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Abstract

This paper constructs K-regular M-band orthonormal wavelet bases. K-regularity of the
wavelet basis is known to be useful in numerical analysis applications and in image coding using
wavelet techniques. Several characterizations of K-regularity and their importance are described.
An explicit formula is obtained for all minimal length M-band scaling filters. A new state-space
approach to constructing the wavelet filters from the scaling filters is also described. When M-band
wavelets are constructed from unitary filter banks they give rise to wavelet tight frames in general
(not orthonormal bases). Conditions on the scaling filter so that the wavelet bases obtained from
it is orthonormal is also described.

Contact Address:

Ramesh A. Gopinath
Department of FE, A235
Rice Unwversity,
Houston, TX-77251
Phone (713) 527-8750 x3577 £3508
email: ramesh@rice.edu

fax : (713)-524-5237

*University of Erlangen-Niirnberg, Germany
t Aware Inc., Cambridge, MA

{Rice University, Houston, TX

$Rice University, Houston TX



1 Introduction

In recent years wavelet orthonormal bases have been constructed and studied extensively from
both a mathematical and a signal processing point of view [6, 27, 28, 5, 3, 47, 48, 36]. One reason
that wavelets are interesting is that they overcome some of the shortcomings of short-time Fourier
decompositions [30, 17, 48, 7, 20, 13], by decomposing a signal into channels that have the same
bandwidth on a logarithmic scale. Thus high frequency channels have wide bandwidth and low
frequency channels have narrow bandwidth. These characteristics are well suited for analysis of
low frequency signals mixed with sharp transitions (spikes). The disadvantage, however is that
if there are high frequency signals with relatively narrow bandwidth (like a long RF pulse), the
decomposition is not well suited. In order to overcome this problem AM-band orthonormal wavelet
bases have been constructed recently by several authors [17, 52, 23], as a direct generalization
of the 2-band wavelets of Daubechies [6]. M-band wavelets help to zoom in onto narrow band
high frequency components of a signal, while simultaneously having a logarithmic decomposition
of frequency channels. Moreover, they give better energy compaction than 2-band wavelets [52].

Central to Daubechies’ discovery of compactly supported 2-band wavelets is the lowpass filter
of a two channel unitary filter bank with a specified order of regularity. In the 2-band case, the
lowpass filter (or unitary scaling filter) of shortest length with a given regularity order K is fixed
(modulo a spectral factorization). The highpass filter (or unitary wavelet filter) is uniquely deter-
mined by the lowpass filter from the unitariness of the filter bank. Regularity (equivalently stated
as vanishing of the wavelet moments) plays an important role in image processing and numerical
analysis. This is especially true for tree-structured decompositions such as the multiresolution
analysis of Mallat [30], in which one iterates the filter on the lowpass output. Experiments have
shown the Daubechies’ wavelet filters to be highly effective for image coding [51].

Unitary filter banks are a special class of multirate filter banks, the theory of which is well
understood in the signal processing community [41, 49]. Excellent surveys of this work also appear
in [43, 46]. While Daubechies’ construction of K-regular scaling filters and associated 2-band
wavelet bases did not draw from the theory of unitary filter banks, the AM-band wavelet bases
constructed in [17] are based on deep results in filter bank theory. From the filter bank approach,
however, there is no simple scheme to obtain K-regular, M-band scaling filters. In general one has
to solve a set of non-linear equations to numerically obtain the filter impulse responses [17].

This paper makes three main contributions. Firstly, explicit formulas for K-regular M-band

scaling filters are obtained. Just as in the 2-band case Daubechies’ construction, the shortest length



K-regular M-band scaling filter is fixed modulo a spectral factorization. In the M-band case there
are (M —1) unitary wavelet filters, and they are not uniquely determined by the scaling filter (unlike
the 2-band case). Secondly, two different approaches to the construction of the (M —1) wavelet filters
and associated wavelet bases are described. One of them relies on a state-space characterization of
compactly supported wavelet bases with a novel technique for obtaining the unitary wavelet filters;
the other uses the factorization approach in [17]. The wavelets so constructed in general give rise
only to wavelet tight frames (not orthonormal bases). Thirdly, this paper gives a set of necessary
and sufficient condition on the M-band scaling filter for it to generate an orthonormal wavelet
basis. The conditions are very similar to those obtained by Cohen [4, 8] and Lawton [27] for 2-band
wavelets. This distinction between a tight frame and an orthonormal basis is quite subtle (and
technical) and has been overlooked in the signal processing community.

The organization of the paper is as follows. Section 2 is a tutorial overview of multirate filter
bank theory, wavelet theory and their interrelationship. Section 3 identifies and explores several
equivalent notions of wavelet regularity in the M-band case; the most useful one for this paper will
be based on flatness of magnitude response of the scaling filter. In section 4 this notion of flatness
is used to derive the general K-regular M-band unitary scaling filter of shortest length. Section 5
describes several approaches to the construction of wavelet filters. Section 6 characterizes scaling
filters that give rise to orthonormal wavelet bases.

All through this paper by the standard abuse of notation the Z-transform and Fourier trans-

form of a sequence h(n) will be denoted by H(z) and H(w) respectively.

2 An Overview of M-band Wavelet Theory

There is a close relationship between FIR, perfect reconstruction filter banks and compactly sup-
ported wavelet bases in the 2-band case (as well as the general M-band case) [6]. M-band wavelets
were initially constructed by exploiting this connection [17, 52, 38]. This section gives a tutorial

overview of this connection between perfect reconstruction filter banks and M-band wavelets.

2.1 Perfect Reconstruction Filter Banks

The structure of the classical one-dimensional filter bank problem is given in Fig. 1. The filter
bank problem involves the design of the real coeflicient realizable (i.e., FIR or causal stable 1IR)
filters h;(n) and g;(n), with the following goals: Perfect Reconstruction (i.e., y(n) = z(n)), and
approximation of ideal frequency responses (see Fig. 2) [37, 41, 42, 45, 49, 46, 31, 44].  Closely
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Figure 2: Ideal Frequency Responses in an M-channel Filter Bank



related to the filter bank problem is the transmultiplexer problem (dual of the filter bank problem)
[49]. A transmultiplexer is a device for converting time-domain-multiplexed (TDM) signals to
frequency-domain-multiplexed signals (FDM). The basic structure of a transmultiplexer is shown
in Fig. 3. The transmultiplexer problem is to design filters such that perfect reconstruction is

guaranteed (i.e., for all 7, z;(n) = y;(n)) and the filter responses approximate Fig 2.
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Figure 3: An M-channel Transmultiplexer

For PR the filters h; and g¢; have to satisfy a set of algebraic conditions [44]. Let L(M) =
{...,-2M,-M,0,M,2M,...} and R(M) = {0,1...,M —1}. L(M) is the lattice generated by
M and R(M) is the set of representatives of L(M). For any sequence z(n) one can define the

polyphase representation (see [44, 2, 15]) with respect to R(M) as follows:

