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Abstract

This paper evaluates the performance of the recently published wavelet based algorithm for speckle
reduction of SAR images. The original algorithm, based on the theory of wavelet thresholding due
to Donoho and Johnstone, has been shown to improve speckle statistics. In this paper we give more
extensive results based on tests performed at Lincoln Laboratory (LL). The LL benchmarks show that
the SAR imagery is significantly enhanced perceptually (Figs. 3 and 4). Although the wavelet processed
data results in an increase in the number of natural clutter false alarms (from trees etc.) an appropriately
modified CFAR detector (i.e., by clamping the estimated clutter standard deviation (Eqn. 3)) eliminates
the extra false alarms (Fig. 7). The paper also gives preliminary results on the performance of the new and
improved wavelet denoising algorithm based on the shift invariant wavelet transform. By thresholding
the shift invariant discrete wavelet transform we can further reduce speckle to achieve a perceptually
superior SAR image with ground truth information significantly enhanced. Preliminary results on the
speckle statistics of this new algorithm is improved over the classical wavelet denoising algorithm. Finally,
we show that the classical denoising algorithm as proposed by Donoho and Johnstone and applied to
SAR has the added benefit of achieving about 3:1 compression with essentially no loss in image fidelity.

Key words: Wavelet thresholding, denoising, SAR, speckle reduction, compression, shift invariant
DWT, target detection, ATD/R.

1 Introduction

One of the major problems in processing synthetic aperture radar (SAR) images is speckle or coherent noise
which typically can be modeled as multiplicative noise [10, 1]. Recently, new ideas in wavelet theory[6, 9, 7]
have been applied to the problem of speckle reduction with great promise. The original wavelet based
algorithm[6] applied to SAR was independently developed by Moulin [20] and Guo et al. [15, 14] The
approach is to denoise (despeckle) SAR images by nonlinear thresholding of the wavelet coefficients.[6]
One of the advantages is that the wavelet algorithm works on both single (polarimetric) channel SAR as
well as fully polarimetric SAR. More recently a new and improved denoising algorithm has been proposed
[12, 17, 16, 8, 21, 3]. Applied to SAR the new algorithm promises to be superior to the “classical wavelet
denoising” algorithm.
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While the well known polarimetric whitening filter (PWF) due to Novak [22] is based on exploiting po-
larimetric correlation in fully polarimetric SAR data without loss of resolution, the wavelet based algorithm
for speckle reduction exploits spatial correlation with essentially no loss of image resolution. Furthermore,
when combining the wavelet based method with the PWF our study shows large improvements in all relevant
statistics for measuring speckle reduction [20, 14, 15, 23]. Also, while the PWTF necessitates the implemen-
tation and use of a fully polarimetric SAR system, which typically is prohibitively expensive, the wavelet
based algorithm offers an algorithm for reducing speckle on single channel SAR images.

Secondly considering the large amounts of data that have to be stored or quickly transmitted for mil-
itary surveillance, oceanography, glaciology and agriculture studies (about 125Mb/km? for 1 foot resolution
SAR) there is clearly a great demand for good compression algorithms. However, not much work has been
devoted to studying lossy compression algorithms for sensor data and it is not clear that good image coders
developed for coding optical images for human visualization are optimal for compressing various kinds of
sensor data such as SAR, LADAR etc. We note however that the wavelet denoising algorithm applied to
SAR [20, 14, 15, 23] inherently yields a compression of between 2:1 and 3:1. This is for the application
considered in this paper achieved without loss of image fidelity. In fact the image quality is improved due to
the speckle reduction. Furthermore, since the nonlinear wavelet processed SAR image is a less noisy image
than the original SAR image, the resulting despeckled SAR image will be “more compressible” (there is more
correlation to exploit) both with lossless as well as with lossy compression techniques. In this paper we only
report on some preliminary findings with regard to the compression problem and in particular evaluate the
effect of denoising on lossless compression.

2 Denoising by wavelet thresholding

In this section we will first summarize the classical results on wavelet denoising due to Donoho and Johnstone
[6, 9, 7]. Secondly we will introduce the more recent results on shift invariant (or redundant/undecimated)
wavelet based denoising for which details can be found in [12, 17, 16].

