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ABSTRACT

This paper derives relationships between the moments
of the scaling function %o(t) associated with multiplic-
ity M, K-regular, compactly supported, orthonormal
wavelet bases [6, 5], that are extensions of the multiplic-
ity 2, K-regular orthonormal wavelet bases constructed by
Daubechies [2]. One such relationship is that the square of
the first moment of the scaling function (9o(t)) is equal to
its second moment. This relationship is used to show that
uniform sample values of a function provides a third order
approximation of its scaling function expansion coefficients.
For the special case of M = 2, the results in this paper have
been reported earlier [3].

1. INTRODUCTION

In this paper we derive relationships between the moments
of the scaling function ¥o(t) associated with the compactly
supported, multiplicity M, K regular, orthonormal wavelet
bases. In particular, we show that the square of the first
moment of ¥ is the second moment of ¥o. Hence samples
of a function accurately represent its expansion coefficients
in terms of the scaling function. The scaling function ¥ (t)
is determined by a sequence ho(k) (the scaling vector), con-
structed through a spectral factorization process in the K-
regular case. However, it is interesting that the moment
relationships only depend on and can be derived from the
squared magnitude, |Ho(w)|?, of the Fourier Transform of

ho(k).
2. RELATIONSHIP BETWEEN MOMENTS OF
hi AND o,

Multiplicity M, K-regular compactly supported, orthonor-
mal wavelet bases are characterized by a scaling vector

ho(k) and M — 1 wavelet vectors hy(k), {=1,2,..., M —1
all of finite length N, that satisfy the equations,
> hi(k)hon(k + Mn) = 8(1 — m)8(n) (1)
k

forl=1,2,...,M —1, and

> hi(k) = VM5(1). (2)

In terms of the scaling vector hg, the scaling function is
defined by the scale recursive formula,

Yo(t) = VM i ho(k)vo(Mt — k). (3)

k=0

Appears in Proc. ISCAS, May, 92

Similarly, from the wavelet vectors, and the scaling func-
tion, the wavelets z;ﬁz(t) are defined as

Bu(0) = VIS (koM — k). (4)

k=0

If the scaling function is normalized to have unit energy,
then it can also be shown that

/ Yo(z)dz = 1. (3)
E

In wavelet analysis of signals, it is necessary to take inner
products of a given signal f(t) with the scaling function and
wavelets appropriately scaled. If f(t) is approximated from
its samples (only the samples are assumed to be available)
using a local polynomial approximation, then the inner-
products can be obtained by a discrete convolution using
the moments of the scaling function/wavelets [6]. Thus it is
important to compute the moments of the scaling function
and the wavelets. Even though it is not possible to obtain
the scaling function or wavelets exactly (analytically), it
turns out that the moments of 4(t) and ¥;(t) can be com-
puted exactly. This is because the moments of the scaling
function and wavelets are related to the discrete moments
of the scaling vectors and wavelet vectors respectively. The
latter are easy to compute, since these vectors are known
explicitly.

Lemma 1 Define for alll=0,1,..., M — 1

min :/Rt"wz(t) dt (6)

i = 3 K ha(k) ()

Then we have the following relationship between these mo-

ments
1 n
min —E (7;) KMo, n—i (8)

Mo

Proof: Invoking Eqn. 3 for ¢o(z) in Eqn. 6, we get

min

\/HZhl(k)/Rz"zpo(Mz—k) dz (9)
LS o) [ () vt as

AME k
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AJ"‘FE =0 !

1
M3

0

From Eqn. 8, we have a recursive formula to obtain the
moments of the scaling/wavelet function from the moments
of the corresponding scaling/wavelet vector and the lower
order moments of the scaling function. From now on we con-
sider only the moments of the scaling function and scaling
vector. Clearly Eqn. 5 and Eqn. 2 implies that mo o = 1 and
Moo = \/H Besides, Eqn. 8 implies that mo 1 = ,qu/N.
It is more convenient to scale the discrete moments of the
sequences h; by defining

din = pin/VH. (10)

Then Eqn. 8 becomes

1 ~(n
min = M_n ; <1) dl,imO,n—i (11)

An important consequence of Eqn. 11 is that if all the
moments mo,, are given by mg , = (mo,1)", then the con-
tinuous moments are precisely equal to do,n/(M — 1)".
Lemma 2 For a given ¥o and integer k > 0, the following
statements are equivalent:

1. Foralln, 0<n <k, mon=(mo1)"

2. Foralln, 0 <n <k, don =1(do1)"

Moreover if either condition is satisfied, then

d()’n = (d071)n = (Al - l)n(moJ)n

for all non-negative n.