X(z)= Z 2P X (M. (1)

keR (M)
—R(M) is also a set of representatives, and the polyphase representation of z(n) with respect to
—R(M) will be called the dual polyphase representation of z(n).For k € R(M), let Xz(2), Yz(2) and
G k(z) be the components of the polyphase representations of X (z), Y (z), and G;(z) respectively
with respect to R(M). Let H; 1(z) be the components of the dual polyphase representation of H;(2)



with respect to R(M):

X(z)= Z FXp(zM) and  Y(2) = Z 22V (2M) (2)
kER(M) keR(M)

Hi(z)= > 2R H; (M) Gi2) = > G (2M). (3)
kER(M) keR(M)

Now define the polyphase component matrices H(z) and G(z) as follows:
(H(2))i e = Hir(2); (G(2))ik = Gin(2)- (4)
Fact 1 A filter bank has the PR property iff

1. GT(2)H(z) = I or equivalently

ZZhi(ﬂ/ln + n1)gi(—Mn — nz) = 8(ny — ng). (5)

k3 n

A transmulliplexer has the PR property iff
1. H(2)GT(2) = I, or equivalently

2.
3 hi(n)g;(~M1 = n) = 6(1)a(i - j). (6)

n

When the number of channels is equal to the downsampling factor M, a filter bank is PR iff the

corresponding transmultiplezer is PR.

For the purposes of this paper the number of channels M will be equal to the downsampling factor
and hence we do not have to make a distinction between the filter bank and transmultiplexer PR
properties.

Unitary filter banks are a special class of PR filter banks where the synthesis filters are
determined by the analysis filters as follows: g;(n) = h;(—n). In this case G(z) = H(z7!) and
therefore the PR property becomes HY(271)H(z) = I. In other words, on the unit circle (z = ')
H(z) is unitary (hence the name unitary filter banks - unitary filter banks are also known as

paraunitary filter banks [44, 12]). A filter bank is unitary iff

ZZ hi(Mn + ny)h;(Mn 4+ ng) = §(ny — na). (7)



and a transmultiplexer is unitary iff
Zh J(MI4n) = 8(1)é(i— 5). (8)

Eqn. 8 is also know in the DSP literature as the Nyquist(M ) condition [44]. Moreover, it is also
the orthogonality conditions found in the literature on lapped orthogonal transforms [31]. One can

also write down the expression for unitariness of a transmultiplexer in the frequency domain

1 Z ( zﬂk) Hy (“’%\;”k) = 6(i — j). (9)

Notice that H(2)H?(271) = I is equivalent to

l IW {H _1 } = z k(Z)H]'7k(Z_1) = 6(1 - ])7 (10)

kER( M)

where [| M] denotes the downsampling operator correponding to a sampling rate change of M.

The class of FIR unitary filter banks are very important because they can be completely
parameterized, are easy to implement and there are no questions of stability to be addressed.
Moreover, they can be used to construct orthonormal M-band wavelet bases. If the filters are FIR
then (by shifting the filters if necessary) H(z) is a polynomial in 27!, say of degree (K — 1). Then
the filters can be at most of length M K.

Fact 2 Every unitary polynomial matriz H(z) of (polynomial) degree (K — 1) can be uniquely

factored in the form ([18])
1

H(z)= ] [I-P+:"RV (11)

=K-1

where P; are projection matrices of rank 6; and Vy is a constant unilary matriz.

Every rank n projection matrix P can be written (non-uniquely) in the form wyw] + ...+ wuw!,

K-1
where w; are unit norm M-vectors that are mutually orthogonal. Therefore if L = Z 0;, one has
=1
the (non-unique) Householder factorization ([42])
1
H [I—UZ'UZ-T—}—ZIZ ] Vo. (12)

1=L—1
L is the McMillan degree of H(z) [44]. The unit M-vectors v; are known as Householder parameters,

and each is determined by (M —1) scalar parameters. Moreover the unitary matrix V; is determined

by (]\2/1) parameters. Therefore a polyphase matrix H(z) of polynomial degree (K —1) is completely



M
2
Factorization of polynomial matrices unitary on the unit circle is a direct consequence of classical

determined by + (M — 1)(L — 1) parameters where L is the McMillan degree of H(z).

results in network theory [1, 44].
Consider the filter hy of length N, M(K — 1) < N < MK. Then the degree (K — 1)
polynomial vector [ Hoo(z) Hoa(z) ... Hom-1(2) ] has the following characterization [44]:

Fact 3 Every polynomial vector of (polynomial) degree (K — 1) is uniquely determined by (K — 1)

projection matrices P;, i € {1,..., K — 1}, each of rank one (i.e., P; = v;vl' ) and the vector vy

) | e
. = [H [I— vvl + z_lvw;[” 00, (13)

. =1
Hop-1(2)
The McMillan degree of this vector polynomial is precisely (K —1). Therefore, the McMillan degree
of any one filter in an M-channel filter bank with filters of length M K is always K — 1. However,
the McMillan degree of H(z) could be L > K.
M

In summary, while H(z) is determined by *2

determined by (M — 1)+ (M — 1)(K — 1) = (M — 1)K parameters.

+ (M — 1)(K — 1) parameters, Ho(z) is

2.2 M-band Wavelets

Under some conditions there is a relationship between general PR filter banks and wavelet frames
(biorthogonal bases). In this paper we are interested only in the relationship between unitary filter
banks and wavelet tight frames (orthonormal bases) - however, the general relationship will be
tabulated at the end of this section. One approach to construct M-band wavelets would be to start
with a multiresolution analysis (MRA) as in the 2-band case ([6, 48, 29, 8]) with a scaling factor
of M. With this approach one first constructs the scaling filter and then the wavelet filters and

wavelets.

Definition 1 (Unitary Scaling Filter) A unitary scaling filter is a sequence ho(n) that satisfies

the following linear and quadratic constraints

> ho(k)ho(k+ M1y =6(1) > ho(k) = VM (14)
k

k



The quadratic condition is precisely that satisfied by the lowpass filter in a unitary filter bank
(see Eqn. 6). Therefore, if Hgx(z) denotes the polyphase components of Hy(z), with respect to
R(M), then from Eqn. 10

[| M]Ho(2)Ho(z7" )= > Hou(z)Hox(z™") = 1. (15)
kER(M)

The polyphase components of the scaling filter form a polynomial vector that is unitary on the unit
circle. Using this and Fact 3 all finite length unitary scaling filters can be parametrized [17, 52].
One can show that linear constraint (in Eqn. 14) is equivalent to the vector vy in Eqn. 13 having
all its entries 1/4/M. In other words every unitary scaling filter of length N = MK ( appending a

few zeros if necessary) can be parametrized as follows:

HQQ(Z) 1

Ho1(z 1 1 1
0’_1( ) = H [I — vl + 27wl | | L] (16)

: jw k=K-1 :

HO,M—l(Z) 1

Definition 2 (Unitary Wavelet Filters) Given a unitary scaling filter we define unitary wavelet
filters to be all possible choices of h;, 1t € {1,..., M — 1} such that the scaling filter and the wavelet
filters together are filters of a unitary filter bank.