Let y; = z; + ony, i = 1,..., N be a finite size signal of observations of the desired signal z; that is

corrupted by i.i.d. zero mean, white Gaussian noise n; with standard deviation o (i.e., n; u N(0,1)). Let
W and M denote the discrete wavelet transform (DWT) matrix and its inverse, respectively and denote the
DWT of asignal # by X (e.g., X = Wz, 2 = M X). Furthermore, let X denote an estimate of X, based on
the observations Y. Given some threshold function A we obtain an estimate of z as

F=MX=MAY = MAWYy. (1)

If W is the orthogonal DW'T transform matrix then Eqn. 1 describes the original wavelet denoising
algorithm proposed by Donoho and Johnstone [6, 9] and we refer to this algorithm as the “classical wavelet
denoising” (CWD) algorithm. In the original work by Donoho and Johnstone two thresholding schemes
were considered: (i) hard thresholding (see Fig. lc, — keep Y; if it is above some threshold 7, set it to zero
otherwise) and (i) soft thresholding (see Fig. la — hard thresholding with additionally shrinkage of those
values ¥; by 7 that are not set to zero). In Fig. 1b and d we show two alternative thresholding functions that
are optimized from a quantization-shrinkage criterion. A detailed treatment of these alternative nonlinear
thresholding functions can be found in Guo et al. [13] Among several interesting properties associated with
the CWD, the following are especially important: Both schemes (hard and soft thresholding) are within a
logarithmic factor (log V) of what is defined to be the ideal risk[6] (obtained with explicit knowledge of the
noise variance). Hard thresholding typically yields a smaller mean square error (MSE) and soft thresholding
achieves near minimax MSE subject to the constraint that Z is (with high probability) at least as smooth as
z. The CWD algorithm requires that N values have be stored and the computational complexity is O(N).

In practice it was noticed that hard thresholding exhibits spurious oscillations while soft thresholding
avoids those (i.e., it is a smooth estimate). Similar to classical methods (e.g., low pass filtering) there
is a tradeoff in choosing the threshold (for a given threshold function) between noise reduction and over-
smoothing of signal details. We do not discuss these issues here since they have been discussed at length for
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Figure 1: (a) Soft thresholding (b) Uniform Soft Shrinkage quantization (USSQ) (c¢) Hard thresholding (d)
Uniform Hard Shrinkage Quantization (UHSQ).

the SAR problem in several previous publications.[20, 14, 15, 23] Furthermore, since the DWT is not shift
invariant the CWD is not shift invariant and hence the denoising performance depends on the initial shift of
the signal. A shift invariant wavelet transform can be obtained by computing the DWT of «all shifts of the
input signal (we will refer to this transform as the shift invariant DWT (SIDWT)). Since SIDWT computes
a DWT for every shift the resulting transform is not orthogonal and the wavelet coefficients give a redundant
representation. In fact the SIDW'T requires the storage of Nlog N values and has computational complexity
O(N log N) [18, 2, 24].

The new algorithm for denoising is based on thresholding the SIDWT and can be interpreted as
averaging the result of CWD for all possible shifts of the input signal. We refer to the new algorithm as
the undecimated wavelet denoising (UWD) algorithm. Detailed treatment of this algorithm can be found
in [12, 17, 16, 21]. The algorithm described above was also illustrated by Donoho and Johnstone in the
discussion following the presentation of “Wavelet shrinkage: Asymptopia?” [9]. The basic difference between
the CWD and UWD is that the transformation matrix W for SIDWT is not square and consequently not
orthogonal. However, an inverse M exists and can be computed with complexity O(N log V). In fact, the
representation in the SIDWT domain contains redundancy which contributes to the improved performance
(compare discussion on frames in [4]). SIDWT yields correlated noise terms, N;, in contrast to the DWT
which results in uncorrelated noise terms.