Proof: Clearly doo = uo,o/\/ﬁ =1 = moo. Now from
Eqgn. 11 for n = 1 for { = 0 we get, Mmo,1 = do,omo,1 +
do,1moo, and therefore do1 = (M — 1)mg,1. Now assume
that for all n, 0 < n < k,do,n = (do,1)". By the induction
hypothesis, mo,, = (mo,1)" and do,n = (M — 1)"(mo1)™.
Now invoking Eqn. 11 for I = 0 and n + 1, and using the
fact that dony1 = (doyl)"‘i'1 we get

n+1
ntl . n+1 ) )
M mont1 = E . do,imo,nt1—i (12)

?
=0

n+1 + 1
n 7 n+l—: n
= Z ( ? ) (do,1)" (mo,1)" ™" + monp1 — mg T

1=0
= (do,l =+ m071)n+1 + mon41 — 'rn(r)l,-ll-1
= 1Mn+l(m071)n+1 + mon41 — (moyl)n-l-l

and hence the result follows. The converse also follows sim-
ilarly. In particular, note that me. = m%yl if and only if
do2 = dg,1- o

The Lemma has the following interesting consequence. If
we shift 1o (t) to its center of mass, then for the new function
mo,1 = 0. This would imply that for the new function, for
all » <k in the Lemma, mo, = mg,; = 0!

3. THE FOURIER TRANSFORM AND
DISCRETE MOMENTS

In this section we show the relationship between the dis-
crete moments of a sequence and the magnitude squared
of its Fourier transform. We then show that the Fourier
transform of the scaling vector satisfies certain properties
and this allows us to conclude our main result about the
moments of the scaling vector.

Let Hg (w) be the Fourier transform of the sequence ho(k).

Z

Ho(w) =
k

ho(k)e™"® (13)

0

Then the magnitude squared of the Fourier transform of
ho(k) is given by

| Ho(w E ho (k

Differentiating n times on both sides with respect to w, and
evaluating at w = 0 we get

[(35) 1] Zatw = Sibymatie -y

z(k—l)w. (14)

15
For odd n from the symmetry it is clear that the right h(anc%
side evaluates to zero. Hence all the odd derivatives of
|Ho(w)|? are zero. The even derivatives are related to the
the discrete moments of hg. Indeed, for n = 2p,

a(2p) = i? zho(k)ho(l)z (2]])) k(2p—])(_l)J

=0

TS ) )

Z <2p) (=1)" 1o,2p—j 1o, (16)

1\2

Now, for a general multiplicity M, K-regular orthonor-
mal wavelet basis, it can be shown ([5]) that the Fourier
transform of the scaling vector satisfies

[Ho(w)|* = M + O(|lw|*) (17)

for w close to the origin. From this fact and the previous
discussion it readily follows that,

[(%) Ho(w)P

for p = 0,1,2,..., K — 1 provided K > 1. Notice that
for p = 0, Eqn. 2 was used. Thus we have a set of K
equations relating the first 2K — 1 moments of hg. It is
obvious that this information is far from sufficient to know
all of the first 2K — 1 moments. Notice that for K = 1, the
maximum value of p is 0 and the relationship merely states
that |Ho(0)]* = M. For K > 2, the maximum value of p
is greater than or equal to 1. In particular, for p = 1 we
obtain the main result in this paper. For p =1 we have

= Mé(p) (18)

w=0

2p0,2 0,0 — 2pt0,1 01 =0 (19)



Ho2 = Hg,l/v M
dg,z = dg,1

Now using Lemma.3, we get the following theorem.