For any given unitary scaling filter the corresponding wavelet filters are not unique even if they are
all of the same length N = M K. One way to generate wavelet filters is to unitarily complete vy in

Eqn. 16 or Eqn. 13 (i.e., append orthogonal columns to it) to give an orthogonal matrix Vy. This

can be done by a Gram-Schmidt process in LMQ_ 1 ways since we are adding exactly (M — 1)

orthogonal columns. This is the only process of construction of unitary wavelet filters that has been
discussed in the literature [17, 52] and is essentially equivalent to [23]. However, this overlooks the
crucial fact that there do exist other choices of wavelet filters with the same length N = M K. To
see this, let H(z) be the polyphase matrix corresponding to the scaling and (one choice of) wavelet
filters of length N = M K. Then from Fact 2 we have (K — 1) projection matrices and a constant

matrix Vg determining these filters. The linear constraint, Zho(k‘) = VM, is equivalent to the
k

L__ If the rank of any one projection matrix is greater than

first row of V having all its entries

g

one, the McMillan degree (L — 1) is greater than the polynomial degree (K — 1). However, by the
unitary completion process described one can only construct those H(z) that have McMillan degree

equal to polynomial degree (i.e., L = K'). In this paper we also introduce a state-space approach to



constructing the wavelet filters. This method is useful when unitary scaling filters are constructed
by techniques that do not rely on Eqn. 13 (as in the K-regular case).
Given the scaling and wavelet filters one constructs the scaling function which is the solution

to the following two-scale difference equation that involves only the scaling filter.
/ def
M E ho ’(,}0 J/It - k) = To’(/o( ) (17)

In order for a solution in L'(IR) to exist it is necessary that the linear constraint ), ho(k) = VM
is satisfied. In fact for N < oo this equation, the scaling recursion, always has solution in L*(IR)
[6, 28]. Moreover, Daubechies and Lagarias [9, 24] prove the existence of a unique solution to the
scaling recursion in L'(R)(L*(R). In any case, the unique solution can be constructed by the
following process due to Daubechies [6]. One starts with any integrable function and applies the
operator Tp to it recursively. This process converges weakly in L%(IR) to the scaling function. This
convergence can also be seen in the Fourier transform domain where one has the following infinite

product representation:

o= 11 [ ()

j=1
This convergence is uniform on compact subsets to the Fourier transform 1/30( ). Moreover, one can
also show that the scaling function is compactly supported in [O, = 1] by standard Paley-Wiener
arguments [6].
Given the scaling function, one defines the wavelets, one for each unitary wavelet filter as

follows:

\/_Zh YoMt —k) forie{l,...,M -1} (19)

A fundamental property of the jW—band wavelets so constructed is that their translates and dilates
by powers of M form a tight frame for L2(IR). A proof of this fact in the M-band case may be found
in [17]. The corresponding proof in the 2-band case is due to Lawton [28]. For ¢ € {0,..., M — 1}

define the following family of functions.
Gy r(t) = M2 (MIt - k). (20)

Fact 4 (M-band Tight Frames Theorem) The function {¢;;x} form an M-band wavelet tight
frame for L*(R). That is, for all f(t) € L*(IR)

M-1 oo

f(t) = Z<f7?/)0,0,k( )) %0,0,k(t) + ZZ Z (f, 0i (1)) Pi 5 k(1) (21a)

k i=1 j=1k=—00



M-1 oo

= ) Z (f, i3, (1)) Pi (1) (21b)

i=1 j=—00 k=—co
Tight frames are a generalization of orthonormal bases. The concept of frames is originally due to
Duffin and Schaeffer [11] and an excellent treatise on frames is [50]. More recently the theory of
frames in the wavelet context can be found in [7]. In finite dimensions given a non-minimal set
of vectors one can always throw out some of them to get a basis. In infinite dimensions, given a
complete but non-minimal (redundant) set of functions one cannot always throw out some of them
and obtain a basis (minimal set). This is precisely why one does not talk about frames in finite
dimensions. Frames are generalizations of biorthogonal bases and tight frames are generalizations of
orthogonal bases, both obtained by giving up minimality. Though the notion of frames is introduced
using the concept of frame bounds, for our purposes it suffices to know that a tight frame is any
set of distinguished functions such that any function f(¢) can be expressed as a linear combination
of these functions with weights given by the inner products of f(¢) with the corresponding function
as in Eqn. 21.

In summary given a unitary scaling filter, one constructs an unique unitary scaling function,
(M — 1) wavelet filters and associated wavelet functions which give rise to a wavelet tight frame.
None of the conditions so far (unitariness of the scaling filter, etc.) is sufficient to ensure that the
wavelet basis function {¢; ;x} form an orthonormal system. Section 6 gives necessary and sufficient
conditions on the scaling filter so that they may give rise to an orthonormal basis. Assume for the
moment that the scaling function and its integer translates and the wavelets and their integer

translates are orthonormal. Then from Eqn. 17 and Eqn. 19 it follows that
§(i — )6(1) = /@/}Z( Yobi(t — 1) dit = Zh hy(n + M), (22)

In other words, orthonormality of the wavelet basis implies the unitariness of the filter bank asso-
ciated with the scaling and wavelet filters. However, the converse is not true.
M-band wavelets also give rise to a multiresolution analysis for L*(IR). If we define the spaces

W; ; = Span {1; ; 1} then it can be shown that ([17])

{0} C...Wo_1 C WooCWos...C L*(R) (23)
and
M-1
Wojr1 = 6P Wi (24)
=0

10



3 Regularity of M-band Wavelets

Definition 3 (K-Regular Scaling Filter) An M -band unitary scaling filter is said to be K-
regular if it has a polynomial factor of the form PX(z), with P(2) = (14271 4+ ... + z_(M_l))/ﬂ/[

for mazimal possible K. That is,

K
14zt 4 . 421 1 M -
Ho(z) = M Q(z) = MK MK-1

If a scaling filter is K-regular, Ho(z) and its first (K — 1) derivatives vanish for z = e?™*/M . ¢

{1,2,...,M — 1}. This is equivalent to a set of (M — 1)(/ — 1) complex linear constraints on the
scaling filter. Since the scaling filter is assumed to have real coefficients the zeros occur in complex
conjugate pairs. Hence the set of (M — 1)(K — 1) complex constraints reduce to (M — 1)(K — 1)
real linear constraints on the scaling filter.