3 Despeckling of SAR

Speckle is a form of noise that can be found in several imaging systems such as SAR, sonar and laser
range to mention a few. When an object is illuminated by a coherent source and the object has a surface
structure that is roughly on the order of a wavelength of the incident radiation, the wave reflected from
such a surface consists of contributions from many independent scattering points. Interference of these
dephased but coherent waves result in the granular pattern known as speckle. Thus speckle tends to obscure
image details and hence speckle reduction is important in most detection and recognition systems. It can be
shown and simply verified by measurement that the additive white Gaussian noise (AWGN) model is a good
approximation for speckle[10] when considering the SAR intensity /magnitude image (e.g., the dB image).

The goal is then to minimize the effects of speckle when the observed complex image y is a digitized
SAR image. There are several algorithms for reducing speckle in SAR images [5, 22]. However, until recently
[20, 14] no method existed that could significantly reduce speckle for single channel SAR images without
loss of image resolution (e.g., local averaging).



The wavelet based algorithms as described in the previous section and illustrated in Fig. 2, have
been studied carefully [20, 14, 15, 23] for despeckling single channel SAR as well (fully polarimetric) PWF
images. In Figs. 3 and 4 we can visually observe the reduction in speckle and the corresponding perceptual
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Figure 2: SAR speckle reduction via wavelet thresholding.

improvement in SAR image quality achieved by applying the two wavelet based denoising algorithms. Fig. 3a
show the original PWF (1ft resolution) SAR image of the Lincoln North Building (Lincoln, MA) and the
surrounding area. In Fig. 3b we show the same image processed with the CWD algorithm. Notice how
perceptual quality of the SAR image is improved due to wavelet based speckle reduction. Also notice that
image details are preserved (e.g., see lower left corner of the image where two almost parallel lines slightly
diagonal are still separated in the processed image). In Fig. 3¢ we show the same image but now processed
with a CWD algorithm where we replaced the standard soft thresholding operation with a uniform soft
shrinkage quantizer (USSQ) (see Fig. 1b). Notice that the perceptual image quality is preserved. Finally, in
Fig. 3d we show the results of applying the new wavelet based algorithm, UWD, to the original PWF image.
In this image we observe further improvements of the speckle reduction over the CWD processing. Notice
detail information in the image is well preserved and in several cases enhanced. Also notice how sharp edges
in the image is enhanced compared to the result of CWD processing. In Figs. 4a through d we show the
same for a single channel (HV) SAR image.

In Fig. 5 we show two particular regions of the SAR image which are good candidates to measure
statistical speckle properties on. Fig. 5a (also referred to as Region 2) is the SAR image centered on a
reflection from a car in the parking lot and hence represents a man-made object which should be at least as
easy to detect in the processed image as in the unprocessed image. The second region, Fig 5b, (also referred
to as Region 1) shows a part of the rooftop of the Lincoln North Building. This is a well defined surface which
is known to be smooth and hence evaluation of the speckle statistics on this region should be informative.
Table 1 gives the resulting speckle statistics for each of these SAR image regions.  Classical measures of
speckle (evaluated on any smooth region) are the standard-deviation-to-mean (std/m) ratio [10, 5] and log
standard deviation (log-std) [22] which both should decrease as a result of speckle reduction. In addition
we have computed target sensitive measures such as the target to clutter ratio (TC) and the deflection ratio
(DR), each of which are important for a CFAR (constant false alarm rate) type detector. The deflection
ratio is defined by

DR = Y—Hy (2)