(20)
(21)

Theorem 1 For compactly supported, multiplicity M, K-
regular, orthonormal wavelet bases with K > 2 (i.e, except
for the Haar case), the moments of the scaling function sat-

isfy mo2 = (m071)2.

This result was observed by W.M.Lawton in his numerical
investigations with wavelets in the multiplicity 2 case [7] and
was proved at that time by one of us [3].

We now show how Eqn. 17 is true in the multiplicity
2 case. In the multiplicity M case the result is relatively
more difficult and the reader is referred to [5]. Let ko be a
multiplicity 2, K regular scaling vector. Then from Eqn. 1
for M = 2 it follows that

| Ho(w)[? + | Ho(w + ) =2 (22)
In [2], Daubechies shows that |Ho(w)|?/2 is necessarily of
the form (where ¢(-) and s(-) denotes the cosine and sine
functions respectively),

() [ (K0 H) () + (o)™ )]
(23)

where R is an odd polynomial satisfying a certain growth
condition. If R =0, then N, the length of the sequence kg,
is equal to 2K. Also, from Eqn. 22 we have

[Ho(w)[*/2 =1~ |Ho(w + m)|*/2.

That is, |Ho(w)|?/2 is given by

) [ () () () )]
(24)

and hence around w =0,

[Ho(w)[* = 2 + O(|w]*) (25)
This idea of using the behavior of |Ho(w)|? in the vicinity
of the origin was suggested by I. Daubechies [1]. Tables. 1-3
give the moments of the scaling functions and scaling vec-
tors for different values of regularity K. The relationships
between mo,, and do,n, and Eqn. 16 can be verified from
these tables.

4. PROJECTION ONTO THE FINEST SCALE
Wo,s

Let ¢ 6 = M2 (M7t — k) and let W, j = Span {¢1;x}.
Then, there is a natural multiresolution analysis [6],
... VVOJ C W07]+1 ..

C I*(R) (26)

M—1
Wo,41 = €D Wi, (27)
1=0
Now consider the computation of the wavelet transform of
a function f(t) from its uniformly spaced samples. Starting
with the scaling expansion coefficients at any given scale,

Table 1. The moments of to(t)

M=2 and N=MK |

9.5286399¢-01
9.0794979e-01
7.5580853e-01

1.9057280e4-00
3.6317991e4-00
4.0782740e4-00

N [k mo k do k
410 1.0000000e+00 1.0000000e+00
1 6.3397460e-01 6.3397460e-01
2 4.0192379e-01 4.0192379e-01
3 1.3109156e-01 -6.1121593e-01
4 -3.0219333e-01 | -4.2846097¢4-00
5 | -1.0658728e4-00 | -1.6572740e+4-01
6|0 1.0000000e+00 1.0000000e+00
1 8.1740117e-01 8.1740117e-01
2 6.6814467e-01 6.6814467e-01
3 4.4546004e-01 -1.5863308e-01
4 1.1722635e-01 | -1.8579194e+00
5 -4.6651091e-02 3.7516197e+00
810 1.0000000e+00 1.0000000e+-00
1 1.0053932e+00 1.0053932e+-00
2 1.0108155e+00 1.0108155e+00
3 9.0736037e-01 2.5392023e-01
4 5.8377181e-01 | -2.0440853e4-00
5 6.3077524e-02 | -2.4420547¢4-00
10 | O 1.0000000e+00 1.0000000e+-00
1 1.1939080e+00 1.1939080e+00
2 1.4254164e+00 1.4254164e+00
3 1.5802598e+00 8.5092254e-01
4 1.4513041e4-00 | -2.0317424e+00
5 8.1371053e-01 | -5.9644946e4-00
Table 2. The moments of o(t)
M=3 and N=MK|
N k mo k do,k
6 | 0 | 1.0000000e4-00 1.0000000e+00
1 6.2084713e-01 1.2416943e+00
2 3.8545116e-01 1.5418046e+00
3 1.1024925e-01 | -1.4410320e4-00
4 | -3.3859274e-01 | -2.7622103e4-01
9 | 0 | 1.0000000e400 1.0000000e+00
1 7.8515128e-01 1.5703026e4-00
2 6.1646253e-01 2.4658501e4-00
3 3.8154196e-01 1.2077966e4-00
4 5.8194455e-02 | -1.0654826e4-01
12 | 0 | 1.0000000e4-00 1.0000000e+00
1
2
3
4

