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ABSTRACT

We propose a nonlinear, wavelet-based method to efficiently improve the performance of various coding schemes
for lossy image data compression. Coarse quantization of the transform coefficients often results in some unde-
sirable artifacts, such as ringing effect, contouring effect and blocking effect, especially at very low bit rate. The
decoding can be viewed as a typical statistical estimation problem of reconstructing the original image signal from
the decompressed image, a noisy observation, using the classical signal processing model of “signal plus additive
noise”. We perform the wavelet-domain thresholding on the decompressed image to attenuate the quantization
noise effect while maintaining the relatively sharp features (e.g. edges) of the original image. Experimental results
show that de-noising using the undecimated discrete wavelet transform achieves better performance than using
the orthonormal discrete wavelet transform, with an acceptable computational complexity (O(M N log,(M N))
for an image of size M x N). Both the objective quality and the subjective quality of the reconstructed image are
significantly improved with the reduction of coding artifacts. In addition, dithering technique can be embedded
in the encoding scheme to achieve further improvement of the visual quality.

Keywords: image data compression, transform/subband coding, fractal coding, noise reduction, wavelet
transform, wavelet thresholding, quantization, dithering.

1 INTRODUCTION

In the last decade, transform/subband coding and fractal coding have been demonstrated to be the efficient
techniques for lossy image data compression. In the transform/subband coding systems, if the unitary transform
(or the perfect reconstruction (PR) filter bank) and the lossless entropy coder are used, then the quantization
error is the only source of error (or noise) in the reconstructed image. In order to achieve high compression ratios,
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the transform coefficients are required to be coarsely quantized, which often result in some undesirable artifacts
associated with the basis functions of the transform, such as the ringing effect and the contouring effect in the
wavelet-transform/subband-coding compressed images, and the blocking effect in the JPEG/DCT compressed
images,?? especially at very low bit rates. Similarly, there are also some annoying artifacts (e.g., blocking effect)
in the fractal compressed images. In general, a decompressed image can be viewed as a noisy observation of
the original image. Therefore, the task of post-processing or enhancing the decompressed image, which can be
characterized as a typical statistical estimation problem, is then to extract the original image from the noisy
observation of the form “signal plus additive noise”. The reconstruction noise in the decompressed images is
generally signal-dependent and spatially correlated, which makes the estimation problem very difficult. Both the
dependence on the original image and the spatial correlation are affected by the various compression schemes.

Many methods have been developed to deal with this image enhancement problem.1014719,21,23725,27-35 1y
ever, most of these methods have some of the following limitations: () lack of the ability to handle more than
one type of coding artifacts, i.e., dependence on the coding scheme; (ii) lack of the ability to improve both the
objective quality and the subjective quality; (¢i¢) high computational complexity.

To reduce the blocking effect in the JPEG/DCT algorithms, Gopinath et af applied soft-thresholding ( “shrink
or kill”) to the orthonormal discrete wavelet transform (DWT) coefficients of the decompressed image, and
obtained significant improvement in the visual quality. In this paper, we show that this method can also reduce
other coding artifacts and improve the objective quality of the decompressed image. However, it has been
argued that? de-noising with the orthonormal DWT sometimes exhibits visual artifacts such as the “pseudo-
Gibbs phenomena” in the neighborhood of discontinuities due to the lack of translation invariance of the wavelet
basis.

In this paper, we propose a more efficient method based on the “second-generation de-noising” technique?!3
to significantly improve both the objective quality and the subjective quality in the processed images and to avoid
the “new” artifacts resulted from de-noising. We perform hard-thresholding (“keep or kill”) on the undecimated
DWT coefficients of the decompressed image to suppress the reconstruction noise due to quantization. Our
method outperforms most of the above methods in terms of the objective measures if the numerical comparison
is possible. The performance of our method is even better than that of the method proposed by Gopinath et alin
terms of both the peak signal-to-noise ratio (PSNR) and the reduction of coding artifacts. Another advantage of
our method is that it is independent of coding schemes in the sense that it can attenuate several types of coding
artifacts. For an image of size M x N, the computational complexity of our method is O(M N log, (M N)).