Oy

where y is some desired target pixel, ji, and &, are estimate of the clutter mean and clutter standard
deviation (computed in the neighborhood of the target pixel y). A two parameter CFAR detector is obtained
by comparing the DR for any pixel by a threshold and conclude that a target is present if DR exceeds this
threshold. Based on the evaluations performed here it is not clear what the effects of changing DR will imply
in the overall performance for the CFAR detector all the time the optimal threshold will have to be adjusted
according to the new statistics. It is generally believed that both the TC and DR statistics should at least
not be smaller for a man-made object after speckle reduction. However, it is somewhat ambiguous to say
that an increased TC or DR for a specific target implies overall improved detection performance (one also
need to know how DR and TC affects “bright reflections” from natural clutter). It is in the same way hard
to infer that a decreased TC or DR imply any worse detection performance. In fact we will later see that
it is not necessarily true that a significantly enhanced DR statistics will result in improved performance if
we assume a standard two parameter CFAR detector. We notice from Table 1 that the speckle statistics is
improved for Region 1 after processing by both CWD, USSQ-CWD and UWD. Furthermore, we also notice
that the new algorithm (UWD) performs better than CWD on all single channel images as well as the fully
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Figure 3: Fully polarimetric SAR imagery of the Lincoln North Building (Lincoln, MA) (a) Unprocessed PWF
(b) Classical wavelet denoising of PWF (CWD) (c¢) Classical wavelet denoising of PWF with thresholding
and quantization combined (USSQ-CWD) (d) shift invariant denoising of PWF (UWD).
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Figure 4: Single polarimetric channel SAR image of the Lincoln North Building (Lincoln, MA) (a) Unpro-
cessed HV image (b) Classical wavelet denoising of HV (CWD) (c¢) Classical wavelet denoising of PWF with
thresholding and quantization combined (USSQ-CWD) (d) shift invariant denoising of HV (UWD).
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Figure 5: Illustration of two particular SAR image regions which are considered significant for the evaluation
of the speckle reduction algorithm. (a) Reflection from a car in the parking lot (b) Image of a smooth region
(rooftop).



Table 1: Comparison of speckle statistics for LL North building. For each polarization (1ft) we consider 4
cases: Original image (single channel or fully polarimetric), speckle reduction by Classical Wavelet Denoising
(CWD), speckle reduction by CWD with uniform soft quantization (USSQ-CWD) and speckle reduction by
Undecimated Wavelet Denoising (UDW).

Image Region 1 Region 2
Polarization std/m | log-std (dB) TC DR
HH Original 0.5363 5.6526 19.7927 | 2.8280

CWD 0.2543 2.4787 12.7447 | 2.7161
USSQ-CWD | 0.2540 2.4691 12.4957 | 2.9253
UWD 0.2210 2.3195 14.6217 | 3.4154
HV Original 0.5415 5.6983 34.1983 | 4.8144
CWD 0.2686 2.5560 27.0140 | 5.6690
USSQ-CWD | 0.2667 2.5416 23.8536 | 5.3659
UWD 0.2401 2.3887 30.8667 | 6.6935
V'A% Original 0.5434 5.5550 31.4152 | 4.7061
CWD 0.2549 2.3709 24.2759 | 5.6313
USSQ-CWD | 0.2520 2.3215 20.3467 | 4.9549
UWD 0.2160 2.1223 27.7310 | 6.7901
PWF Original 0.3397 2.9420 30.7818 | 6.7347
CWD 0.1718 1.4589 25.6036 | 6.7260
USSQ-CWD | 0.1519 1.3261 23.2605 | 6.7940
UWD 0.1498 1.1749 30.3379 | 8.4508

polarimetric PWF image. In Table 2 std/m and log-std for a PWF image, CWD processed PWF image and
UWD processed PWF image of four typical background clutter regions are given. Notice how the new UDW
algorithm improves the performance for most areas considered. There are still some open questions of how
to choose the best threshold for the UWD algorithm in the case of processing SAR images.

Table 2: Standard deviation to mean and log standard deviation for SAR image regions.

Region std/m log-std (dB)

PWF | CWD | UWD | PWF | CWD | UWD
Trees 0.5813 | 0.4582 | 0.4656 | 4.9404 | 3.9814 | 4.0212
Shrubs 0.3867 | 0.2273 | 0.2204 | 3.4292 | 1.9950 | 1.9315
Grass 0.3243 | 0.1611 | 0.1268 | 2.9528 | 1.4230 | 1.1218