It also follows from Definition 3 that every unitary scaling filter is 1-regular. Indeed from
the unitariness condition in the Fourier domain (see Eqn. 9), it is clear that Hy(z) vanishes for
z = 2mRIM ¢ {1,2,...,M — 1}. The scaling function and wavelets associated with K-regular
scaling filters will be called K-regular scaling function and wavelets respectively.

K -regularity has a number of equivalent characterizations, each of which shows how regularity
plays an important role in applications. K-regularity was used by Daubechies in the 2-band case
in order to ensure that the scaling filter gave rise to a 2-band ON wavelet basis (not a WTF).
Moreover, she also showed that the regularity of the scaling function (measured by the number of
continuous derivatives it has - or equivalently its Holder exponent) increases linearly with the K,
the regularity of the scaling filter. If the scaling function is K times differentiable it s necessary
that the scaling filter is (K — 1)-regular. K-regularity is equivalent to saying that all polynomials
of degree (K — 1) are contained in Wy ; for all j. This coupled with the compact support of the
scaling functions (and wavelets) implies that K-regular scaling functions can be used to capture
local polynomial behavior. This feature of K-regular scaling filters is particularly useful in image
processing applications [51]. K-regularity is also useful in numerical analysis applications [26],
where one tries to approximate operators in wavelet bases. In these applications the regularity K
of the scaling filter is a measure of the approximation order. From a purely signal processing point
of view K -regularity says that the magnitude squared Fourier transform of the scaling filter is flat
of order 2K at zero frequency. In fact, the explicit formulas in Section 4 correspond to unitary

scaling filters with a maximally flat frequency response at the origin.

11



The moments of h; and ¢;(t), and the partial moments of hg are defined respectively as

follows:

u(i,k):/t%(t)dt ,m(i,k) =Y nFhi(n)  and n(k, )= (Mn+ 1) ho(Mn+1), (26)

n

M-1

so that m(0,k) = E n(k,1).
=0

Theorem 1 (Equivalent Characterizations of K-regularity) A unitary scaling filter is K-

regular iff
1. The frequency response of the scaling filter has a zero of order K at the M roots of unity.
2. The partial moments up lo order K of the scaling filter are equal.
3. The magnitude-squared frequency response of the scaling filter is flat of order 2K at w = 0.

4. All polynomial sequences up to degree (I — 1) can be expressed as a linear combination of

M -shifts of the scaling filter.
5. All moments up to order (K — 1) of the wavelet filters vanish.
6. All moments up to order (K — 1) of the wavelets vanish.

7. Polynomials of degree (I — 1) or less are contained in Wy ; for all j.

Proof: From Eqn. 25 )
MoK in(Mw/2)\*
Holw) — e—t(M-1)Kw/2 (Sm( )
o(w) =€ sin(w/2) Q).
and therefore for small w, Hy (w + %) =0Wr), ke {1,2,...,M — 1}, implying that the deriva-
tives up to order (K — 1) vanish at the roots of unity. Equivalently for k¥ € {1,...,M — 1},
ie{0,... . K 1}

0= [dd Z,Ho(w)] = 3" (=) ho(n)e™* 5"
w w=2rk/M n

M-1
_227rkl 2nkl
€ M = 772'716 M = O

M-1
> [Z ho(Mn + 1) (Mn +1)*
=0

=
n
= 1;1 is a constant independent of /.

12



Because of the unitariness of hg one also has for small w

M-1
| Ho(w )| Y Z w+ 27k

Hi
OM)

= M — O(w?F).

k

It follows immediately that for & < K —1, one can express n”* as a linear combination of ho(MI+n):

nf = Zauho(ﬂll + n).
{

As a consequence of this representation, the moments of the wavelet filters vanish up to order

(K — 1) since
k)=">"nFhi(n) Za”[Zh Yho(M1+n)| =0.

Now this implies that u(é, k) = 0 since (from Eqn. 19) they are related to m(i, k) as
1 &k
k)= ——~ | m(e, )p(0,k = 7).
uli, k) M,ﬂ_;(j) (i, 5)u(0,k — j)
Since the wavelets are compactly supported, the form a basis for L (IR) and therefore for k €

{0,..., K — 1},

o0 (o)

M-1
tk:Z<tka¢0,J,k( >¢0Jk )+ Z Z Z (fs i 6(1)) i 5 k(1)
k

= =3 <tk7 ¢0,J,k(t)> Yo,,k(1)-
P

Therefore polynomials of degree (K — 1) can be effectively expressed as linear combinations of
{%o,; 1} for fixed j (one might loosely say W ; contains polynomials of degree (K —1), even though
polynomials are not in L*(IR) D Wo ;). O

3.1 K-regularity and Regularity of Scaling Functions/Wavelets

The precise relationship between K-regularity of the scaling filter and the smoothess of the scaling
functions and wavelets is unknown even in the 2-band case. However, using the techniques in [6] it
is easy to show that if @(w) is bounded above by an appropriate constant, then the regularity of

the scaling function can be estimated. It can be shown that (see [39] for details)
‘ﬁo(w)‘ < O+ |w|]loEm sup, Q(w)—K-5 (27)

Therefore if sup,, Q(w) < LMK_m_%, then 1g(¢) associated with a K-regular scaling filter is m times
differentiable. However, since @ (w)__o, = VM, () can be at most (K — 2) times differentiable.

The sufficient condition for ¥o(¢) to be m times differentiable is precisely given below [9]:

13



Fact 5 (Daubechies) If Q(z) is such that

then 1o(t) is m times continuously differentiable.

The wavelets, being finite linear combination of translates of the scaling function, are as regular as
the scaling function. In particular if sup, Q(w) < ME=1 then the scaling function and wavelets
are continuous.

Remark: Regularity as defined in this paper is a property of the scaling filter and not of the
scaling function. It is easy to construct examples of of unitary scaling filters with different orders of
regularity such that the scaling function corresponding to the less regular scaling filter is smoother

than the scaling function corresponding to the more regular scaling filter[19].

4 Formula for Regular M-band Scaling Filters

We now describe the construction of K-regular M-band scaling filters of minimal length. We have
seen that K -regularity is equivalent to (M —1)(K —1) linear constraints on hg, and that an arbitrary
M-band scaling filter of length N = M K is determined by (M —1)(K —1) parameters. By imposing
the regularity constraints on the general parametrization of unitary scaling filters, one expects to
obtain K -regular scaling filters. However, there is no analytical method to solve the resultant set of
(M — 1)(K — 1) nonlinear equations (in the parameters) and until now numerical techniques have
been the answer. Here we provide an explicit solution to the problem. We postulate the form of
the scaling filter (Eqn. 25) and try to solve for the polynomial @(z) such that Hy(z) is a unitary
scaling filter. This approach is particularly simple because the unitariness conditions are linear in
the autocorrelation of Q(z).

