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Abstract

In this paper we describe how the theory of wavelet thresholding introduced by Donoho
and Johnstone can successfully be applied to two distinct problems in image processing where
traditional linear filtering techniques are insufficient. The first application is related to speckle
reduction in coherent imaging systems. We show that the proposed method works well for
reducing speckle in SAR images while maintaining bright reflections for subsequent processing
and detection. Secondly we apply the wavelet based method for reducing blocking artifacts
associated with most DCT based image coders (e.g., most notably the Joint Photographic
Experts Group (JPEG) standard at high compression ratios). In particular we demonstrate an
algorithm for post-processing decoded images without the need for a novel coder/decoder. By
applying this algorithm we are able to obtain perceptually superior images at high compression
ratios using the JPEG coding standard. For both applications we have developed methods
for estimating the required threshold parameter and we have applied these to large number of
images to study the effect of the wavelet thresholding. Our main goal with this paper is to
illustrate how the recent theory of wavelet denoising can be applied to a wide range of practical
problems which does not necessarily satisfy all the assumptions of the developed theory.

1 Introduction

Recent developments in wavelet theory [10, 11, 15, 12, 14, 13, 8] have made a significant contribution
towards the potential for finding new and exciting applications of wavelets in one dimensional as well
as multidimensional signal processing. Donoho and Johnstone [13, 15] showed that wavelets, which
are unconditional bases for a large number of function spaces (smoothness spaces included) are
optimal bases for compression, estimation (noise reduction) and recovery [8]. In all its simplicity the
discovery was to observe that signals corrupted with additive noise satisfy the following heuristics

[30].
e Signals are represented with a few large wavelet coeflicients

¢ Noise is evenly distributed across wavelet coefficients and is generally small
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Without oversimplifying the results these two observations are the key elements of the theory of
wavelet based noise reduction popularized by Donoho and Johnstone’s proof of optimality. The
significant contribution of Donoho and Johnstone was to show that under certain assumptions on
the signal and it’s estimate is was possible to obtain a wavelet based noise reduction algorithm
which is optimal in a minimax sense [10, 8]. In practice noise reduction by wavelet theory is an
O(N) operation achieved by taking the wavelet transform of the noisy signal, apply a nonlinear
threshold to the wavelet coefficients (shrink or keep the large wavelet coefficients, they are signal,
and discard small wavelet coefficients, they are noise) and finally take the inverse wavelet transform
to get an estimate of a signal with reduced noise level.

This paper describes two applications of the above mentioned wavelet based noise reduction
algorithm. Both examples deal with two dimensional signals (images) corrupted by statistically
different noise. Several one dimensional examples can be found in [9].

The two problems are:

o Speckle reduction in SAR (Synthetic Aperture Radar) images for applications in target track-

ing, detection and recognition.

¢ Reduction of blocking artifacts introduced by decoding images encoded by the JPEG (Joint
Photographic Experts Group) standard. At high compression ratios (quantized too coarsely
for baseline JPEG acceptable quality) the quality of the decoded image is significantly dete-

riorated and often perceptually unacceptable.

The general model for the problems we consider is as follows. Let y = = 4+ ¢ be the observed
image of the ideal image 2 corrupted by noise e. Most observed images typically suffer from
artifacts due to the process associated with formation/processing/compression. The objective is

then to remove as much of the corruption as possible without destroying relevant information.

