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ABSTRACT

We propose a nonlinear, universal method based on wavelet
thresholding to efficiently improve the performance of var-
ious coding schemes. Coarse quantization of the transform
coefficients often results in some undesirable artifacts, such
as ringing effect, contouring effect and blocking effect, espe-
cially at very low bit rate. We perform the wavelet-domain
thresholding on the decompressed image to attenuate the
quantization noise effect while maintaining the relatively
sharp features (e.g. edges) of the original image. Both the
objective quality and the subjective quality of the recon-
structed image are significantly improved with the reduc-
tion of coding artifacts. Experimental results show that
de-noising using the undecimated discrete wavelet trans-
form (DWT) achieves better performance than using the
orthonormal DWT, with an acceptable computational com-
plexity (O(M N log,(M N)) for an image of size M x N).
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1. INTRODUCTION

In the last decade, transform/subband coding and fractal
coding have been demonstrated to be the efficient tech-
niques for lossy image data compression. In order to
achieve high compression ratios, the transform coefficients
are coarsely quantized, which often result in some unde-
sirable artifacts associated with the basis functions of the
transform, such as the ringing effect and the contouring ef-
fect in the wavelet-transform/subband-coding compressed
images, and the blocking effect in the JPEG/DCT com-
pressed images, especially at very low bit rates. Similarly,
there are also some annoying artifacts (e.g., blocking ef-
fect) in the fractal compressed images. In general, a de-
compressed image can be viewed as a noisy observation of
the original image. Therefore, the task of post-processing
or enhancing the decompressed image, which can be charac-
terized as a typical statistical estimation problem, is then to
extract the original image from the noisy observation of the
form “signal plus additive noise”. The reconstruction noise
in the decompressed images is generally signal-dependent
and spatially correlated, which makes the estimation prob-
lem very difficult. Both the dependence on the original im-
age and the spatial correlation are affected by the various
compression schemes.
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Many methods have been developed to deal with this im-
age enhancement problem [1, 2, 3, 4, 5]. However, most of
these methods have some of the following limitations: (1)
lack of the ability to handle more than one type of coding
artifacts, i.e., dependence on the coding scheme; (ii) lack
of the ability to improve both the objective quality and
the subjective quality; (#2¢) high computational complex-
ity. To reduce the blocking effect in the JPEG/DCT algo-
rithms, Gopinath et al[6] applied soft-thresholding (“shrink
or kill”) to the orthonormal DWT coefficients of the decom-
pressed image, and obtained significant improvement in the
visual quality. In this paper, we show that this method can
also reduce other coding artifacts and improve the objective
quality of the decompressed image. However, it has been ar-
gued [7] that de-noising with the orthonormal DWT some-
times exhibits visual artifacts such as the “pseudo-Gibbs
phenomena” in the neighborhood of discontinuities due to
the lack of translation invariance of the wavelet basis.

In this paper, we propose a more efficient method based
on the “second-generation de-noising” technique [7, 8] to
significantly improve both the objective quality and the
subjective quality in the processed images and to avoid the
“new” artifacts resulted from de-noising. We perform hard-
thresholding (“keep or kill”) on the undecimated DWT co-
efficients of the decompressed image to suppress the recon-
struction noise due to quantization. Our method outper-
forms most of the above methods in terms of the objective
measures if the numerical comparison is possible. The per-
formance of our method is even better than that of the
method in [6] in terms of both the peak signal-to-noise ra-
tio (PSNR) and the reduction of coding artifacts. Another
advantage of our method is that it is independent of coding
schemes in the sense that it can attenuate several types of
coding artifacts. For an image of size M x N, the compu-
tational complexity of our method is O(M N log,(M N)).

The paper is organized as follows. In the next section
we give a short review of the wavelet-domain thresholding
method for noise reduction. We discuss the experimental
results in section 3 and give the conclusions in section 4.

2. DE-NOISING BY WAVELET
THRESHOLDING

A nonlinear method was proposed for reconstructing an un-
known signal from noisy data [9]. The method attempts to
reject noise by damping or thresholding in the orthogonal
wavelet domain and has been proved to work well in many



applications.

