. Threshold values é = 1.5...30 where o is the standard
deviation of e yield excellent results [7]. Only the noise level
(i-e., the standard deviation of €) remains to be determined.
This is effectively done as follows. Denote by Cr g, the op-
erator which when applied to y picks out the high/high
(HH) portion of y on the Ith level of the wavelet transform.
Operators to extract low/high (LH) and high/low (HL) are
analogously defined. As a simple and very reliable estimate
for the variance of We one can use

7 ) = 5= 2 (Crmy - m) “)

where N is the number of data points and m is the mean of
Crm,y. This approach exploits the fact that the variance
of Cgp, = is small in most images. The noise, however, is
uniformly distributed over all scales and consequently shows
up most clearly in Crg,y.

Saito [12] gives an alternative approach for parameter
selection based on an entropy related criterion called min-
imum description length (MDL). The appealing property
of this method is that it finds a data dependent set of pa-
rameters and could thus be used for finding a proper thresh-
old. However, our limited experiments have shown that this
method tends to give too large threshold values which result
in oversmoothed images. However, a more in detail study
is necessary for this method — and in particular one needs
to consider in details the best basis selection proposed by
Saito [12].

Nason [9] recently proposed a method for threshold se-
lection based on cross validation. This method for selecting

*Artifacts occur if one use hard-thresholding (i.e., one keep
all values above a threshold and sets all other to zero).
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Figure 2. Dependence of ¢ on the threshold factor for (a)
uniform thresholding and (b) scale adaptive thresholding.

the threshold has been shown to offer better noise rejection
for signals corrupted by handle heavy tailed noise.

As we discussed above, the assumption that the error
We is Gaussian and uncorrelated does not hold for images
processed by the JPEG codec at low bit rates. We have
shown that the relevant assumption for the applicability of
uniform thresholding is that of an uncorrelated error signal.
We therefore have to consider the dependence of the noise
level of e on different scales and bins (HH, HL, and LH).
Moreover, it is not clear that the noise is Gaussian even at
a fixed scale and level, further complicating the estimation
of a sensible threshold. In the next section we investigate
how some of these problems could be solved.

4. EXPERIMENTS AND RESULTS

We used four classical gray scale images 1) Lenna 512 x 512,
2) Mandrill 480 x 480, 3) Camera-man 256 x 256, and 4)
Building 256 x 256). For the JPEG codec we used a quality
factor of 10 resulting in compression ratios of 32 (0.25bpp),
13.3 (0.60bpp), 23.4 (0.34), and 22.1 (0.36bpp), respec-
tively. The optimization was carried out by determining
the minimum mse over Daubechies’ filters of length 4, 6, 8,
soft-thresholding of CHH(l)y, CHL(,)y, CLH(,)y at the finest
3 to 5 levels. Each of these experiments was then carried
out for both a uniform threshold é and a scale adaptive
threshold 6.

Uniform Threshold: In this experiment we estimated
the error variance using Eqn. 4. We then determined the
minimum mse over the parameters as described above and
8 = fué, fu € {0.4,0.8,...,6.0}. Fig. 2a shown a typical
plot of the dependence between the the error energy

e= > (5)

and the thresholding factor f, = 6/&. There is a clear
minimum for a factor f, = 2.8. Table 1 shows the set of
optimal parameters when using this minimum mse criterion
for each of the test images.

From Table 1 we observe that the mean squared er-
ror compared to the decompressed image is reduced in all
cases by proper soft-thresholding. The optimum number of
thresholded scales I varies between 3 and 5, the optimum
filter length NV between 4 and 8. It turns out, however, that
the choice of L and N is not critical. Thus, it is possible
to choose L = 3 and N = 4 in all cases with only a mi-
nor change of € and perceptual quality. It seems therefore

Table 1. Optimal parameters (L = number of levels, N =
filter length, f = threshold factor)

JPEG Uniform Thr. Adaptive Thr.
e/10% e/103 L N fu e/10% L N fa
Lenna 3.94 3.64 5 8 2.8 3.70 3 8 0.6
Mandrill 11.3 11.2 3 8 0.8 11.1 3 8 0.3
Camera 3.11 3.02 3 4 1.6 3.02 3 4 0.5
Building 2.92 2.81 5 4 2.4 2.82 3 4 0.5

unnecessary to optimize over these parameters. This is not
true for the thresholding factor f,. If one applies, e.g., the
factor f, of the image Mandrill to the image Lenna, the
blocking effects are hardly removed and vice versa one gets
an oversmoothed image. Due to space limitations we can
only include one set of images in this paper and we have
chosen to use a part of the Lenna image since it tends to
best illustrate most of the properties of the algorithm. For
a more complete set of images see Gopinath et al. [6]. The
image corresponding to the Fig. 4. Clearly, the blocking
has been considerably reduced while at the same time only
few details are lost subject to smoothing.