2 Nonlinear wavelet-based noise reduction

Given that the observed signal, y, is modeled as y = & 4+ e and if the error e is Gaussian and
uncorrelated (both spatially and with z), then finding = from y is a classical statistical estimation
problem. Since the estimation procedure, #(y), should work for a variety of signals (images) z € X
(where X is the space/set of all images belonging to the application considered), the goal is to
find & such that sup,¢y ||#(y) — «| is minimized. Let W and W' denote the wavelet and inverse
wavelet transform operators respectively. Then Donoho [10] showed that spurious oscillations or

equivalently smoothness of the signal z can be maintained by imposing the shrinkage condition
Wi(y) < [Wel. (1)

This problem has a solution which is asymptotically near optimal (simultaneously) for a wide

variety of classes X’ [10]. A procedure, @(y), satisfying the above minimax problem with the given



smoothness condition is given by soft-thresholding (“shrink or kill”) in the wavelet domain where
the threshold depends on the variance of e (the noise). Then the nonlinear wavelet procedure is
given by

i(y) = W T5(Wy) (2)

and

Ty(z) = { x —sgn(z)éd for |z| > &

3

0 for |z| < é (3)

is the proposed soft-thresholding rule (function). The threshold ¢ is obtained by an estimation
procedure from the observed image data y.

Imposing the shrinkage condition results in two important qualitative features: (i) the re-

construction is noise-free in the sense that no spurious oscillations are introduced (other than in

the data y) and (i7) relatively sharp features in y are maintained.

2.1 Thresholding

Donoho [10] showed theoretically that soft-thresholding (see Eqn. 3) is the optimal nonlinear func-
tion to apply if smoothness of the estimate is important. The optimality of the soft-threshold is
in terms of mean squared error subject to smoothness. However, it is well known that for many
practical applications mean squared error is not a good measure of performance (e.g., perceptual
image quality is not well measured in terms of mean squared error).

Hence, one should not restrict oneself to only consider soft-thresholding since particular
problems might provide additional information about the noise which should be incorporated into
the nonlinear wavelet coefficient manipulation process. This can be achieved either through the
choice of the nonlinear rule or by altering the method for computing of the threshold parameter.
An obvious alternative for a threshold rule would be to apply hard-thresholding (“keep or kill”)
defined by

) oz for |z| > 6
Ts(e) = { 0 for |z| <é. (4)

However, regardless of which thresholding rule one chooses to apply one has to determine at least
one threshold parameter (possibly several depending on the complexity of the thresholding rule
and whether or not thresholding should be scale/level adaptive) from the noisy data. Donoho and
Johnstone [12, 11], Johnstone and Silverman [26], Donoho et al. [15], Nason [32], Weyrich and
Warhola [43] Saito [37, 38] and Vidakovic [42] have proposed various methods for estimating the
threshold from the observed noisy data. Each of these papers discusses one or several methods
for picking the optimal threshold (for both hard and soft-thresholding rules as well as variations
thereof) for various problem formulations. We will not describe any of these methods here other

than say that most of these methods for obtaining the threshold, é, can be formulated as

§ = \é(y) (5)



where A is a constant and 6(y) is an estimate of the noise standard deviation. Donoho and Johnstone
[12] showed that in fact if A = \/2log(n) then § was the optimal minimax threshold subject to
the assumptions previously mentioned (they referred to this as the universal threshold). Hence
the challenge is to design a robust noise variance estimator for any given problem. Furthermore,
our experience shows that each problem seems to require a (slightly) different method for picking
the threshold and in fact if one can not find a “robust” noise variance estimate then choosing
A < /2log(n) will help preventing over-smoothed estimates. In fact for the two problems considered
here we found that we could use the same variance estimator (to be described later) and were left
with having to optimize A to achieve the desired performance for each application.

Given the above wniversal type threshold parameter and assuming White Gaussian Noise
(WGN) the obvious variance estimator, also proposed by Donoho and Johnstone, is to estimate the
noise variance by computing the variance of the high frequency band at the first level of the wavelet
transform of the noisy signal. That is, for images compute the variance from the high-high subband
at the first level of the two dimensional wavelet transform of the noisy image. The reason for this is
that at the Nyquist rate the energy in the high-high frequency band will be mostly affected by noise
and not much signal energy will leak into this band. Hence computing the variance from high-high
band makes intuitive sense. Since this estimate might be inflated by the presence of some signal
energy in high-high band we compensate for that by optimizing A based on the application at hand.
That is, experience shows that for most problems we have to choose A < y/2log(n) (see Table 1
Section 4.1). For more details on this see Gopinath et al. [18, 17] and Guo et al. [22, 21]. In the
next two sections we will discuss each of the two applications in more detail and give examples of

the performance for each case.