Suppose we wish to recover an unknown signal x from
noisy data y, yi = z; + oe;, + = 0,1,...,n — 1, where
ei (0,1) is a white Gaussian noise, and o is the noise
level. Let % be the estimate of x. Our goal is to optimize
the mean-squared error %E[H X—X ||§] The simple wavelet-

domain thresholding method has three steps:

1. Compute the orthonormal DWT of the noisy data y,
obtaining the wavelet coefficients;

2. Apply the soft-thresholding nonlinearity (shrinkage)

v—t forov >t
n(v) =< 0 for —t<v <1t
v+t forov< —t

or the hard-thresholding nonlinearity

(v) = v for |v] >t
M= 0 for v <t

to the wavelet coeflicients (except the coarsest level)

with a specially-chosen threshold ¢ = t,, = /2log(n)o;

3. Perform the inverse orthonormal DWT on the thresh-
olded wavelet coefficients, recovering the estimate x*.

The universal 4/2log(n)o threshold was designed for the
purpose of suppressing noise-induced spikes which spoil the
smoothness of reconstructions. However, if one wants to
only to measure performance by mean-squared error (MSE),
then lower thresholds are better. One important qualitative
feature of this method is that the relatively sharp features in
x (e.g. edges) are maintained while the noise is suppressed
[9].
It has been shown that the soft-thresholding is the MSE
optimal nonlinear function to apply in the orthonormal
wavelet domain if one requires the reconstructed signal to
be at least as smooth as the original, noise-free one. The
hard-thresholding, on the other hand, yields better estimate
in the MSE sense but does not guarantee the smoothness
property cited above. In fact, the de-noised signal using
the hard-thresholding sometimes exhibits somewhat greater
spurious oscillations in the vicinity of discontinuities than
that using the soft-thresholding.

Though the above assumption on the additive noise is
not valid in our applications, i.e., the reconstruction error
in the decompressed image is generally neither white nor
independently, identically distributed (i.i.d.), the wavelet-
thresholding method can still be applied successfully to re-
duce the colored reconstruction noise [6].

De-Noising with the orthonormal DW'T sometimes ex-
hibits visual artifacts, such as the pseudo-Gibbs phenomena
(alternating undershoot and overshoot of a specific target
level) in the neighborhood of discontinuities, due to the lack
of translation invariance of the wavelet basis [7]. These ar-
tifacts are related in some way to the precise alignments
between features in the signal and features of basis ele-
ments; signal exhibiting similar features but with slightly
different alignment in time or scale might generate fewer
of the artifacts. One approach to correct unfortunate mis-
alignments between features in the signal and features in

a basis is to forcibly shift signals so that their features
change positions which will overcome the mis-alignments,
and to unshift the signal after analysis. However, when a
signal contains several discontinuities, these may interfere
with each other: the best shift for one discontinuity in the
signal may also be the worst shift for another discontinuity.
One method to overcome this difficulty is to average out
the translation dependence [7]. For the range of all circu-
lant shifts, one shifts the data, de-noises the shifted data,
and then unshifts the de-noised data. Doing this for each
of a range of shifts, and averaging the several results so
obtained, produces a reconstruction subject to far weaker
pseudo-Gibbs phenomena than the thresholding-based de-
noising using the orthonormal DWT. For the data of size
N, computation of the DW'T of all circulant shifts can be
accomplished by the undecimated (or translation-invariant)
DWT in order of N log,(N) time [7, 8].

Our experiments indicated that in general the hard-
thresholding outperforms the soft-thresholding for noise re-
duction in terms of both the quantitative measures and the
visual quality if the undecimated DWT is used. We at-
tribute this to the fact that the translation-invariant ap-
proach will damp the spurious oscillations introduced by
the hard-thresholding while maintaining a smaller MSE.

3. EXPERIMENTAL RESULTS

In our experiments, we choose four 256-gray-scale images:
Lenna (512 x 512), Mandrill (480 x 480), Camera-Man
(256 x 256) and Building (256 x 256). We denote the method
using the orthonormal DWT and the soft-thresholding, and
the method using the undecimated DW'T and the hard-
thresholding as “method 1”7 and “method 27, respectively.
We apply both methods to post-process the images com-
pressed by the JPEG algorithm, a subband coding (SBC)
algorithm, and a fractal coding algorithm at different bit-
rates.

