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ABSTRACT

A novel approach for noise reduction is presented. Similar to Donoho, we employ thresholding in some
wavelet transform domain but use a nondecimated and consequently redundant wavelet transform instead of the
usual orthogonal one. Another difference is the shift invariance as opposed to the traditional orthogonal wavelet
transform. We show that this new approach can be interpreted as a repeated application of Donoho’s original
method. The main feature is, however, a dramatically improved noise reduction compared to Donoho’s approach,
both in terms of the 5 error and visually, for a large class of signals. This is shown by theoretical and experimental
results, including synthetic aperture radar (SAR) images.
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1 INTRODUCTION

Recently a novel approach for noise reduction due to Donoho and Johnstone!?!3 has been established. It
employs thresholding in the wavelet domain and can be shown to be asymptotically near optimal for a wide class
of signals corrupted by additive white Gaussian noise (AWGN). Moreover, the same method can be used in a
wide variety of related problems such as linear inverse problems,'? data compression and statistical estimation.!?

Donoho’s method for noise reduction has been proved to work well for 1D medical'® and geophysical signals3®
as well as for 2D geophysical®® and synthetic aperture radar (SAR) signals'®2* where the AWGN assumption
is a viable approximation to the real noise properties.! Surprisingly, the method can be successfully applied
even in cases where the error is not AWGN. For example it is possible to remove blocking artifacts in images of
JPEG decoded signals by applying wavelet thresholding, where the error is neither white nor Gaussian.!® The
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interesting feature in all these applications is that the resulting signals are essentially noise free with little loss of
image detail. We will present SAR image examples below.

In the following summary of some of the recent literature, papers on compression, coding, and detection are
also included, since all these schemes can be interpreted as thresholding in the wavelet domain. The advantage,
but also the problem, of the wavelet thresholding scheme is the degree of freedom offered by the large number
of parameters that has to be specified. They are: the particular transform (e.g., wavelet, 2 band/M band, best
basis, modulated cosine, biorthogonal, time or space varying), the analysis and synthesis filters, the particular
thresholding scheme, the determination of the threshold, and the number of scales used. Most of the recent
papers focus on the choice of a threshold parameter and/or the determination of the wavelet transform.!2:30,26.34
The two predominant thresholding schemes are soft thresholding (“shrink or kill”) and hard thresholding ( “keep
or kill”). Donoho has shown that soft thresholding is the /3 optimal nonlinear function in the wavelet domain to
apply if one requires the resulting function to be at least as smooth as the original, noise free one. Furthermore
the resulting error is within a logarithmic factor of the so-called ideal risk — a performance measure of some
ideal scheme. This concept will be discussed later in detail. Hard thresholding, on the other hand, yields better
l; performance but does not guarantee the smoothness property cited above. This means in practice that the
resulting signals might exhibit spurious oscillations. It can be shown that hard thresholding is also within a
logarithmic factor of the ideal risk.'3

There exists a variety of proposals for estimating the threshold. Donoho gives some minimax thresholds for
several threshold schemes as well as a “universal threshold”. These explicitly depend on the standard deviation
o of the noise* and the number of data points. Experimental studies in'®!® show that for some applications
the optimal threshold can be easily computed as co where ¢ is a constant. An alternative approach for selecting
the threshold, independently proposed by Nason and Weyrich?%3 uses cross-validation. The goal is to minimize
the least squares error between the original (unknown) function and its estimate based on the noisy observation.
Although this approach yields smaller I5 error for some cases, it is worse than some minimax thresholds in other
cases.?® A third approach presented by Saito,3° employs an information theoretic error measure, the minimum
description length (MDL). The method implicitly computes a (hard) threshold by determining the number of
largest (in modulus) wavelet coefficients to be kept.

The set of orthogonal bases usually contains a two band wavelet analysis with Daubechies wavelets or Coiflets,
the wavelet packets, local trigonometric bases. There are two common methods for adapting the wavelet transform
to the signal at hand. One computes all transforms of the signal and chooses that which yields a minimum error
according to some performance measure, for example the MDL3C or the entropy.?>® The other approach is the so-
called matching pursuit algorithm?32 for signal representation by Mallat. In contrast to the algorithm mentioned
first, the matching pursuit algorithm yields a nonorthogonal expansion. The idea is to select the largest (in
modulus) expansion coefficient out of a redundant transform, e.g. a set of several orthogonal transforms, subtract
the corresponding component from the signal, compute the coefficients of all transforms of the residual, select the
largest coefficient and so forth.