2.2 Wavelet parameter optimization

So far we have only been concerned with discussing methods for nonlinear thresholding rules and
threshold estimators. However, in implementing the wavelet based noise reduction algorithm for
most applications one would want to consider a whole range of wavelet related parameters to
optimize over such as: (7) error measure, (i) type of transform (2-band [6], M-band [39], wavelet
packets [4], multiwavelets [40] etc.), (iii) properties of the wavelet filters (vanishing moments [6, 25],
splines [3], smoothness [23, 24], stopband attenuation [33], signal dependent optimal filters [19, 41],
etc.) (iv) number of levels to threshold in the wavelet coefficient domain.

Although it is infeasible to optimize over all of these parameter one needs to consider each
of these parameters since they might contribute to improving the noise reducing capabilities for an
application. Often one will find that some of the parameters will naturally be determined based on
the application (e.g., still image processing typically works better with short filters etc.) and hence
the search space is reduced. For a more complete discussion of the significance of each of these see
Gopinath et al. [18].



3 SAR speckle reduction

Speckle is a physical phenomenon that can be found in a lot of observed imaged data such as
SAR, acoustic imagery such as sonar, electronic speckle pattern interferometry, laser range data
etc. When an object is illuminated by a coherent source and the object has a surface structure
that is roughly on the order of a wavelength of the incident radiation, the wave reflected from such
a surface consists of contributions from many independent scattering points. Interference of these
dephased but coherent waves result in the granular pattern known as speckle. Thus, speckle tends
to obscure image details and hence speckle reduction is important in most detection and recognition
systems. It can be shown and simply verified by measurement that the WGN model serves as a
good approximation for speckle [16].

Our goal is to show that wavelet based noise reduction can be used for minimizing the effects
of speckle when the observed image y is a digitized SAR image. Several algorithms, not based
on wavelet theory, for reducing speckle in SAR images have been proposed [7, 34]. However, no
single method has been found (possible with the exception of the polarimetric whitening filter
(PWF') [34] which uses multiple observations to reduce speckle) that does a good job of removing
speckle without a significant loss of image resolution or extensive knowledge of ground truth. The
results as presented here are not new and have independently been reported by Moulin [31] and
Guo et al. [21, 22]. The difference between the two approaches is that Moulin only considers
hard-thresholding while Guo et al. considers both hard and soft-thresholding. Furthermore, Guo
et al. applied the method to both single channel SAR images as well as combined the wavelet
based denoising algorithm with the PWF for fully polarimetric SAR image speckle reduction and
achieved superior performance in terms of speckle statistics. Extensive testing of the resulting fully
polarimetric wavelet based speckle reduction algorithm has been performed at Lincoln Laboratory

for applications in automatic target detection and recognition (ATD/R) and is reported in [35].

Table 1: Standard deviation to mean (std/m) and log standard deviation (log-std) for SAR HH
clutter data. The table gives a comparison between original unprocessed HH SAR image and the
wavelet despeckled HH SAR image.

std/m log-std (dB)
Original | Wavelet | Original | Wavelet
despeckled despeckled

Trees | 1.7639 0.8995 6.8750 3.6006
Grass | 1.2061 0.3933 5.8213 1.6358

A classic measure of speckle size is the standard-deviation-to-mean (s/m) ratio [16, 7] and
log standard deviation [34]. Table 1 shows these two values for two regions of an original and a

processed SAR image (more detailed results can be found in Guo et al. [22, 21]). In Figs. 1 and



2 we have plotted the original and the processed version of a SAR image scene. We can see by
comparing appropriate images in Fig. 1 and Fig. 2 that speckle is greatly reduced while image
details such as bright reflectors are well preserved and hence the improved image quality might

provide advantages for further processing such as detection and recognition.