4.0761249e-01

-8.4815717e4-00




Table 3. The moments of o (t)

M=5 and N=MK |

N |k mo do x

10 0 | 1.0000000e+400 1.0000000e+00
1 6.0961180e-01 2.4384472e+00
2 3.7162654e-01 5.9460247e+00
3 9.3544517e-02 | -1.9933553e+00
4 | -3.6313857e-01 | -2.3590840e-+02

15 0 | 1.0000000e+00 1.0000000e+00
1 7.5803488e-01 3.0321395e+-00
2 5.7461687e-01 9.1938700e+00
3 3.3138863e-01 1.4957413e+01
4 1.4262918e-02 | -7.2169885e+01

20 0 | 1.0000000e+00 1.0000000e+00
1 9.0920717e-01 3.6368287e+00
2 8.2665767e-01 1.3226523e+01
3 6.4125671e-01 3.4419647e+01
4 2.8205206e-01 | -2.4109276e+01

there are efficient numerical algorithms to compute the scal-
ing and wavelet coefficients at all coarser scales using cas-
caded unitary filter banks [6, 4]. Hence usually f is pro-
jected onto the finest scale of interest, say Wy s, and then
the wavelet coefficients at all coarser scales are then com-
puted from it.

Since only the samples of f, which we assume with-
out loss of generality to be at a spacing of M~7, are
given, some assumption about the smoothness of f must
be made in order to approximate/interpolate f from sam-
ple data. One could use polynomial or spline interpola-
tion/approximation. Since the basis functions for Wy, s, i.e
$o,7k are compactly supported and concentrated around
M ™7k a useful approach is to use a Taylor series approxima-
tion of f in the neighborhood of M ™7k in order to compute
{(¥0,5,k, f). Since the support of g is [0, %], the sup-
port of ¥, sk is [;M_Jk, ]\J_J(k + ﬁ:i ]. Now consider the
Taylor series expansion of f(t) around the center of mass of

Yo,7%. Then f(M™7(k +1))is

k+mo;1 t— mo1 (1) [k +moa
f( M7 >+< M7 )f M7 T

Now if the scaling vector kg is K-regular with K > 2, then
from Theorem 1 mg o = mgyl, and hence it follows that,

(Yo, 5, f) = /f(t)M’%o(MJt—k)dt
R

M—J/Q{/Rf (tn}rf) o (1) dt}
- M—W{f <%>+o((1m])3)}

The last step is obtained by invoking the Taylor series
expansion and using the relationships between the mo-
ments. Hence the sample of a scaled version of f, namely
f(ﬂl_J(k + mg,1)) themselves give a third order approxi-
mation to the scaling expansion coefficients. Increasing the
sampling rate by a factor of M, reduces the error by a fac-
tor of M3! This is precisely why in most applications the
samples of the function provide a good approximation. It
can also be argued that for sufficiently large J the scaling

function approaches the Dirac delta measure and hence the
samples of the function can be considered to be the scaling
coeflicients.

5. CONCLUSION

This paper derives a set of relationships among the moments
of the scaling function. One of the relationships is helpful in
explaining why the samples of a function themselves form
a very good approximation to the scaling expansion coef-
ficients; more precisely, the approximation is third order.
This raises an interesting question: can the extra degree
of freedom associated with construction of a multiplicity
M, K regular non-minimal length scaling vector (for ex-
ample in the multiplicity 2 case, there is the choice of an
odd polynomial R) be exploited to make higher moments of
the scaling vector be powers of the first moment? Clearly,
these K-regular scaling vectors would be longer than the
minimal length, but the extra accuracy in the representa-
tion of a function in the wavelet basis associated with that
scaling vector may more than compensate for the increase
in the support of the resulting scaling function. This would
have implications in the numerical approximation of scaling
coeflicients which matters in any application using wavelets,
be it in signal processing or in the solution of differential
equations.
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