With N = MK, Q(z) is seen from Eqn. 25 to be a polynomial of degree (K — 1) in 271.
With this choice 2571Q(2)Q(271) is a polynomial of degree (2K — 2) in z. Let this polynomial be
expanded in powers of (z — 1)

2K -2

AQAQ(ET = Y p(i)(z 1) (29)

=0
Therefore, if we can solve for the p(¢),7 € {0,...,2K — 2} that give rise to a unitary scaling filter,
and the resulting sequence is positive definite, Q(z) can be obtained by spectral factorization. Thus
solving for K-regular unitary scaling filters is equivalent to solving for the finite length positive

definite sequence p(i) under the unitariness constraint.

14



The unitariness condition [| M] [Ho(z)Ho(z71)] = 1 is linear in p(7). Since Ho(z) is of length
MK, this is equivalent to a set of K linear equations for the K unknowns p(¢). Fortunately,
these linear equations always have a unique solution which is positive definite, thus giving rise to

a K-regular hg. In the following we give two analytical approaches to obtain the coefficients p(¢).

4.1 Explicit Formula based on Unitariness

This approach has the advantage that a clean formula for the p(7) can be obtained. The essential
idea is to take the autocorrelation on both sides of Eqn. 25 and write it in a convenient form,
following which both sides are downsampled by M. By the unitariness assumption (Eqn. 10) the
dependence of p(i) on Ho(z)Ho(271) disappears, giving a set of linear equations for p(¢) which can
be analytically solved.

ZMK . 1 2K -2 5
[ZM . 1]2]( HO(Z)HO(Z ) M?Ix Z p [ B 1]2]& 7 (3()&)
1=0 ~

K 2K -2

_21]21( =l M { WK Z p(i ]ZIx Z}- (30Db)

E

By expanding both sides as Taylor series about z = oo, the coefficient of z~! in the expansion of
K 2K -2

i must be equal to the coefficient of 2=M! of the expansion of 1K Z p(7)

for all [ > 0. Since for m < n

z I S fl4+m -1\
[z—l]n_z [1—2 Z( n—1 )Z ’

=0

~
“~

[2’ B 1]2]&"—2’

this implies that for all [ > 0
I+K-1\ 1 ”fQ M1 (0
2K —1 )~ MK & \am —i—1 )P

The above equation can be explicitly solved for the p(7)’s (see [39]) to give

2K —2—1 - .
pi)= (2K —1-4) Y (21‘ e 1) (—1)Biyy i€ d{0,....2K -2},  (31)

(=0

where
K-1

B — k*M?).
'= 2B (2K —1)! H

Example 1[Computation of Q(z)Q(z")]
M
K=2 B = i(ﬂ — M?). TIn this case (from Eqn. 31) p(0) = M, p(1) = M and p(2) =

15



tM(1— M?), and therefore

Q()Q("Y) = Mz {1 Fe=1)+ éu _MY)(s - 1)2}

M
= Sl (e (- M?)z}
M
K=3 B = H-(1—1/\42)(12—4M?) and p(0) = M, p(1) = 2M, p(2) = +(5—M?%),p(3) = +(1-M?)
k=2
and p(4) = (1 — 5M? + 4M*). Therefore Q(2)Q(z71) = Z apz* where
k=-2
/
a3 =a_g = 3(1 —5M? +4M*Y),
M 9 4
ap =a_q = ?(26 —10M* - 16M*%) and

M
ag = y(66 +30M* + 24M?).

For small M and N a similar formula for p(¢) may be obtained as follows. If we replace z by

ze2™/M in Eqn. 30, sum over k € {0,...,M — 1}, and use Eqn. 9 we get

SMK 1 2K72 M-1 ser2mk/M
- = - p(1) — (32a)
[2M — 1]21\ M2KE ; kz:% [zet2mk/M _ 1]21\
SR+ SMK-1 2K-2 M-1 ev2mk/M
= M = N7 (i) _ (32b)
[ZM _ 1]2]\ 22:; ]CZ:;) I:ZGZQWIC/M _ 1] 2K —1
A42I{+1 dz 2—1 2K MK -1
N il . - 32
= r) 7! dz [ZM — 1] § o (32¢)

The last step follows by taking the residues on both sides at z = 1. For arbitrary M and K, the

first few values of p(7) from the above formula are given below:

1
p(0)= M, p(1)=M(K —1), p2)= 5 {-M°K +6K*M —1TKM +12M}, elc.

4.2 Formula based on Maximal Flatness Condition

One of the consequences of unitariness for any Ho(z) satisfying Eqn. 25 is that |Ho(w)|* is flat of
order 2K at zero frequency. Conversely, the mazimal flatness property in conjunction with Eqn. 25
ensures that unitariness is satisfied. Therefore, by imposing maximal flatness of Hy(2) in Eqn. 25
one obtains a formula for the p(i)’s which gives minimal length K-regular scaling filters. This

technique has been used by Vaidyanathan to derive 2-band regular unitary scaling filters [44]. !

'One of the authors has also obtained a purely algebraic formulae for the impulse responses of the filters with
regularity of order K = 2,3,4 in [21] building upon work of Pollen [34]. These formulae yield closed form algebraic
expressions for the filter taps; in the K = 4 case this is a new result even for M = 2.
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It will be useful to move between two variables in the frequency representation of our filters:
w and z = Rez = cosw. Zero frequency (w = 0) then corresponds to z = 1 with @ € [-1,+41) for

w € [0,2T).

The M-band Haar scaling filter has impulse response \/Lﬁ(l, 1,1, ..., 1) so that its its mag-
nitude squared frequency response is given by
— —o(M— 2 M-1
T4e ™ 4. 4 e M- 1
E(w) i e M + kz:; 2(M — k) coskw
1 M-1
= S M+ Y 2AM - k)Ti(z)
M
k=1
T ), (33)

where Ti(z) is the E*" Chebyshev polynomial. For example, when M = 3, we have

E(w) = (1“%)2 and &(x) = (12%)2.

Now let P(z) = Q(2)Q(z71) and let A(z) = Ho(z)Ho(z7!). Then

A(z) = E8(2)P(2). (34)
The flatness condition implies that
(i) . M 1=20
A (x)m_{ 0 i=1,2,...,K—1; (35)

We now need to determine P(z) = [Q(w)|* from which we can obtain Q(w). P(z) can be expanded

in a Taylor series about z = 1. Now

POEL= = () Aw)le@) ]

r=1

Il
[+
—
-3
p—
| — |
3/\
=¥
&|9~
N—
T
—
)
p—
—_

(36)

Il
<
| —— |
TN
=W
&|&
—
ca
—~~
&
=
|
>
| S
]
I
JaR

and therefore

Pl) = M?j {% (%)n [5(95)]—1"}95:1 (@—1)" . (37)

Example 2[K-regular 3-band Case] In this case for K-regularity

E(x) = (12290)2 and A(z) = (1—;236)2](77(@.
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From Eqn. 37 it can be shown that (see [22])

PO (1)yey = [(%)n [5(35)]—1"]9::1 = (-1)" % (%)n

K-1 - . n
= Plz)=3 Z% (mﬂiffz 1) (;) (z— 1)~

For arbitrary M, and small values of K one can evaluate P(z) explicitly. For example when

K=2, Plx)=M+iM(1-M?*)(z-1).