4 JPEG post-processing

Highly compressed still images typically suffer from unacceptable coding artifacts when recon-
structed. In particular the JPEG standard introduces objectionable blocking artifacts due to the
coarse quantization of AC coefficients in each 8 x 8 DCT block at high compression ratios. The
blocking artifacts introduced are “weakly” correlated spatially and can have rather significant sig-
nal correlation. Hence, removing these coding artifacts for perceptual image enhancement has been
considered difficult if not impossible without significantly smoothing the resulting image.

The noise in images corrupted by coding artifacts such as blocking can not be satisfactorily
modeled by an uncorrelated (white) additive noise process and hence does not satisfy the stochastic
assumptions on the error assumed in the proof of optimality by Donoho and Johnstone [12]. Hence,
it is not obvious that wavelet based noise reduction should work for this problem. As we will see,
the process of wavelet noise reduction does an exceptional job of reducing coding artifacts without
perceivable loss of image detail and without redesigning the JPEG decoder. Although there does not
exist a rigorous proof of why the wavelet based noise reduction algorithm works for the correlated
noise case we have developed some intuition for why it works. Firstly the wavelet transform tends
to whiten the data and hence while the error, e, might not be white, We might be. Secondly,
Donoho [10] showed that if the error is bounded (which it clearly is for most signal processing
applications) then soft-thresholding is optimal in the L? sense if smoothness is desired.

Our experience with JPEG compressed data supports the above intuition and we notice
significant improvements in perceptual quality as well as mean-squared error. Although no extensive
comparative study has been performed between various alternative methods for blocking artifact
reduction/removal the wavelet based method seems more promising than other methods in the
literature (see [36, Chapter 16] and [44, 45, 29]). Besides,

the methods in [45, 29] requires the use of a novel decoder, while the methods proposed here
is only O(XN) and can be used with a conventional JPEG coder/decoder for which VLSI chips are
available.

Finally it has been proposed that by applying scale adaptive thresholding one can adapt
to the correlation of the error signal and possibly achieve even better performance for strongly
correlated noise. The adaptive thresholding method was first proposed by Donoho and Johnstone
[11] (SureShrink) for an approach to recover a function of unknown smoothness from noisy, sampled

data. Furthermore recent work by Johnstone and Silverman [26] makes a first attempt to show
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Figure 1: Fully polarimetric SAR imagery of the Lincoln North building (a) HH polarization (b)
HV polarization (c¢) VV polarization (d) PWEF.
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Figure 2: Wavelet-based despeckled SAR images of the Lincoln North building (a) HH polarization
(b) HV polarization (c¢) VV polarization (d) PWEF.



that under certain conditions level dependent thresholding is optimal in a minimax way.

4.1 JPEG enhanced performance

To evaluate the performance of the post-processing algorithm we have considered several different
images from the standard gray scale image processing collection. For each image considered we
computed the optimal parameters (filter length (N), number of levels (L), threshold factor (\))
assuming a 2-band Daubechies type wavelet transform. The optimality criteria is maximal peak
signal to noise ratio (PSNR) defined by

2

where for an N x M image, (1, j), the RMSE (root mean squared error) is defined by

1 N-1M-1
RMSE = J w7 X 2 {atid) =it (7)

and #(¢,7) is the pixel values of the reconstructed or enhanced image. For each of the 4 images
(Lenna 512x 512, Camera 256 x 256, Mandrill 480 x 480, Boats 576 x 720) considered we choose three
different JPEG quality levels (50, 10 and 5) corresponding to three different bits per pixel (bpp)
values. The results are tabulated in Table 2 together with the PSNR for the plain JPEG. Notice
furthermore that for each of the 4 images, JPEG quality levels 10 and 5 were intentionally chosen
to correspond to significant distortion (i.e., the JPEG code issues a warning that the quantization
tables is too coarse for baseline JPEG).