The paper is organized as follows. In the next section we give a short review of the wavelet-domain thresholding
method for noise reduction. In section 3, noise removal with the undecimated DWT is described. Section 4 gives a

simple example of applying our method. We discuss the experimental results in section 5 and give the conclusions
in section 6.

2 DE-NOISING BY WAVELET THRESHOLDING

Donoho and Johnstone®® proposed a nonlinear method for reconstructing an unknown signal from noisy data.
The method attempts to reject noise by damping or thresholding in the orthogonal wavelet domain and has been
proved to work well in many applications.*8:920,26

Suppose we wish to recover an unknown signal x from noisy data y,

Yyi = x; + o€y, 1=0,1,...,n—-1

where ¢€; w N(0,1) is a white Gaussian noise, and ¢ is the noise level. Let x be the estimate of x. Our goal is to



optimize the mean-squared error
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The simple wavelet-domain thresholding method has three steps:

1. Compute the orthonormal DWT of the noisy data y, obtaining the wavelet coefficients;

2. Apply the soft-thresholding nonlinearity (shrinkage)

v—t forv>t
n(v) =< 0 for —t<v<t
v+t forv< —t

or the hard-thresholding nonlinearity
(v) = v for |v] >t
MY =0 for lv| <t
to the wavelet coefficients (except the coarsest level) with a specially-chosen threshold ¢t = ¢, = y/2log(n)o;

3. Perform the inverse orthonormal DWT on the thresholded wavelet coefficients, recovering the estimate x*.

The universal \/2log(n)o threshold was designed for the purpose of suppressing noise-induced spikes which spoil
the smoothness of reconstructions. However, if one wants to only to measure performance by mean-squared error
(MSE), then lower thresholds are better.® One important qualitative feature of this method is that the relatively
sharp features in z (e.g. edges) are maintained while the noise is suppressed.®

It has been shown by Donoho that the soft-thresholding is the MSE optimal nonlinear function to apply in
the orthonormal wavelet domain if one requires the reconstructed signal to be at least as smooth as the original,
noise-free one. The hard-thresholding, on the other hand, yields better estimate in the MSE sense but does
not guarantee the smoothness property cited above. In fact, the de-noised signal using the hard-thresholding
sometimes exhibits somewhat greater spurious oscillations in the vicinity of discontinuities than that using the
soft-thresholding.

Though the above assumption on the additive noise is not valid in our applications, i.e., the reconstruction
error in the decompressed image is generally neither white nor independently, identically distributed (i.i.d.), the
wavelet-thresholding method can still be applied successfully to reduce the colored reconstruction noise.®

3 UNDECIMATED DISCRETE WAVELET TRANSFORM

De-Noising with the orthonormal DWT sometimes exhibits visual artifacts, such as the pseudo-Gibbs phenom-
ena (alternating undershoot and overshoot of a specific target level) in the neighborhood of discontinuities, due
to the lack of translation invariance of the wavelet basis.? These artifacts are related in some way to the precise
alignments between features in the signal and features of basis elements; signal exhibiting similar features but
with slightly different alignment in time or scale might generate fewer of the artifacts. One approach to correct
unfortunate mis-alignments between features in the signal and features in a basis is to forcibly shift signals so that
their features change positions which will overcome the mis-alignments, and to unshift the signal after analysis.
However, when a signal contains several discontinuities, these may interfere with each other: the best shift for one
discontinuity in the signal may also be the worst shift for another discontinuity. One method to overcome this
difficulty is to average out the translation dependence.? For the range of all circulant shifts, one shifts the data,



de-noises the shifted data, and then unshifts the de-noised data. Doing this for each of a range of shifts, and av-
eraging the several results so obtained, produces a reconstruction subject to far weaker pseudo-Gibbs phenomena
than the thresholding-based de-noising using the orthonormal DW'T. For the data of size N, computation of the
DWT of all circulant shifts can be accomplished by the undecimated (or translation-invariant) DWT in order of
N log,(N) time.>13

Experiments indicated that in general the hard-thresholding outperforms the soft-thresholding for de-noising
in terms of both the quantitative measures and the visual quality if the undecimated DWT is used.? We attribute
this to the fact that the translation-invariant approach will damp the spurious oscillations introduced by the
hard-thresholding while maintaining a smaller MSE.