At this point it might appear that there is not much to gain in performance once the wavelet filters, the
threshold and the number of scales used are optimized. However, there is a dramatic improvement possible by
giving up orthogonality. We propose the usage of a redundant and shift invariant transform that is closely related
to an orthogonal wavelet analysis. The computational complexity is O(N log N'), where N denotes the length of
the input signal.

The paper is organized as follows. In the next section we review the traditional wavelet transform and Donoho’s
method for noise reduction. In section 3 several algorithms for computing a shift invariant wavelet transform are
presented. A combination of Beylkin’s algorithm and wavelet denoising is proposed in section 4. An analysis
of the ideal risk for the new denoising algorithm is included. Also it is shown that the actual risk is within a
logarithmic factor of the ideal risk similar to Donoho’s method. Several one and two dimensional examples as

*Here o is assumed to be known. In practice, it can be easily estimated using the methods proposed in.!3:18



well as a comparison of the ideal risks and the actual risks for Donoho’s and the new method support our opinion
that the proposed algorithm offers a considerable improvement over denoising with orthogonal wavelets.

2 DENOISING BY THRESHOLDING — A REVIEW

Let
Yi = x; + €ny, ZIlJaN (1)

be a finite length signal of observations of the signal z; that is corrupted by i.i.d. zero mean, white Gaussian noise

n; with standard deviation ¢, i.e., n; g N(0,1). The goal is to recover the signal z from the noisy observations
y. Here and in the following, v denotes a vector with the ordered elements v; if the index ¢ is omitted. Let W
be a left invertible wavelet transformation matrix of the discrete wavelet transform (DWT). Then Eq. (1) can be
written in the transformation domain

Y=X+N, or, Yi=X;+N;, (2)

where capital letters denote variables in the transform domain,i.e., Y = Wy. Then the inverse transform matrix
M exists and we have
MW =1. (3)

The following presentation is oriented at Donoho’s approach!?13:10:11 that assumes an orthogonal wavelet
transform with a square W, i.e., W=! = W’ . We will use the same assumption throughout this section.

Let X denote an estimate of X, based on the observations Y. We consider diagonal linear projections
A = diag(é1,...,6n), 6 €{0,1}, i=1,...,N, 4)

which give rise to the estimate

i=MX=MAY = MAWYy. (5)

The estimate X is obtained by simply keeping or killing the individual wavelet coefficients. Since we are interested
in the [5 error we define the risk measure

R(X,X) = E[llz — «|3] = E [IM(X - X)[3] = B [IX - X|}3] (6)
Notice that the last equality in Eq. (6) is a consequence of the orthogonality of W. The optimal coefficients in

the diagonal projection scheme are &; = lx,s., i.e., only those values of Y where the corresponding elements of
X are larger than € are kept, all others are set to zero. This leads to the ideal risk

Ria(X, X) =) min(X?,€%). (7)

The ideal risk can not be attained in practice, since it requires an oracle that has knowledge of the (unknown)
wavelet transform X. However, it gives us a lower limit for the s error.

Donoho proposes the following scheme for denoising:

1. compute the DWT Y =Wy

1t is interesting to note that allowing arbitrary §; € IR improves the ideal risk by at most a factor of 2.1%



2. perform thresholding in the wavelet domain, according to so-called hard thresholding

% Y, |[Y|>t
X:Th(Y,t):{ ' IYIQt -
or according to so-called soft thresholding
% sen(Y)(|[Y|—=1t), |Y|>t¢
$ = = { ORI FE ©

3. compute the inverse DWT & = M X

This simple scheme has several interesting properties. It’s risk is within a logarithmic factor (log N) of the ideal
risk for both thresholding schemes and properly chosen thresholds ¢(N, €). If one employs soft thresholding then
the estimate is with high probability at least as smooth as the original function. The proof of this proposition relies
on the fact that wavelets are unconditional bases for a variety of smoothness classes and that soft thresholding
guarantees (with high probability) that the shrinkage condition |X;| < |X;| holds. The shrinkage condition
guarantees that & is in the same smoothness class as is . Moreover, the soft threshold estimate is the optimal
estimate that satisfies the shrinkage condition. The smoothness property guarantees an estimate free from spurious
oscillations, other than hard thresholding or Fourier methods. Also, it can be shown that it is not possible to
come closer to the ideal risk than within a factor log N. Not only has Donoho’s method nice theoretical properties
but also works very well in practice.