In Figs. 3-5 we show the image “Boats” to further illustrate the improvement from wavelet
based noise reduction. In Fig. 3 we see the original image, while Figs. 4 and 5 corresponds to JPEG
and denoised JPEG respectively at 0.26bpp. Carefully studying these two images one observe clear
perceptual improvements in the image in Fig. 5. Furthermore, also notice that the image detail
(high frequency information not removed by JPEG) is remarkably well preserved (e.g., the image is
not smoothed). The images as displayed here used the parameter from Table 2. The image quality
could have been improved by perceptually adjusting the threshold parameter A, however, we found
this to be rather subjective and hence left the results corresponding to the the maximum PSNR.

The algorithm described here for improving distorted JPEG encoded images is entirely sepa-
rate form the JPEG coder/decoder and hence no novel coder/decoder has to be designed. However,
if one was willing to add a few bytes to the JPEG data-stream one could get exact estimates of the
noise variance by subtracting the images at the encoder and computing the error variance explic-
itly. In most cases tested this did not give significant improvements. This added information would
also be more important (possibly necessary) if a level dependent thresholding was to be used. In
that case getting reliable estimates of the variance at course levels would be difficult due to signal

leakage into the subbands.



Figure 3: Original image (8bpp).
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Figure 4: JPEG encoded and decompressed image (0.26bpp).
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Figure 5: Post-processed JPEG encoded and decompressed image (0.26bpp).
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Table 2: Comparison of JPEG performance and wavelet denoised JPEG performance with corre-
sponding optimal parameters. The parameter optimization was limited to considering the class of

2-band Daubechies (maximally vanishing moments) wavelet filters restricted to lengths 4 < N < 12,
and levels 3 < L <5 (WD = Wavelet Denoised).

PSNR
bpp N L X |/2log(n) | WD JPEG A
065 12 3 1.0 36.10 35.80 0.30
Lenna 025 8 5 25 3.3 31.09 30.41 0.68
018 8 5 4.8 28.31 27.33 0.98
088 4 3 04 32.02 31.75 0.27
Camera [0.34 6 3 1.1 3.1 26.70  26.44 0.26
024 6 5 2.2 24.58 2430 0.28
1.84 12 3 0.2 25.86 25.64 0.22
Mandrill | 0.61 12 3 0.9 3.3 20.82  20.67 0.15
03 8 5 1.3 19.24 19.01 0.23
067 6 3 0.8 36.27 3591 0.36
Boat 026 8 5 2.7 3.4 30.32 29.74 0.58
0.17 8 5 5.1 27.49 26.66 0.83

5 Summary

In this paper we have described two applications of the recently published results on wavelet based
noise reduction. Each of the two problems considered addresses two different aspects of the theory
— additive white noise and additive “non-white” noise. To no surprise the theory works remarkably
well in reducing speckle noise (well modeled as AWGN) from SAR images. This has significant
consequences for both military applications of SAR (automatic target detection and recognition) as
well as for scientific use of SAR imagery. The second application is the removal of coding artifacts
(blocking) from JPEG encoded still images. At high compression ratios the blocking artifacts tends
to be quit objectionable although the image detail might be sufficiently preserved for browsing etc.
JPEG coding artifacts are clearly not modeled well by a AWGN process and hence the success of
this problem illustrates the power of the wavelet base noise reduction algorithm. By applying the
wavelet based noise reduction theory we have been able to obtain a perceptually superior image
with a post processing algorithm. The key point is that this require no novel decoder and works
with all existing JPEG implementations which are readily available on VLSI chips.

Recent results [20] indicates that the noise reduction performance can be further improved

by combining the redundant wavelet transform [1, 2, 28] and nonlinear processing [27, 5].
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