Shadows | 0.3250 | 0.1661 | 0.1401 | 2.8999 | 1.3799 | 1.0911

To further illustrate the potential advantages of the given algorithm consider Fig. 6. In this figure
we compare the PWF image with the CWD processed PWF image in terms of maximum DR as a function
about 250 SAR images of a target. For each target “look” we computed and recorded the maximum DR
and we notice from Fig. 6 that the maximum DR has increased for most target looks. However, it is hard to
conclude anything based this one experiment since the corresponding threshold for a CFAR type detector
also will be different. Hence the detection performance based on the DR statistics might not change since
the statistics of the surrounding clutter will affect the performance of the detector. With this in mind
Lincoln Laboratory performed a study of the CWD algorithm on 56km? of SAR data. The results of this
study are depicted in Table 3 and Fig. 7. In Fig. 7 we plot the probability of detection, P;, versus false
alarms per square kilometer, (FA/km?) also known as the receiver operation characteristics (ROC) curve
for the two prescreeners considered in this study (plain PWF or PWF followed by CWD). Notice that the
number of natural clutter false alarms increased based on a classical two parameter CFAR detector (see
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Figure 6: Maximum deflection ratio (DR) statistics as a function of target input image. The test data is
obtained by collecting SAR data in spotlight mode (1 foot resolution). Dotted line: Despeckled PWF image;
Solid line: PWF image.

Table 3 and Fig.7a). It was furthermore observed that most of the added natural clutter false alarms were
due to small clusters of trees/shrubs surrounded by dim radar returns or located in the middle of large
grassy fields and hence tend to stand out (in terms of DR statistics) from the background clutter (which is
considerably smoother) after despeckling. Although the number of natural clutter false alarms increased

Table 3: Lincoln Laboratory ATD/R (automatic target detection and recognition) performance study. The
test data (stripmap SAR at 1 foot resolution) was made up of a total of 4827 image chips (65 target chips,
2068 man made clutter chips and 2759 natural clutter chips). The CFAR threshold was optimized to achieve
probability of detection, Py = 1.

False Alarms
Man made | Natural
PWF 557 70
CWD 556 251

with the application of the CWD algorithm, these additional false alarms were successfully discarded by
using a clamped CFAR (Eqn. 3) detector (Fig.7b). A clamped CFAR detector is defined by computing DR
as
Y — iy
DR= ——— 3

max(6y, c) (3)
where ¢ is an experimentally obtained value preventing DR from taking on large values for extremely smooth
clutter neighborhoods. In Fig. 7Ta ¢ was set to 0 for both the regular PWF image and the CWD processed
PWF image. In Fig. 7b ¢ was 0 for the PWF image but was experimentally chosen to be 2.5 for the CWD
processed PWF image. This simple change in the CFAR detector seems to indicate that a careful study of
the clutter versus target distributions of the wavelet denoised images should be performed and as a result
an optimal detector could be designed.

4 Wavelet speckle reduction and SAR compression

The ability to quickly store or transmit collected survey data is of great importance for both time critical
applications such as military search as well as in scientific surveys for instant refinement of wide area data
collection. Furthermore, since the typical use of the collected data is for target detection, classification and
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Figure 7: Receiver operation characteristic (ROC) curve for PWF image and the despeckled PWF image.
Dashed line: ROC curve for PWF image. Solid line: ROC curve for CWD processed PWF image. (a)
standard two parameter CFAR detector (b) two parameter CFAR detector with clamp in the standard
deviation.

tracking, the requirements for an “optimal lossy” compression algorithm are typically very different from that
of lossy image compression algorithms developed for compressing still images for perceptual visualization.
A lot of research on still image compression has taken place over the years. However, lossy compression
of sensor data such as SAR, LADAR etc. has not received much attention considering the large amount
of data that is being collected and has to be stored and/or transmitted for a wide area surveillance. The
main reasons for this lack of effort are mainly due to the fact that most sensor data collected is to be
used by a broad range of scientists in significantly different applications. Hence, what might be defined as
essentially lossless for one application might be significant data loss to another application. Due to these
contradicting views lossy compression has typically been avoided and hence only lossless compression has
been considered. However, realizing the explosive growth in the amount of sensor data being collected and
the need to efficiently store and transmit such data in time critical applications one has come to realize
that lossy compression is necessary. Some preliminary work on lossy compression of sensor data has been
performed in more recent times and the two recent survey articles in the IEEE SP magazine [26, 25] signify
this effort. Most of the effort has to date been focused on lossless compression techniques where one typically
at best can achieve compression of about 3:1. For a more detailed treatment of lossy compression of SAR
images see Werness et al.[28, 11] and Wei et al. [27].