4.3 Spectral Factorization

K-1
If 2~ (K=1) Z p(i)(z—1)" has for coefficients (of powers of z) a positive definite sequence, then Q(z)

can be obtaZi:nOed by spectral factorization. Positive definiteness of this sequence can be inferred from
the general Lagrange interpolation arguments in [40]. There is a degree of freedom in the choice of
()(z) depending on which spectral factors are chosen. One may choose a minimum phase, maximum
phase, or mixed solution. For each such choice of (z) one has a corresponding K-regular unitary
scaling filter. The minimal phase solutions for K-regular unitary scaling filters for M = 3 and
M = 4 are given in Table 1. For K = 2, the minimal phase and maximal phase solutions (there

are only two solutions in this case) for arbitrary M is given by the following formula:

2l 4 (M1 ?
Ho(z) = [” -t ] (a(0) + 4(1)=7),

VM [2M?% 41 V1 [2M? + 1
q(0) = 5 [1:& T—I_ and ¢(1) = 3 1F T—I—

Figs. 4-6 show the scaling functions, their Fourier transform, and the Fourier transform of

the scaling filter, for 3-band, 4-band and 5-band case for K = 2,3,4 and 5. Notice that the shape

where

of an M-band K-regular scaling function is largely determined by its regularity, K. Notice also
that the Fourier transforms of the scaling functions vanish at multiples of 27, and that Ho(w) does
s

not vanish for |w| < 77 (in fact the first zero is at 2%). This fact implies (see Section 6) that all

K-regular minimal length scaling filters give rise to orthonormal wavelet bases.

5 Construction of Regular Wavelet Filters

Given a K -regular unitary scaling filter there seems to be no systematic procedure to generate all

possible wavelet filters with the same length. In the 2-band case, the wavelet filter is uniquely
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Table 1: K-Regular M-band Minimal Length Unitary Scaling Filters

ho(n)

ho(n)

M=3

ho(n)

0.33838609728386
0.53083618701374
0.72328627674361
0.23896417190576
0.04651408217589
-0.14593600755399

WO 00 -1 O T WK~ OCUR W — O3

0.07550761756143
0.23086070821719
0.51304535032014
0.59269796491023
0.50343156427108
0.07274582768779
-0.11559776131042
-0.21804646388388
0.00692356260197
0.02913316570545
0.07286749987661
-0.02130382202714
-0.00439071767705
-0.01176303929137
0.00593935060686

0.20313514584456
0.42315033910807
0.70731556228155
0.44622537783130
0.19864508103414
-0.17723527558292
-0.07201025448623
-0.04444515095259
0.04726998249100

—_ =

0.12340698195349
0.31789563892953
0.62131686335095
0.56142607070711
0.36890783202512
-0.08625807908307
-0.12777980080646
-0.13375920464072
0.05875903404127
0.02029701733548
0.02430600287569
-0.01646754911953

K=6

—
S O =IO W N~ O3

e e e N e =
O O O N =

0.04641991275121
0.16394657299264
0.40667150052122
0.56561987503637
0.58223034773984
0.24390438994869
-0.03360979671399
-0.25350741685252
-0.08274027041541
-0.00156787261030
0.11605073148585
0.00346097586136
0.00040170813801
-0.03676774192987
0.00823961325941
0.00008644258833
0.00539777575368
-0.00218593998563

ho(n)

ho(n)

ho(n)

0.26978904939721
0.39478904939721
0.51978904939721
0.64478904939721
0.23021095060279
0.10521095060279
-0.01978904939721
-0.14478904939721

M=3
K =2
K=5
M=4
K =2
K=3

= O WO =IO Ok WK H O~ O Ok W — O

—_ =

0.15083145463571
0.28192600003506
0.44427054543441
0.63786509083375
0.41021527232597
0.27302618152727
0.07333709072858
-0.18885200007012
-0.06104672696168
-0.05495218156233
-0.01760763616298
0.05098690923636

M=3
K=3
K=4
M=4
K=4

WO 0~ R WNRER OIS OWwOo-1TO0 Ok WK R OO0 1O O N — O3S

— = = e e
Sk W N — O

0.08571412050958
0.19313899295294
0.34917971394336
0.56164878348085
0.49550221952707
0.41456599638527
0.21903222760227
-0.11453658682193
-0.09529322382982
-0.13069539487629
-0.08275002028156
0.07198039995437
0.01407688379317
0.02299040553808
0.01453807873593
-0.01909259661330

K =5

—
S O W N~ O3

— = =
B O N —

U

—_ = =
1 S O

—_
o}

—_
©

0.04916991424487
0.12913015554835
0.26140970524347
0.46212341604513
0.50348969444395
0.49742757908607
0.35826639102137
0.02935921939015
-0.06205420421862
-0.17204166252712
-0.16539775306492
0.03112914045751
0.01081024188105
0.05413053935774
0.05420808584699
-0.02997902951088
-0.00141564635125
-0.00864661146505
-0.00848642904691
0.00736725361809
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Figure 4: K-regular 3-band Scaling Functions: (a) ¢o(¢) for K = 2 (b) ¢o(t) for K = 3 (c) vo(1)
for K =4 (d) ¢o(t) for K =5 (e) ¢o(w) for K = 2 through K = 5 with maximal flatness of the
Fourier transform increasing with K (f) Ho(w) for K = 2 through K =5

20



05|
10

0
€)