In the wavelet-thresholding schemes, there are several
parameters that needs to be determined: (i) the type of
wavelets, (i2) the length of wavelet filters, and (7i7) the num-
ber of wavelet-decomposition levels. Since there is no spe-
cial advantage to use any particular wavelet for de-noising,
we simply choose Daubechies’ orthonormal wavelets [10].
While our experiments indicated that the length of the
wavelet filter had little effect on the de-noising performance
in terms of both the PSNR and the subjective measure, we
also found that, for larger images, de-noising with longer fil-
ters would lead to slightly better results. Therefore, we use
Daubechies’ 12-tap wavelet filter for the “Lenna”image and
the “Mandrill” image, and use Daubechies’ 8-tap wavelet
filter for the other two smaller images. Similarly, we found
that the number of wavelet-decomposition levels had lit-
tle effect on the de-noising performance if the number is
larger than 3. Thus, we simply perform 5-level wavelet-
decomposition on the “Lenna” image and the “Mandrill”
image, and 4-level wavelet-decomposition on the other two
images, to keep the subband images of the lowest resolution
roughly the same size for all four test images.

Table 1~3 illustrate the de-noising performance of the
two methods in terms of the PSNR for three types of de-
compressed images. We find that both methods can sig-



nificantly improve the objective quality of the processed
images, and the “method 2” outperforms the “method 17
in most cases. For the fractal-compressed image, we also
compare our two methods with the post-processing method
by Y. Fisher [11] and we find that the “method 2” is some-
what better than Fisher’s method. Figure 1~4 illustrate
an example of the improvement in the visual quality of the
JPEG-compressed “Lenna” image. Though both Figure 3
and Figure 4 have better visual quality than Figure 2, the
blocking effect is removed more completely in Figure 3 than
in Figure 4. More perceptual results can be found in [12].

4. CONCLUSIONS

A powerful, universal and relatively low-complexity method
for improving the quality of the decompressed images result-
ing from various coding schemes has been presented. It is
based on thresholding in the wavelet domain. In particu-
lar, using the undecimated DWT and the hard-thresholding
to avoid the new perceptual artifacts, results in significant
improvement in terms of both the PSNR and the visual
quality in the sense that the various coding artifacts are
greatly removed.
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Table 1. De-Noising performance for JPEG-coded images

test images bpp PSNR (dB)
JPEG | method 1 | method 2

0.65 35.80 36.08 36.19
Lenna 0.25 30.41 31.08 31.42
0.18 27.33 28.30 28.57
1.84 25.64 25.85 25.74
Mandrill 0.61 20.67 20.82 20.84
0.35 19.01 19.24 19.29
0.88 31.75 32.01 32.04
Camera-Man | 0.34 | 26.44 26.69 26.84
0.24 24.30 24.57 24.75
0.92 31.33 31.48 31.46
Building 0.36 27.00 27.28 27.45
0.27 24.75 25.16 25.34

Table 2. De-Noising performance for subband-coded images

test images bpp PSNR (dB)
SBC | method 1 | method 2

0.500 | 34.33 34.76 35.02
Lenna 0.250 | 31.30 31.72 32.01
0.125 | 28.22 28.62 28.95
2.000 | 27.34 27.71 27.60
Mandrill 1.000 | 22.64 23.03 23.03
0.500 | 20.00 20.33 20.37
1.000 | 32.73 33.20 33.26
Camera-Man | 0.500 | 27.95 28.43 28.49
0.250 | 24.65 24.98 25.09
1.000 | 31.47 31.83 31.76
Building 0.500 | 28.78 29.14 29.12
0.250 | 25.23 25.59 25.61

Table 3. De-Noising performance for the fractal-compressed
“Lenna” images

bpp PSNR (dB)

fractal | YF method | method 1 | method 2
0.80 34.10 34.43 34.32 34.45
0.43 30.83 31.35 31.27 31.55
0.28 28.02 28.59 28.48 28.69




Figure 1. Original “Lenna” image (a part) Figure 3. Processed image using “method 1”

Figure 2. JPEG-compressed image at 0.25bpp Figure 4. Processed image using “method 2"