Some comments have to be made at this point. Similar to traditional approaches, e.g., low pass filtering, there
is a tradeoff between suppression of noise and oversmoothing of image details, although to a smaller extend. Also,
hard thresholding yields better results in terms of the [ error. That is not surprising since the observation value y;
itself is clearly a better estimate for the real value z; than a shrunk value in a zero mean noise scenario. However,
the estimated function obtained from hard thresholding typically exhibits undesired, spurious oscillations as
predicted by the theory.

3 SHIFT INVARIANT DISCRETE WAVELET TRANSFORMS

As is well-known, the discrete wavelet transform is not shift invariant, i.e., there is no “simple” relationship
between the wavelet coefficients of the original and the shifted signal!. Indeed, let be X = Wz the (orthogonal)
DWT of z and Sg be a matrix performing a circular right shift by R, R € 7ZZ, then

XSIWISIWSR;IIWSRMX, (10)

which establishes the connection between the wavelet transforms of two shifted versions of a signal, z and z,, by
the orthogonal matrix W SrM. As an illustrative example consider Fig. 1.

The first and obvious way of computing a shift invariant discrete wavelet transform (SIDWT) is simply
computing the wavelet transform of all shifts. Usually the two band wavelet transform is computed as follows:
1) filter the input signal by a low pass and a high pass filter, respectively, 2) downsample each filter output, and
3) iterate the low pass output. Because of the downsampling, the number of output values at each stage of the
filter bank (corresponding to coarser and coarser scales of the DWT) is equal to the number of the input values.
Precisely N values have to be stored. The computational complexity is O(N). Directly computing the wavelet
transform of all shifts therefore requires the storage of N? elements and has computational complexity O(N?).

Since we deal with finite length signals, we really mean circular shift.
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Figure 1: Shift variance of the wavelet transform. (a) Wavelet transform X of a signal z. (b) Wavelet transform
X, of zs that is a shifted version of z (left shift by one).

Beylkin,* Shensa,3! and our group? independently realized that 1) there are only N log N different coefficient
values among those corresponding to all shifts of the input signal and 2) those can be computed with computational
complexity N log N. This can be easily seen by considering one stage of the filter bank. Let be

y=[woviy ... yn]" = hz (11)

where y is the output of either the high pass or the low pass filter in the analysis filter bank, z the input and
the matrix h describes the filtering operation. Downsampling of y by a factor of two means keeping the even
indexed elements and discarding the odd ones. Consider the case of an input signal shifted by one. Then the
output signal is shifted by one as well and sampling with the same operator as before corresponds to keeping
the odd indexed coefficients as opposed to the even ones. Thus, the set of data points to be further processed
is completely different. However, for a shift of the input signal by two, the downsampled output signal differs
from the output of the nonshifted input only by a shift of one. This is easily generalized for any odd and even
shift and we see that the set of wavelet coefficients of the first stage of the filter bank for arbitrary shifts consists
of only 2N different values. Considering the fact that only the low pass component (N values) is iterated, one
recognizes that after L stages exactly LN values result. Using the same arguments as in the shift variant case,
one can prove that the computational complexity is O(N log N). The derivation for the synthesis is analogous.

Mallat proposes a scheme for computing an approximation of the continuous wavelet transform?? that turns out
to be equivalent to the method described above. This has been realized and proved by Shensa.3! Moreover, Shensa
shows that Mallat’s algorithm exhibits the same structure as the so-called algorithm & trous.'®15 Interestingly,
Mallat’s intention in?? was not in particular to overcome the shift variance of the DWT but to get an approximation
to the continuous wavelet transform.

In the following we shall refer to the algorithm for computing the SIDWT as the Beylkin algorithm¥ since this
is the one we have implemented. Alternative algorithms for computing a shift invariant wavelet transform®?2!:2
are based on the scheme presented in.* They explicitly or implicitly try to find an optimal, signal dependent shift
of the input signal. Thus, the transform becomes shift invariant and orthogonal but signal dependent.

We mention that the generalization of the Beylkin algorithm to the multidimensional case, to an M band
multiresolution analysis, and to wavelet packets is straightforward.

§Those are the ones we are aware of.
THowever, it should be noted that Mallat published his algorithm earlier.



