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ABSTRACT

We propose a novel method for simultaneous noise reduc-
tion and data compression based on shrinking, quantizing
and coding the wavelet packet (WP) coefficients. A dy-
namic programming and fast pruning algorithm is used to
efficiently choose the best basis from the entire library of ad-
missible WP bases, and jointly optimize the bit allocation
strategy and the quantization scheme in the rate-distortion
framework. Soft-thresholding in the wavelet domain can
significantly suppress noise, e.g., the speckles of the syn-
thetic aperture radar images, while maintaining bright re-
flections for subsequent detection and recognition. Optimal
bit allocation, quantization and entropy coding achieve the
goal of compression while maintaining the fidelity of the im-
age.
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1. INTRODUCTION

Synthetic aperture radar (SAR) is an active coherent all-
weather imaging system that operates in the microwave
region of the spectrum. There are two problems in the
practical SAR applications. One is the speckle phenomena.
Speckle results from the necessity of creating the image with
coherent radiation. A fully developed speckle pattern ap-
pears chaotic and unordered. When the detail information
in the image is important, speckle can be viewed as a noise
that causes degradation of the image. Therefore, speckle
reduction is an essential procedure before the procedures of
automatic target detection and recognition. Another prob-
lem is the large amount of SAR data. The data collected
and processed by a SAR system are inherently complex.
Thus, data compression is desirable for quick transmission
of the collected information.

The wavelet transform is a relatively new technique for
multi-resolution decomposition of images and is widely used
in both noise reduction and data compression of SAR im-
ages [1, 2, 3]. Thus, it is very efficient to combine the pro-
cedures of noise reduction and data compression in a single
process of decomposition and reconstruction. As a gen-
eralization of the wavelet basis, the WP, which is a rich
family of orthonormal bases, can be expected to be more
suited to match the non-stationary statistics of the images.
Therefore, it is desirable to fast select the optimal WP basis
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under some criterion and to achieve better performances of
de-noising and compression.

We apply a dynamic programming and fast pruning al-
gorithm to efficiently choose the best basis that jointly
optimize the bit allocation strategy and the quantization
scheme in the rate-distortion sense. Our method can be
viewed as not only a generalization but also a combination
of the methods in [1] and [3]. Our method is different from
that in [4], which chooses the optimal WP basis using the
minimum description length criterion and only optimizes
the thresholding of the WP coefficients rather than quanti-
zation and entropy coding.

Section 2 introduces fundamental background of image
coding based on the WP decomposition. In Section 3, de-
noising via wavelet shrinkage is described. We discuss our
novel algorithm for de-speckling and coding of SAR images
in Section 4. Section 5 describes our experimental results.
Finally, summary follows in Section 6.

2. IMAGE CODING USING WAVELET
PACKET TRANSFORM

The WP bases [5] were introduced recently as a collection
of orthonormal bases for discrete functions of RY. This
library contains the well-known wavelet basis, short-time-
Fourier-transform-like basis, Walsh functions, and smooth
versions of Walsh functions. The library of WP bases
organizes itself into a homogeneous tree (e.g., for two-
dimensional signals such as images, this library has a struc-
ture of a complete quad-tree.), which can be efficiently
searched for a best basis under some optimality criterion.
The entire WP tree can be obtained by recursively decom-
position of both the low-pass subband and the high-pass
subband using a pair of wavelet filters. Each admissible
basis appears as a unique subtree formed by pruning the
whole WP tree in some way, corresponding to a unique
subband decomposition. Due to the non-stationary behav-
ior of images, any particular choice of subband decompo-
sitions, including the widely used wavelet decomposition,
does not provide the optimal WP basis that best adapt to
a given image. On the other hand, it can be shown that
there are more than 2% WP bases for a given signal of size
N. Therefore, fast search algorithm is essential. A key
point for this class of “best-basis” algorithms is that the
cost functional M(-) should be additive, i.e., M(0) = 0 and
MY, Xi) = Y, M(X:), so that it can split nicely across

the Cartesian product. Thus the search is a fast divide-and-



conquer.

An entropy-based algorithm for best-basis selection was
proposed [5]. It chooses the basis with the minimum
Shannon-Weaver entropy, which is a measure of the energy
distribution of an unquantized vector and is not directly
related to quantization and coding. Therefore, this crite-
rion does not guarantee the optimality in the rate-distortion
sense, which is the measure of the “true” performance of
data compression. In [6] a generalized algorithm using the
rate-distortion framework was proposed. Their algorithm is
indeed a combination of the concept of orthonormal tiling of
the spatial-frequency plane using the WP and the discipline
of rate-distortion optimal bit allocation [7]. However, the
computational complexity is much higher than the entropy-
based algorithm.

