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ABSTRACT

2-band paraunitary FIR filter banks can be used to gen-

erate a multiresolution analysis with compactly supported
orthonormal (ON) wavelets. The filter design problem is
formulated and solved (a) as a constrained I, optimization
problem and (b) as a constrained L, optimization problem
which allows arbitrary compromises between an Lz and an
Lo approach with both of them as special cases. Additional
flatness constraints can also be easily included. The L, and
the Lo design are based on the Kuhn-Tucker (KT) condi-
tions and the alternation theorem, respectively. Therefore,
optimality of the solution is guaranteed. The method (a) is
a simpler alternative to a known method. The method (b)
solves a more general problem than the approaches known
in the literature including all of them as special cases.

1. INTRODUCTION

As is well-known [2] 2-band paraunitary FIR filter banks
can be used to generate a multiresolution analysis with
compactly supported orthonormal (ON) wavelets. The real-
valued FIR filter bank shown in Fig. 1 must satisfy the con-
dition Hq(z) = —Z_NHo(—Z_l) (N = filter degree) to have
the paraunitary property. Therefore, one can concentrate
on designing only one filter, e.g., the lowpass filter

Ho(z) = ho(k)z7". (1)

Using
: N
H(z) = Ho(z_l)Ho(z) = z h(k)zk, (2)
k=—N
the paraunitary condition becomes
f{(z)—l—f{(—z) = 2¢ (3)

which means [Ni(z) is a halfband filter with h(k) = h(—k).

Furthermore, Eq. (2) shows that fi(em) must be nonnega-
tive.
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Figure 1. Paraunitary 2-band FIR filter bank

There are several ways of finding a set of filter coefhi-
cients ho(k) meeting these conditions which, together with
ij:o ho(k) = v/2¢, uniquely determine a compactly sup-
ported ON wavelet basis. If the corresponding wavelet func-
tion is required to be regular, one usually computes f{(z)
as a half-band maximally flat (at z = 1 and z = —1) filter
[2, 6]. These filters are known to have poor frequency se-
lectivity compared to an La or Lo design which is often an
important property in applications. On the other hand the
latter filter design gives rise to wavelets with poor regular-
ity. Obviously, there is a tradeoff between regularity and
selectivity.

The Lo design problem can be solved by applying the
Remez algorithm to the coefficients h(k) — the autocorre-
lation of ho(k) — and spectral factorization for computing
ho(k) [10]. To increase the regularity one can include ad-
ditional flatness at z = 1 using linear programming with
explicit flatness constraints. This is expensive in terms of
storage and computation time [14]. These disadvantages
can be overcome by a modified Remez algorithm where the
positivity constraint is met by iteratively adapting the de-
sired function [14]. The flatness constraint can be included
by a relatively complicated parametrization.

There are several approaches for solving the L, design
problem. One approach tries to minimize the stopband en-
ergy in terms of the so-called lattice coefficients [16]. This
leads to a nonlinear optimization problem with the well-
known difficulties of finding an initial solution and charac-
terizing the optimal solution. The advantage of this ap-
proach is that all the necessary conditions (2), (3) men-
tioned above are automatically met by the lattice parame-
terization.

Alternatively one can try to minimize the stopband en-
ergy using the filter coefficients ho(k) and imposing the con-
straints

h(2k) = box, (4)

where 8gx is the Kronecker symbol. Eq. (4) is equivalent to
the above constraints (2), (3). This quadratic optimization
problem with nonlinear constraints can be solved using a
general purpose constrained optimization method [11] or



the method of Lagrange multipliers [12]. Again there is the
problem of finding an initial solution and characterization
of the optimal solution.

We present two different methods for the design of parau-
nitary FIR 2-band filter banks that do not have the above
disadvantages. In both methods we guarantee the halfband
property by using the formulation

HQ) =c+ S breos[(2k—1)0], J=2FL 5

2
k=1

where H(Q) = H(e!"?) is used for convenience. Thus, it is
sufficient to only consider the stopband B.

Problem: The problem we like to solve is to minimize
|[H ()|, where || - || denotes either the Ly or the Lo norm
over the stopband B, subject to the (in)equality constraints

Bib,Q) = A H(@)famn =0, (6)
By(b,Q) = H(Q)>0, Q¢B. (7)

The vector b contains the approximation parameters by.
Usually one requires Eq. (6) to hold for m = 0,2,..., M
which guarantees flatness of H(Q) up to order M + 1 at
=0 and Q = 7. The inequality constraints (7) explicitely
state the nonnegativity condition mentioned above.

The desired filter coefficients can be easily computed us-
ing the spectral factorization approach of [7].

2. DESCRIPTION OF THE PROCEDURE

2.1. L. Problem

The first method solves the Lo, problem for H(z) by a mod-
ified Remez procedure. We apply an idea of Grenez [4] to
guarantee the nonnegativity of H(£2). In contrast to [14]
the desired function does not change during the algorithm
which leads to a cleaner formulation. We give a simple way
to include the flatness constraints by appending explicit
equations thereby avoiding the complicated parametriza-
tions of [14]. However, the parametrization of [14] can be
used in our algorithm too.