4 COMBINING THE SHENSA-BEYLKIN-MALLAT-A TROUS
ALGORITHM AND WAVELET DENOISING

We acknowledge a private conversation of one of the authors with Dr. Coifman who stated that the appli-
cation of Donoho’s method to several shifts of the observation combined with averaging yields a considerable
improvement.l This statement first lead us to the following algorithm: 1) apply Donoho’s method not only to
“some” but to all circular shifts of the input signal 2) average the adjusted output signals. As has been shown in
the previous section, the computation of all possible shifts can be effectively done using Beylkin’s algorithm. Thus,
instead of using the algorithm just described, one simply applies thresholding to the SIDW'T of the observation
and computes the inverse transform.

Before going into details we want to briefly discuss the differences between using the traditional orthogonal
and the shift invariant wavelet transform. Obviously, by using more than N wavelet coefficients we introduce
redundancy. Several authors stated that redundant wavelet transforms, or frames, add to the numerical robust-
ness”3?% in case of adding white noise in the transform domain, e.g., by quantization. This is, however, different
from the scenario we are interested in since 1) we have correlated noise due to the redundancy and 2) we try to
remove noise in the transform domain rather than considering the effect of adding some noise. It is worthwhile
mentioning that Starck, Murtagh and Bijaoui3? have applied thresholding to astronomical signals transformed by
the algorithm a trous which is closely related to the SIDWT. However, they seem not to be aware of the ongoing
research in denoising by thresholding the wavelet coefficients.

4.1 Performance analysis

The analysis of the ideal risk for the SIDWT is similar to that by Guo.'” Define the sets A and B according
to

A = {il1x]> (12)
B = {illxi|<d (13)

and an ideal diagonal projection estimator, or oracle,

~ | Yi=X;+N; 1€A
X = { 0 i€B. (14)
The pointwise estimation error is then
= | N 1€ A
Xi— X _{ —-X; 1€ B. (15)

In the following a vector or matrix indexed by A (or B) indicates that only those rows are kept that have indices
out of A (or B). All others are set to zero. With these definitions and Eq. (6) the ideal risk for the SIDWT can
be derived

Ria(X,X) = B |IM(X - X)|3] (16)
= E[|M(Na - Xp)[3] (17)
= F [(NA—XB)T MTM(Ny — Xp) (18)

lA similar remark can be found in,?? p. 53.



= E[NIMTMN4| - 2XECuE[Nal+ X5CuXp (19)
tr [E[MNANiMT]|] + X;CuXp (20)
tr [ME [Waenen” Wi | MT] + X;CuXp (21)
= tr [MWaWIMT] + XECuXp. (22)

tr(X) denotes the trace of X. For the derivation we have used the fact that Ny = ¢Wy4n and consequently the
Na; have zero mean. Notice that for orthogonal W the Eq. (22) immediately specializes to Eq. (7). Eq. (22)
depends on the particular signal Xp, the transform, M, and the noise level e.

It can be shown that when using the SIDW'T introduced above and the thresholding scheme proposed by
Donoho (including his choice of the threshold) then there exists the same upper bound for the actual risk as for
case of the orthogonal DWT. That is the ideal risk times a logarithmic (in N) factor. We give only an outline of
the proof. Johnstone and Silverman state?® that for colored noise the oracle chooses §; = 1x,>e¢,, where ¢ is the
standard deviation of the ith component. Since Donoho’s method applies uniform thresholding to all components,
one has to show that the diagonal elements of Cys (the variances of the components of N) are identical. This can
be shown by considering the reconstruction scheme of the SIDW'T. With these statements the rest of the proof
can be carried out in the same way as the one given by Donoho.!3

5 EXAMPLES

For the examples 1 and 2 that deal with one dimensional signals we use the following set of parameters.
The scaling filter is a Daubechies filter of length 6 with a maximum number of vanishing moments, the signals
are of length 512, and the number of scales (or filter bank stages) used is 7. The threshold is chosen as the
product of the median absolute deviation estimate for the standard deviation'® and a fixed number, i.e., 3 for the
Donoho method (soft thresholding) and 3.6 for the new method (hard thresholding). The signals are generated
by Donoho’s MATLAB routine MakeSignal from his software package TeachWave.

Example 1: The signal ‘Doppler’ depicted in Fig. 2(a) is denoised using Donoho’s and our new method.
Figs. 2(b-d) (signal to noise ratio, or SNR, of 0dB) and 2(e-g) (SNR of 20dB) show the noisy signal, the signal
denoised with Donoho’s method, and with the new method, respectively. In both cases (0dB and 20dB), the new
method yields by far better results. One feature that seems to be of special interest is that although we apply
hard thresholding to the new method (getting better estimates in the [y sense) the signal is considerably more
smooth than that resulting from Donoho’s approach.