20

Figure 5: K-regular 4-band Scaling Functions: (a) ¢o(¢) for K = 2 (b) ¢o(t) for K = 3 (c) vo(1)
for K =4 (d) ¢o(t) for K =5 (e) ¢o(w) for K = 2 through K = 5 with maximal flatness of the
Fourier transform increasing with K (f) Ho(w) for K = 2 through K =5
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Figure 6: K-regular 5-band Scaling Functions: (a) ¢o(¢) for K = 2 (b) ¢o(t) for K = 3 (c) vo(t)
for K =4 (d) ¢o(t) for K =5 (e) ¢o(w) for K = 2 through K = 5 with maximal flatness of the
Fourier transform increasing with K (f) Ho(w) for K = 2 through K =5
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given (modulo translation) by the scaling filter by the following well-known formula: hi(n) =
(=1)"ho(N — 1 — n), where N is the length of the scaling filter. However, in the M-band case
there is a certain degree of freedom in the choice of the wavelet filters. As described in Section 2
all wavelet filters such that the McMillan degree of H(z) is equal to the McMillan degree of the
unitary scaling filter can be obtained from Eqn. 12 by choosing Vy. This method for constructing
wavelet filters and wavelets has been suggested in [17, 52, 23]. The only restriction on Vj is that it
be orthogonal and that the first row is [ 1/VM ... 1/VM ] Therefore, two potential choices
for Vy are the Type 2 Discrete-Cosine-Transform (DCT) matrix [35] and the DFT matrix. With the
DFT matrix as Vp, the wavelet filters have complex-valued coefficients and therefore the wavelet
are also complex-valued. Since there is a degree of freedom in the choice of wavelet filters, one
expects to design wavelet filters suited for a given application. In the following a state-space
characterization of wavelet tight frames is given and a formula for wavelet filters that depends on

an arbitrary orthogonal matrix ® is given.

5.1 State-Space Approach to M-band Wavelets

Given any FIR unitary H(z) the well-known Kalman-Yakubovich Lemma of linear-systems theory
(for a treatment relevant to our discussion see [10]) ensures the existence of matrices A, B, C' and

D (of sizes L x L, L x M, M x L and M x M respectively) such that

T
A B A B
_ _ -1 _
H(z)=C(2{ - A)"" B+ D andlc D] lc D]_I (38)
The matrices A,B, C and D constitute the state-space description of H(2) in a special basis where
[ é D ] is unitary. Using this result we obtain a new characterization of wavelet tight frames.

Theorem 2 Let Y be a constant, (L + M) x (L + M) unitary matriz with an L x L nilpotent

submatriz (i.e., a matriz with all eigenvalues zero). Without loss of generality (by permutation)

Y:lA B] (39)

assume Y s of the form

C D

where A is nilpotent (i.e., A* = 0 for some i). Furthermore, for some row [ c d ] of [ ¢ D ]
let

(I-A)'Brd=| 77 ] (40)

F
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Then there exists a compactly supported wavelet tight frame with 1;(t) supported in {0, %], such
that [A, B, c,d] is a realization of the polyphase representation of the scaling filter

Ho(2)=c¢(21 — A)'B+d (41)

Conversely, given an arbilrary wavelel tight frame with support in [O, %], there exisls a unitary

Y with the above properties.

We now describe the construction of K-regular wavelet filters using a state-space approach.
The basic idea is to construct the state-space wavelet matrix. Notice that the scaling filter deter-
mines part of the state space description matrix. Let [A,B, C’, lA)] be a minimal realization of the
polyphase representation of the scaling filter, i.e., of H(z) = [ Hoo(z) Hoa(z) ... Hom-1(2) ] .
Now for any choice of wavelet filters such that H(z) has the same McMillan degree L — 1 =

K — 1, there exists a unitary state-space wavelet matrix ¥ which may be partitioned as [ Yl ] =
2

A B

Cy1 Dy |. The polyphase component vector of Hy(z) the scaling filter is given by
Cy Dy

Ci(zI - A B+ Dy =C(:I-A)'B+D (42)
and therefore there exists an invertible transformation 7" such that

= N N 4
Ci Dy cT1 D (43)

lA B ] [TAT‘l TB]
The transformation 7" will be called the balancing transformation (because the particular state-
space realization is known as a balanced realization [32, 33]). Given any realization of the scaling
filter and its balancing transformation we can obtain the state-space wavelet matrix for all but its
last (M — 1) rows.
The balancing transform can be obtained from the controllability matrix of eny minimal
realization of H(z). The controllability matrix for any state-space realization of the system H(z)

is defined
W. =Y A*BBT(AMT. (44)
k

W, is a symmetric matrix and can be obtained by solving the the Lyapunov equations ([25])

W, = AW AT + BBT. (45)
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Moreover if H(z) is unitary on the unit circle then W, also satisfies the following equations ([25])
CW.CT+ DDT =1 (46a)
CW.AT + DBT =0 (46b)
By the unitariness of Y, Y;Y;! = I and T must be chosen such that this equation is satisfied. This
implies that

AAT v BBT =1, Act +BDY =0; c, ¢l +D,DF =1. (47)

Theorem 3 Let [121, B, ,ﬁ] be a minimal realization of f{(z) Let W, be the controllability matriz

of H(2). Then T = W,

[N

is the balancing transformation for f{(z)

Proof: Eqn. 47 follows from Eqn. 43, Eqn. 45 and Eqn. 46:

AAT + BBT = TAT YT YHY'ATT + TBBTTT (48)
1., o _1 _1 .. _1
= W.2 AW ATW. 2 + W, 2BBTW,?
_1 ~ 1. _1
= W7 We— BBT| WS+ WP BBTW
= I
1. _1 _1 ~ _1 .
ACT + BDT = wozAw. ) Y(w. )¢t + w2 BDT (49)
L ~ ~ A
= W [Aw.CT 4+ BDT]) =0
~ _1 ~ _1 ~A
c.ct+ oot = cw.H) W ewe )y ) + DDT (50)

It is interesting to note that though in principle T" could have depended on any of the four state-
space matrices that describe the scaling filter, it really depended only upon the state and input

matrices (A and B respectively).

5.1.1 SVD completion of Y;

We now describe one way to construct the wavelet filters in this state-space setting by using the

singular-value-decomposition (SVD). Given right unitary Y7, one has to find Y3 such that

IR o
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Define the symmetric positive definite matrix X = YoY,! so that X = I — Y,Y{I. Let X = UXUT
be the SVD of X. ¥ is a diagonal matrix of positive entries. Then a general solution for Y5 is given
by Y, = U(E)%G) where © is an arbitrary M — 1 X M — 1 constant unitary matrix. This follows
since YoVl = U(E)%GGT(E)%UT = X. The number of degrees of freedom in the choice of the

wavelet filters is (MQ_ 1) .

6 Necessary and Sufficient Conditions For Orthonormality

When is a WTEF an orthonormal basis? Stated differently, what are the conditions on the scaling
filter such that the WTF constructed from it (as in Section 2) forms an ON basis? It is relatively
easy to see that if the scaling function and its integer translates form an orthonormal system, then

the WTF is an ON basis. First notice that
/ G —k)dt = 3 hi(m)hy(n) [M / Go( ML — m)do( Mt — n — MEk) dt
R o R

Z hz(n + ka)h]‘(n)

8(i = 7)8(k). (52)

and therefore W; o L W, for ¢« # 5. Moreover W; is equipped with ON basis. For any J one
readily sees that W; ; L W; 5, for ¢ # j and hence the result follows.