A major concern of a subband coding system is bit al-
location, the task of distributing a given quota of bits to
subbands to optimize the overall coding performance. Let
Wi(b) denote the distortion incurred in optimally quantiz-
ing the ith subband with b bits of resolution. Let B be the
given fixed quota of available bits. We define the overall
distortion, D, and the total bit rate, R as functions of the
bit allocation vector, b = (b1, b2, ...,br). The bit allocation
problem is to find b that minimizes D(b) = Zf\zl Wz(bz)
subject to the constraint that R(b) = Zf\zl b; < B.

The “hard” constrained problem of minimizing the to-
tal distortion D for a target bits budget R (or vice versa)
can be converted to a relatively “easy” equivalent uncon-
strained problem by using Lagrange multiplier A [7]. Thus
the unconstrained problem becomes the minimization of the
Lagrangian cost function defined as J(A) = D + AR.

It can be shown that the necessary condition for rate-
distortion optimality is that all subbands have the same
slope point A. Based on this condition, we can sweep A
from zero. For a given A, we compute all the bit rates b;’s
of subbands resulting the minimum Lagrangian costs and
sum them together to obtain the total bit rate. We iterate
this process until we achieve the required bit rate.

In our method, we choose the uniform scalar quantizer
(USQ). There are two advantages of using USQ: (i) it is
very easy and fast to implement a USQ alleviating the
computational complexity for the rate-distortion curves.
The trade-off between computational complexity and per-
formance is very crucial in the applications of compression
of very large data set. (it) it is easy to combine the proce-
dure of wavelet domain soft-thresholding, which does good
to both de-noising and data compression, with the proce-
dure of uniform scalar quantization. In our algorithm, each
subband is assigned a finite set of quantizers with different
quantization steps. Hence, the rate-versus-distortion func-
tions of subbands can be easily computed. We use mean-
squared error (MSE) and first-order entropy as the measures
of distortion and rate, respectively. The weighted MSE cri-
terion related to the model of human vision system (HVS)
can also be used to further improve the visual quality of the
reconstructed images.

3. WAVELET THRESHOLDING

A nonlinear method was proposed for reconstructing an un-
known signal from noisy data [8]. The method attempts to

reject noise by damping or thresholding in the orthogonal
wavelet domain and has been proved to work well in many
applications.

Suppose we wish to recover an unknown signal x from
noisy data y, yi = z; + oe;, ©+ = 0,1,...,n — 1, where
€ i (0,1) is a white Gaussian noise, and o is the noise
level. Let % be the estimate of x. Our goal is to optimize
the mean-squared error (MSE) %E[H % —x ||3]. The simple
wavelet-domain thresholding method has three steps:

1. Compute the orthonormal DWT of the noisy data y,
obtaining the wavelet coefficients;

2. Apply the soft-thresholding nonlinearity (shrinkage)

v—t forov >t
n(v) =< 0 for —t<v <1t
v+t forov< —t

to the wavelet coefficients (except the coarsest level)

with a specially-chosen threshold t = t,, = 1/2log(n)o;

3. Perform the inverse orthonormal DWT on the thresh-
olded wavelet coefficients, recovering the estimate X*.

It has been shown that this method has three distinct fea-
tures: (7) the estimate X* achieves almost the minimax MSE
over every one of a wide range of smoothness classes, includ-
ing many classes where traditional linear estimators do not
achieve the minimax rate; (2) this procedure maintains the
sharp features of x (e.g., the edges in images), therefore, it
provides better visual quality than procedures based on the
MSE alone; (7it) the estimate does not exhibit any noise-
induced structures, unlike most minimum MSE methods.
This de-noising method can be extended to the WP trans-
form [9].

The speckle noise in SAR images can be approximately
modeled as a multiplicative 1.i.d. Gaussian noise with unit
mean [10]. Therefore, after the logarithmic operation, it
becomes additive i.i.d. Gaussian noise so that it can be
efficiently suppressed via the above wavelet-thresholding
scheme.

A particular advantage of combining the de-noising pro-
cedure and the compression procedure is that in general,
soft-thresholding does good to data compression. The
wavelet shrinkage decreases the dynamic range of the coeffi-
cients and thresholds those insignificant coefficients. There-
fore, the entropy of the quantized wavelet coefficients is low-
ered. Though we could put the de-noising procedure either
in the coder or in the decoder, in our scheme, we put this
procedure before the quantization according to the above
argument.