Example 2: We compare the resulting SNRs (denoted SNR,y+) of Donoho’s denoising scheme and the new
one for different SNRs (denoted SNR;,) of the noisy signal. For a given SNR;,,, we have used 100 noise realizations
to get an estimate for the expected value of the resulting SNRyy:. Fig. 3(a-c) shows the result for three signals,
‘Bumps’, ‘Blocks’, and ‘Doppler’ (c¢f. Example 1). The x-axis denotes the given SNR;,, the y-axis the resulting
SNR,y,:- The dotted line corresponds to no processing.

For low SNR (< —10dB) there is essentially no difference in performance for both methods. For larger SNR
the new method clearly outperforms Donoho’s method (more than 10dB difference for the signal ‘Bumps’ and
SNR;, of 20dB) with the tendency of an increasing gap between the SNRs. For high SNR Donoho’s method
yields results that are even worse than the unprocessed signals.** The new method, however, always yields better
results and seems to approach a line parallel to the one corresponding to the unprocessed case. This is especially
interesting in a scenario where the SNR is unknown. It appears that the new method is robust with respect to a
large range of values of the SNR and a variety of signals.

**This might be due to the fact that soft thresholding is used instead of hard thresholding.
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Figure 2: Denoising of signal ‘Doppler’: (a) Original image. (b) Noisy signal (SNR of 0dB). (¢) Signal corre-
sponding to (b) using Donoho’s method. (d) Signal corresponding to (b) using the new method.(e) Noisy signal
(SNR of 20dB). (f) Signal corresponding to (e) using Donoho’s method. (g) Signal corresponding to (e) using the
new method.
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Figure 3: Improvement of the signal to noise ratio for three different signals!3: dotted line SNR of noisy signal,
dashed line SNR resulting from thresholding the DW'T, solid line SNR resulting from thresholding the SIDWT.
(a) Bumps. (b) Blocks. (¢) Doppler. The dotted lines marked by o and x depict the SNRs corresponding to the

1deal risks of Donoho’s and the new method.



Figure 4: Denoising of a SAR image, courtesy Lincoln Lab. From the top: original image, denoised by thresholding
the DWT, denoised by thresholding the SIDWT.



Fig. 3 additionally includes the SNRs corresponding to the ideal risk according to the Eq. (22). The difference
between the ideal risks of Donoho’s and the new method is nearly independent of the SNR and about 3dB. In
contrast to Donoho’s method the new one closely follows the ideal risk.

Example 3: Images resulting from a coherent imaging process, e.g. SAR images, are known to exhibit so-
called speckle noise. The AWGN model is a very good approximation to the noise properties if one considers the
logarithm of the absolute pixel values.! Thus SAR images perfectly fit the assumptions made for denoising. The
top of Fig. 4 shows a SAR image after processing with a polarimetric whitening filter.?” The resulting image using
Donoho’s and the new method are given in the middle and at the bottom of Fig. 4. The new algorithm yields
a much sharper image (check the brighter spots around the black oval to the left) and preserves the intensity of
the bright spots much better.

6 SUMMARY AND FUTURE WORK

We have presented a new method for denoising one or two dimensional signals. It combines Beylkin’s algorithm
for computing the shift invariant, redundant wavelet transform and Donoho’s idea of applying thresholding to the
(orthogonal) wavelet transform. We show that several of the theoretical results of Donoho, proved for the case of
an orthogonal DW'T, also apply for the new algorithm. Several examples show that the performance is superior
to that of Donoho’s method.

However, there are several open questions for future research: Why is the resulting signal smoother despite
the fact that we use hard thresholding? Is it possible to prove a tighter upper risk bound than log N times the
ideal risk (cf. Fig. 3(c))? For which class of signals and transforms is the ideal risk of the new method smaller
than that of Donoho’s? Is there a considerable advantage of using all SIDWT coefficients rather than those of
the DWT of the best shift? Can the performance be considerably improved by using wavelet packets? Does
using an information theoretic scheme such as the MDL affect the performance? The new method also promises
improvements for coding and compression schemes that are currently investigated.?8:33

Software is available from the World Wide Web at http://www-dsp.rice.edu or by anonymous ftp from
cml.rice.eduin the directory /pub/software.
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