In this section we attempt to evaluate the speckle reduction algorithm from the point of view of
compression. It is clear that the thresholding operation will necessarily result in some compression, how
much however is not easily answered. Our goal is to study the effect of speckle reduction on (lossless)
compression. One method of evaluating the compression performance is to measure the number of zero
values added to the wavelet coefficients due to the thresholding operation. However, this is not the complete
story since compressibility of the despeckled image should be further improved due to the change in image
noise characteristics (a smoother image). Hence here we set up the following experiment (see Fig. 8) to
evaluate the total effect on “lossless” compression of a SAR images due to wavelet denoising. In Fig. 8
unless otherwise stated @) is a uniform quantizer optimized for the dynamic range of the image that is to
be compressed and C' is a lossless coding algorithm such Lempel-Ziv (i.e., GZIP). As seen from Fig. 8 the
experiment is not truly lossless since we do require a uniform 8bit quantizer (optimized for the dynamic range
of the image). However, the goal of this experiment was to measure the ability to compress the resulting
uniformly quantized image with and without denoising. Hence, by lossless we only mean the encoding
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Figure 8: Compression evaluation experiment

block used to optimally (entropy) encode the quantized image. However, it is important that the resulting
decompressed SAR image maintains fidelity and that speckle statistics are preserved. We performed several
compression experiments to evaluate the wavelet denoising effect on compression each of which is explained
here.

1. W =1, A =1 (Compress the spatial domain of the SAR image)
2. W=DWT, A =1 (Compress the wavelet domain of the SAR image)
3. W= DWT and

(a) A = Soft thresholding (Classical wavelet denoising - CWD)

(b) A = Uniform Shrinkage Quantizer (CWD where the soft threshold is replaced with a quantizer
satisfying the shrinkage condition see Fig. 1b USSQ-CWD)

The compression ratios in Table 4 are given as column:row and the various row/columns labels indicate
which algorithm (described above by bold faced words) is considered. In addition we include two row/columns
the first which is the complex floating point image (which with the accuracy required can be represented
by 24 bits (884 encoded[19])) and the second which is the raw SAR image (in dB) represented with 8bits
accuracy. One should notice that SAR images typically are complex floating point and hence the actual
compression achieved should take that in to effect. From Table 4 we see that we get compression ratios

Table 4: Compression of SAR due to wavelet based speckle reduction.

complex | 8bit | spatial | wavelet | CWT | SQ-CWD
complex 1.0
8bit 3.0 1.0
spatial 33 1.1 1.0
wavelet 72 24 2.2 1.0
CWD 19.8 | 6.6 5.9 2.0 1.0
USSQ-CWD 2371 7.9 6.2 3.3 1.1 1.0

of close to 7:1 without loss of image fidelity. In fact as can be seen from Table 1 the compressed image is
enhanced from a speckle point of view. Also, by the numbers in column wavelet we see that the denoising
algorithm alone (everything else kept fixed) achieves more than 2:1 compression for the image considered.

5 Summary

In this paper we have evaluated several different aspects of the wavelet despeckling algorithm. In particular
we have given some new results related to the detection performance of the wavelet based despeckling
algorithm in a realistic setting. The results show that applying wavelet denoising tends to cause more
natural clutter false alarms. However, it was noticed that by modifying the CFAR detector the performance
could be improved to equal the performance achieved without denoising. This is promising since further
studies of clutter distribution versus target distribution for wavelet denoised SAR can potentially result in
a new detector improving the PWF CFAR performance. We have also introduced the new undecimated
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wavelet denoising algorithm and showed that from a perceptual point of view as well as from observing
several significant statistical speckle measures this new algorithm performs better than the classical wavelet
denoising algorithm due to Donoho and Johnstone. In fact the perceptual quality of the SAR images after
applying the new algorithm could improve manual observation significantly and it is hoped that this will also
be true for computerized detection. Finally, we evaluated the effect of wavelet denoising on compression of
SAR images and we observed that wavelet denoising alone results in a compression of close to 3:1. Combining
this with optimal lossy compression methods which exploit the statistics of the resulting denoised images
could result in an algorithm with significant compression with essentially no loss of information.
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