Adaptive threshold: Next consider the dependence of
the noise level on the scale. As previously mentioned the
error for this type of images are clearly correlated — both
spatially and with the original image. To better deal with
correlated noise we altered the thresholding scheme and ap-
plied a scale adaptive threshold. The intuition for scale
adaptive thresholding is that we should threshold “harder”
on the scales where the artifacts are reduced to single pix-
els. To further quantify why a scale adaptive thresholding
scheme might work consider Fig. 3. Fig. 3 shows a plot
of the standard deviation of Crpg,e,...,Crrge for all four
images. Notice that the standard deviation increases for
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Figure 3. Standard deviation of the HH portion for different
scales and images Lenna (—), Mandrill (- - =), Camera-man
(--+), and Building (- -).

coarser scales with exception of the image Mandrill where
it seems to be nearly constant. The behavior for the LH
and HL are similar. Hence, we applied the following a scale
adaptive threshold

50.(6) = Jut(6) = fuy) g D (Cre—mpt ()

where s denotes the interesting scale (1,2,...,5)), b the inter-
esting portion (HH, HL, or LH), m the corresponding mean
and f, a constant factor to be optimized. The other pa-
rameters are chosen from the same range as in the previous
experiment. We optimized over values f, € {0.1,...,1.5}.



A typical plot showing €(fs) is given in Fig. 2b. The opti-
mal parameters for all four images can be found in Table 1.
Again the mean squared error is reduced compared to the
JPEG case. However, it is slightly larger than using uni-
form thresholding for 3 of the images (Lenna, Camera-man
and Building). Just as in the previous experiment the value
of € is not very sensitive to the choice of the parameters L
and N. Thus, L = 3 and N = 4 is a convenient choice.
In contrast to uniform thresholding the range of the op-
timal threshold factor is considerably smaller. It appears
that a value f, = 0.5 yields good results for all four im-
ages. Notice, however, that the variance of the true error
signal at all interesting scales was used for this scale adap-
tive thresholding. The image corresponding to the optimal
set of parameters are depicted in the lower right corners of
the Fig. 4. Again, the blocking effects have been consid-
erably reduced and in our opinion the perceptual quality
is slightly better (less smoothing of details) compared to
uniform thresholding, albeit the larger error values e.

Blocking can further be reduced for both the fixed thresh-
olding scheme and the adaptive thresholding scheme with-
out loss of significant image detail. By using subjective
evaluation a perceptually better images can be obtained
by changing the optimal threshold factor. Since we cur-
rently have not performed any extensive study of percep-
tual acceptability of these manually optimized images and
the improvement on the test images at the given bit rate
are marginal we have not included any samples [6].

5. CONCLUSION AND FUTURE WORK

A powerful method for removing blocking artifacts intro-
duced by the JPEG codec at high compression ratios have
presented. It is based on soft-thresholding in the wavelet
domain. It is also very efficient since the computation of the
wavelet transform requires only O(NV) floating point oper-
ations. Although uniform thresholding is optimal only for
uncorrelated error signals it yields excellent results, assum-
ing the optimal factor f, is known. Further improvement
can be obtained by scale adaptive thresholding. However,
while the uniform thresholding algorithm can be applied to
the decoded image without knowledge of the original image,
the scale adaptive algorithm require that the JPEG encoder
appends a few bits for encoding information related to the
standard deviation of the error image e at various scales.
We are currently working on finding a data dependent
way of computing the optimal factors f./f. such that over-
smoothing is avoided. Furthermore, we are investigating
how scale adaptive thresholding can be improved and be
applied without knowing the true values of the variance of
We at the interesting scales. We are also currently investi-
gating how encoded information in the JPEG data stream
can be applied intelligently for improving the performance.
In future work we will consider the usage of various
wavelet analyses, continue the investigation of the method
of minimal description length [12], investigate methods for
threshold selection by cross validation [9] and investigate
several error measures based on perceptual criteria.
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Figure 4. Image Lenna beginning in the top left corner: (tl) original image; (tr) image after JPEC codec with quality 10; (bl)
image after optimal thresholding (uniform); (br) image after optimal thresholding (scale adaptive)