When M = 2, Cohen [5] and Lawton [27] have independently obtained characterizations of
the scaling filter such that the scaling function and its translates form an orthonormal system. We

now extend these results to the M-band case. Let
a(n) = /R Yool — n) d. (53)
By taking Fourier transforms on both sides, a(n) = §(n) iff

‘2 = 1. (54)

Z ‘@Bo(w + 27k)
k

Definition 4 A compact set I' is congruent to [—7, 7|(mod27), if the measure of I' is 27 and for

every point w € [—7, ], there exists an n € Z such that w4+ 27n € T'.

Theorem 4 The following conditions are equivalent:

1. vo(t) and its translates are orthonormal (i.e a(n) = §(n)).
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2. There exists I' congruent to [—m, 7|, containing a neighborhood of zero such for w € T,
Yo(w) > C >0 (55)

3. There exists I' (as in 2) such that forw € T,

1 w
 H (=
N (Mf

. a(n) = 8(n) is the unique solution of the equation

inf inf
7>0wel’

)‘:B>O. (56)

BN

a(k) =Y a(Mk + n) [Z ho(m)ho(n + m)] . (57)

’I’L

5. A(w) =1 is the unique solution of the equation

w+ 27k | w21k
H; (T) A (T) . (58)

6. There is no non-trivial cycle 11 of the map w — Mw(mod 27), such that Ho(w) = 1, for all

1 M-1

k=0

w e Il

Proof: 1 implies 2 by exactly the same arguments as the 2-band case in [8, p. 182]. 2 implies 1

follows by using the arguments in [8, p. 184] in conjunction with Eqn. 9. 4 and 5 are equivalent via

the Fourier transform. 2 implies 3 because for any j, and w € I', from Eqn. 55 (since ‘HO ‘ <1
and ¢o(w) < 1)
o) i ) - 2
- = — >C >0.
7 )| = Wom Gl = 3
3 implies 2 and can be seen as follows:
| Ho(w) = VM| = | Ho(w) — Ho(0)] < Z Jho(n)| [e™" — 1] < Alw|
for some A > 0. Hence for w € I' and k sufficiently large, \/LMHO (ﬁ)‘ >1-A rﬁ > e |ﬁ|
and therefore
7. k-1 =
/(w)‘ > B H[l—ALM].]
Ji=k
| w
> B e I > C. (59)
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4 implies 1 since from Eqn. 17 a(n) = / Yo(t)ho(t+n)dt = Z a(Mk+n) [Z ho(m)ho(n 4+ m)| ,
R m

n

and by hypothesis a(n) = é(n) is the only solution.

One proves that 1 implies 5 by contradiction. Let {¢o(t — k)} be an ON system and let there
exist A(w) # 1 that satisfies Eqn. 58. We may assume A(w) > 0 by adding an appropriate constant
to it if necessary (Eqn. 58 will still be satisfied). Define

Aw)
A(Mw)’

Hy(w) = Ho(w)

Then H/(w) is also a unitary scaling filter since from Eqn. 58

4+ 27k
H! “7)
0( M

Let ¥{(t) be the corresponding scaling function (possibly infinitely supported).

2
=1

1 M-1

M k=0

it = 1T [ 770 (577)] = duterry/ae)

Since the zero sets of Hy and H) coincide (A(w) > 0), if 4(w) is bounded below on a compact set

I' then so is ﬁol(w). Therefore, {¢o'(¢t — k)} is also an orthonormal system and

1=y

k

Q%(w + 27rk)‘2

= 3 |dolw + zﬂk)f JA(w) = 1. (60)
k

Therefore A(w) = 1 (recall A(w) it is periodic), a contradiction. Equivalence of 5 and 6 can be
proved based on ideas for the 2-band case originally developed by Cohen in his PhD thesis [4]. For
a simple argument in the AM-band case see [14]). O
The characterizations of orthonormality may be used to show that a particular wavelet basis con-
structed is orthonormal. Of all the characterizations of orthonormality, Eqn. 57 is the easiest to
verify. It says that given an unitary scaling filter, the corresponding wavelet basis is ON iff the Law-
ton matriz (after Lawton who constructed it for the 2-band case [27]) defined below has a unique
eigenvector of eigenvalue 1. If r(n) is the autocorrelation sequence of hg(n) (of length N = MK),

Eqn. 57 becomes

a(n) = Z r(Da(Mn —1) (61)

l
The Lawton matrix ) is defined by

o r(M(i—1))forj=1
“i=) r(M@GE-D)+j-D)+r(M@i-1)—j+1)for2<j<N
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T
Ifv= [ a(0) a(l)... a(N —2) ] , Eqn. 61 becomes Qv = v. In general the () matrix will be of

the form
1 (1) +r(-1) r(N—-2)4+r(-N+2)
0 r(M+1)+r(M-1) o r(M+N-2)+r(M - N +2)
0 r(M(N-2)+1)+r(M(N-2)-1) ... 7((M4+1)(N-=2))+r((M—-1)(N-2))
v =[1,0,...,0]7 is always an eigenvector of () with eigenvalue 1. If there exists any other eigen-

vector for @), then {¢(t — k)} do not give rise to an orthonormal system (and the WTF may not
be an ON basis).

There is a well-known sufficient condition for orthonormality in the 2-band case due to Mallat
[29] which is easy to verify and stated in terms of Hg(w). This condition can be generalized
immediately to the M-band case and we have the following corollary of Theorem 4, a proof of
which may be found in [14]. The essential idea is that in this case one can show ¢(w) does not

vanish on the compact set I' = [—7, 7].

Corollary 1 If Hy(w) does not vanish for |w| < {7, then the wavelet basis generated from it is

orthonormal.

Remark: For the K -regular, minimal length A-band case, {1o(¢t — k)} is always an orthonormal
system and hence the wavelet bases constructed in this paper are always orthonormal. Indeed in
yis

Figs. 4-6 it is clear that Ho(w) has no zero for |w| < 17 and orthonormality of the wavelet basis is

immediately inferred.

7 Conclusion

This paper generalizes the minimal length K-regular 2-band wavelets of Daubechies to the M-band
case. Several equivalent characterizations of K-regularity are given and their significance explained.
Using two different approaches, an explicit formula for the magnitude-squared response of the
unitary scaling filter that gives rise to minimal length K-regular M-band wavelets are obtained.
By spectral factorization we obtain formulas for the scaling filter coeflicients themselves. Wavelet
bases are characterized using state-spaces techniques and a state-space characterization of wavelet
filters associated with any given scaling filter is obtained. Both the state-space approach and the
factorization based approach [17, 52, 23] may be used to design regular M-band wavelet filters.

Wavelet bases constructed from unitary scaling filters are in general tight frames. Necessary and
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sufficient conditions for an M-band wavelet tight frame to be orthonormal are also given. All the

minimal length, K-regular, M-band wavelet bases constructed are orthonormal.
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