4. BASIC IDEA OF THE ALGORITHM

Ideally, we want to jointly optimize the performance of com-
pression and detection. However, this is an intractable opti-
mization problem due to the non-existance of a good mea-
sure for both data compression and noise reduction. So,
our goal here is to optimally compress the SAR image in
rate-distortion sense while maintaining the performance of
de-noising.

Assume that the optimal WP subtree from node » “on-
wards” to the full tree-depth is known. Then by Bellman’s



optimality principle [11], we know that all possible paths
passing through node » must invoke this same optimal “fin-
ishing” path. At each non-leaf node of the tree, there are
two contenders for the “surviving path”, the parent and its
children, with the winner having the lower Lagrangian cost.
According to this sub-optimality, we can apply a dynamic
programming to construct the optimal subtree starting from
the leaf nodes upwards. When we reach the root node, the
best basis with the minimum Lagrangian cost is known.

We first perform a full WP decomposition and soft-
thresholding. Then, we initialize a slope value A and com-
pute the rate-distortion relations and the minimum La-
grangian costs of all subbands with the admissible quan-
tizer sets. We then start from the leave nodes of the entire
WP tree and compare each node with its four child nodes.
For each node, if its Lagrangian cost is less than the sum
of those costs of its four child nodes, we mark this node as
a “merge” node; otherwise, we mark this node as a “split”
node and update its information (Lagrangian cost and the
corresponding rate and distortion) with those of its child
nodes. We recursively do the comparisons until we reach
the root node. Then, we can curve out the optimal sub-
tree for this A by pruning all the sub-trees rooted at those
“merge” nodes and the corresponding rates and distortions.
We can repeat the above process using a bisection search to
find the proper A so that the resulting rate is identical to
the desired bit budget.

The computational complexity of computing the subband
distortion-rate curves counts for a significant percentage
of the total cost of our algorithm. We propose a pruning
method based on the fact that the distortion-rate function
is monotonically decreasing and convex, to fast search for
the minimum Lagrangian cost in each subband image. We
ignore the straightforward proof.

Assume that {R;} is a set of admissible bit-rates for a
certain subband image, satisfying R; < Ry < -+ < Ri_1 <
Ri < Rgy1 < ---. Define the Lagrangian cost J(R,‘) =
D(R;)+ AR;, where D(-) is the distortion-rate function and
A i1s the Lagrangian multiplier. The goal is to find

R = arg Il}gn J(R;) = arg II}{iIl[D(Ri) + AR;].

We claim the following two pruning conditions to accelerate
the search:

Condition 1: J(Ri_1) < J(Rr) = J(Rr—1) < J(Re41);
Condition 2: J(Ri) > J(Rr41) = J(Re—1) > J(Ri41).

Since we include the de-noising procedure in our coding
algorithm, which obviously causes some error between the
de-noised image and the original image, we use the MSE
between the coefficients of the de-noised image and those of
the decompressed image as the distortion.

In the above algorithm, the computational complexity is
mainly determined by the size of the image. In most appli-
cations, we only decompose the image up to 4 ~ 6 levels.
The number of admissible quantizers for each subband is
also a small constant compared to the size of image. Also,
the number of iterations for bisection search of a convex
curve is relatively small. Therefore, the total computational
complexity of our algorithm is O(M N) for an image of size

M x N.

5. EXPERIMENTAL RESULTS

We apply our algorithm to a SAR image provided by the
Lincoln Laboratory, which is an 800 x 800, 256-gray-scale
image. The de-noised image is compressed at 0.126 bits-per-
pixel with both the JPEG algorithm and our WP algorithm
for the purpose of comparison. The speckle phenomena is
clearly visible in the original image (Figure 1) and greatly
removed in the de-noised image without visual loss of de-
tail features (Figure 2). The severe blocking effect can be
clearly viewed in the JPEG-compressed image with a PSNR
34.52dB (Figure 3). The WP-compressed image is free of
any artifact and with a much higher PSNR, 38.18d B (Fig-
ure 4).

6. SUMMARY

An efficient algorithm is proposed for representing the SAR
image with the optimal WP basis in the rate-distortion
framework, and simultaneously suppress the speckle noise
and compress the image data, while maintaining the res-
olution and sharp features of the original image. The
reconstructed image will significantly improve the perfor-
mances of detection, classification and recognition, and re-
quire much fewer number of bits for transmission and stor-
age.
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Figure 1. Original SAR image Figure 3. Compressed image using JPEG

Figure 2. De-noised image Figure 4. Compressed image using WP