4 A SIMPLE EXAMPLE

We use a simple example to show the remarkable de-noising performance of the undecimated DWT thresholding
as well as the possibility of combining our method with other techniques such as dithering.

Due to the coarse quantization, the quantization noise and the input image are correlated. This correlation
is reflected by some perceptually undesirable image-dependent patterns in the reconstructed image, such as
the contouring effects, the ringing effects, the block effects, etc. By adding some appropriate high-frequency
perturbation signals, such as pseudo-random noise, to an image prior to quantization, it is possible to break up
these undesirable patterns. This classical technique is called dithering.'’ The basic idea of dithering is, by adding
a pseudo-random signal to the image before it is quantized and subtracting the same signal from the quantized
value, to effectively replace the image-dependent quantization noise with the image-independent noise which is
less annoying to human eyes. Figure 1 is the block diagram of a dithered quantization system.
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Figure 1: A dithered uniform scalar quantizer

Let ¢ denote the step-size of the uniform scalar quantizer ). It has been shown that if w, is a white noise
uniformly distributed in [—q/2, q/2], then the quantizer output Z,, can be modeled approximately as

T, =z, +e,

where e, is a white noise that is independent of ,, and has a uniform distribution in [—¢/2,¢/2]. Such a white
noise is less visible and easier to remove using noise-reduction techniques.

Figure 2(a) and (b) are the original “Lenna” image, which is 512 x 512 and 256-gray-scale, and the spatially
quantized image using a 4-level uniform scalar quantizer, respectively. The resulting PSNR is 22.88d B and the
visual quality is very poor due to the severe contouring effect. We obtain Figure 2(c) by performing the wavelet
thresholding on Figure 2(b), resulting a higher PSNR (25.16d B) and better visual quality. However, the contouring
effect is still visible. If the original image is dithered before quantization using a pseudo-random signal, then the
noise in the quantized image is approximately signal-independent and hence less visually annoying. Furthermore,
the wavelet thresholding (using the undecimated DWT and the hard-thresholding) can be applied to the quantized
image to efficiently remove the signal-independent noise and significantly improve both the PSNR (31.82dB) and
the perceptual quality. Figure 2(d) is the processed image without clearly visible artifact.



5 EXPERIMENTAL RESULTS

In our experiments, we choose four 256-gray-scale images: Lenna (512 x 512), Mandrill (480 x 480), Camera-
Man (256 x 256) and Building (256 x 256). We denote the method using the orthonormal DWT and the soft-
thresholding, and the method using the undecimated DWT and the hard-thresholding as “method 1” and “method
27 respectively. We apply both methods to post-process the images compressed by the JPEG algorithm, a
subband coding (SBC) algorithm, and a fractal coding algorithm at different bit-rates.

In the wavelet-thresholding schemes, there are several parameters that needs to be determined: (7) the type
of wavelets, (i) the length of wavelet filters, and (i%) the number of wavelet-decomposition levels. Since there
is no special advantage to use any particular wavelet for de-noising, we simply choose Daubechies’ orthonormal
wavelets.> While our experiments indicated that the length of the wavelet filter had little effect on the de-noising
performance in terms of both the PSNR and the subjective measure, we also found that, for larger images, de-
noising with longer filters would lead to slightly better results. Therefore, we use Daubechies’ 12-tap wavelet
filter for the “Lenna”image and the “Mandrill” image, and use Daubechies’ 8-tap wavelet filter for the other
two smaller images. Similarly, we found that the number of wavelet-decomposition levels had little effect on the
de-noising performance if the number is larger than 3. Thus, we simply perform 5-level wavelet-decomposition
on the “Lenna” image and the “Mandrill” image, and 4-level wavelet-decomposition on the other two images, to
keep the subband images of the lowest resolution roughly the same size for all four test images.

Table 1~3 illustrate the de-noising performance of the two methods in terms of the PSNR for three types of
decompressed images. We find that both methods can significantly improve the objective quality of the processed
images, and the “method 2” outperforms the “method 1” in most cases. For the fractal-compressed image, we
also compare our two methods with the post-processing method by Y. Fisher” and we find that the “method 27
is somewhat better than Fisher’s method.

Figure 3~5 illustrate some examples of the improvement in the visual quality of three types of decompressed
images. Figure 3(a) is a part of the original “Lenna” image. Figure 3(b) is the same part in the JPEG-coded image
at 0.25 bit per pixel (bpp), where the blocking effect is clearly visible. Figure 3(c) and (d) are the corresponding
parts in the post-processed images using “method 1”7 and “method 2”7, respectively. Though both (¢) and (d)
have better visual quality than (b), the blocking effect is removed more completely in (d) than in (c).

Figure 4(a) and (b) are the original “Camera-Man” image and the subband-coded image, respectively. In
(b), we can the strong ringing effect. Figure 4(c) and (d) are the post-processed images using “method 1”7 and
“method 2”7, respectively, where the ringing effects are weaker than in (b).

Figure 5(a) is the fractal-coded “Lenna” image using the codes written by Y. Fisher,” where we can see the
strong blocking effect. Figure 5(b), (¢) and (d) are the post-processed images using the Fisher’s method, our
“method 1”7 and “method 27, respectively. The “method 2” leads to the best perceptual quality.

6 CONCLUSIONS

A powerful, universal and relatively low-complexity method for improving the quality of the decompressed
images resulting from various coding schemes has been presented. It is based on thresholding in the wavelet
domain. In particular, using the undecimated DW'T and the hard-thresholding to avoid the new perceptual
artifacts, results in significant improvement in terms of both the PSNR and the visual quality in the sense that
the various coding artifacts are greatly removed.

In the future work we will investigate the further improvement using the scale-adaptive thresholding.'?



The MATLAB programs for de-nosing are available from the World Wide Web at http://jazz.rice.edu or
by anonymous ftp from cml.rice.edu in the directory /pub/software.
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Table 1: De-Noising performance for JPEG-compressed images

test images | bpp PSNR (dB)
JPEG | method 1 | method 2

0.65 | 35.80 36.08 36.19
Lenna 0.25 | 30.41 31.08 31.42
0.18 | 27.33 28.30 28.57
1.84 | 25.64 25.85 25.74
Mandrill 0.61 | 20.67 20.82 20.84
0.35 | 19.01 19.24 19.29
0.88 | 31.75 32.01 32.04
Camera-Man | 0.34 | 26.44 26.69 26.84
0.24 | 24.30 24.57 24.75
0.92 | 31.33 31.48 31.46
Building 0.36 | 27.00 27.28 27.45
0.27 | 24.75 25.16 25.34

Table 2: De-Noising performance for subband-coded images

test images bpp PSNR (dB)
SBC | method 1 | method 2

0.500 | 34.33 34.76 35.02
Lenna 0.250 | 31.30 31.72 32.01
0.125 | 28.22 28.62 28.95
2.000 | 27.34 27.71 27.60
Mandrill 1.000 | 22.64 23.03 23.03
0.500 | 20.00 20.33 20.37
1.000 | 32.73 33.20 33.26
Camera-Man | 0.500 | 27.95 28.43 28.49
0.250 | 24.65 24.98 25.09
1.000 | 31.47 31.83 31.76
Building 0.500 | 28.78 29.14 29.12
0.250 | 25.23 25.59 25.61

Table 3: De-Noising performance for a fractal-compressed image

test image | bpp PSNR (dB)
fractal | Fisher’s method | method 1 | method 2
0.80 | 34.10 34.43 34.32 34.45
Lenna 0.43 | 30.83 31.35 31.27 31.55
0.28 | 28.02 28.59 28.48 28.69




(c) (d)

Figure 2: De-Noising via dithering and wavelet thresholding



(c) (d)

Figure 3: Artifacts reduction for a JPEG-coded image



Figure 4: Artifacts reduction for a subband-coded image



(c) (d)

Figure 5: Artifacts reduction for a fractal-compressed image