Let us first exclude the equality constraints (6) and only
discuss the nonnegativity constraints (7). In [4] Grenez
presents a method for constrained (by upper and lower
bound tolerances) Chebyshev design for general linear phase
FIR filters. He shows that the algorithm converges to the
optimum solution. This idea can be adapted to our prob-
lem since the inequality constraints (7) can be interpreted
as a lower bound tolerance.

The algorithm is very similar to the classical Remez al-
gorithm [13] with the major difference that here the error
has to alternate between 0 and é (the levelled error) instead
of —é and 6. We describe a single exchange version of that
algorithm.

Initialization: Find an initial solution such that H () al-
ternates at least J 4+ 1 times over B. The set of these
extremal frequencies is the initial reference set.

Exchange: Find that frequency §2; that exceeds the actual
tolerance scheme 0,6 the most and include it in the
actual reference set. Determine a frequency to leave the
actual reference set such that the alternation property
is preserved.

Interpolation: Compute new coefficients b;x and a new
levelled error & such that H () alternatingly interpo-
lates 6 and 0 over the reference set.

To include the flatness constraints (6) this algorithm has
to be slightly modified. First notice that a desired flatness
up to order M + 1 requires M /2 parameters. To accomplish
this one has to reduce the number of reference points by
M /2. Furthermore, the search for the maximum violation
of the tolerance scheme has to be done with the exclusion
of the frequency =.
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Figure 2. L. design with J =7 and Q. = 11377/2048. (a)
M=0;(b) M =2;(c) M =4.

Alternatively, the flatness constraints may be included
similarly to the approach in [14]. There, a relatively com-
plicated parametrization avoids the explicit inclusion of (6)
and thus the numerical problems arising when dealing with
higher degree of flatness. It is not clear, however, that nu-
merical problems do not ocur elsewhere in the process of
computing the filter coefficients.

Notice that we could also use frequency dependent
weighting or lower bounds and a desired function larger
than 0. To summarize, we present an alternative, simpler,
and somewhat more general method than does [14] with
similar computational and storage load.

Example 1: We give three examples for the L., design
with J = 7, stopband frequency Q. = 11377/2048 and M =
0,2, 4 respectively. As can be seen in Figure 2 the ripple
size increases with increasing order of flatness. In contrast
to Daubechies filters, however, we have control about the
selectivity of the resulting filter.

2.2. L, Problem

Our second method solves a constrained L problem for
H(Q). To our knowledge there is no solution to this prob-



lem in the generality with which we solve it. The nonnega-
tivity constraint is included using the ideas of [1, 9, 8, 15] for
constrained filter design. Specifically we refer to [15] where
a constrained L approximation over the whole frequency
range [0, 7] without any transition bands is considered. No-
tice that the lower bound constraints in (7) can be easily
augmented by upper bound constraints, thus prescribing
the Chebyshev error |H(f2)||o. As is shown in [15] it is
sufficient to prescribe the upper and lower bound tolerances
for the local extrema. This approach has the following in-
teresting characteristics. (1) There is no ‘don’t care’ region
(which corresponds to the fact that one usually does care
if the frequency response is not monotonic in the transition
band) and consequently the minimization of the error is
performed over the whole frequency range. (2) Arbitrarily
small tolerances can be prescribed leading to extra ripple
solutions. (3) There is nothing like a stopband frequency.
Instead, the transition band adjusts itself according to the
tightness of the constraints.

As can be seen from our problem formulation above, we
have a quadratic optimization problem subject to linear
equality (6) and inequality (7) constraints. We use the nec-
essary and sufficient Kuhn-Tucker optimality conditions® to
construct an iterative algorithm. It basically consists of a
series of equality constrained problems which are solved by
the method of Lagrange multipliers. Each of these steps
has the following form:

1. Solve the linear system of equations

Ve{llH(Q)|5+ 1 B(b,Q)} =0  (8)
VullHQ) + " B(b,Q)} =B(b,Q)=0  (9)

for b and g with the superscript 17" denoting transposi-
tion. p are the Lagrange multipliers corresponding to
the constraints B(b, Q) = 0. These constraints include
all the equality constraints (6) (€ = 7) and all those
constraints (7) with equality signs where the actual fre-
quency response has a local extremum which violates
the constraints.

2. Check whether any of the Lagrange multipliers corre-
sponding to the constraints (7) are negative. If this
is the case remove the constraint corresponding to the
most negative one and repeat the first step. Else stop.

With this solution a new frequency response is computed
and the corresponding set of local extrema violating the
constraints is determined (similar to the Remez algorithm).
Since this algorithm takes the Kuhn-Tucker optimality con-
ditions into account convergence of the algorithm is tanta-
mount to optimality.

Example 2: We give two examples for the L, design
with J = 5 and only lower bound inequality constraints.
Figure 3 shows the result for M = 0 (flatness up to order 1)
and M = 4 (flatness up to order 5) respectively. The com-
parison with Daubechies filters of length 4 (same order of
flatness as in Figure 3(b)) and length 10 (same filter degree
as our filter ho(k)) clearly shows that one can considerably
improve the selectivity of the Daubechies filters by increas-
ing the filter degree while keeping the order of flatness or by
giving up some flatness constraints and keeping the degree.

1The Kuhn-Tucker conditions generalize the idea of Lagrange
multipliers for equality constraints to inequality constraints. The
basic difference to the method of Lagrange multipliersis that the
multipliers have to be nonnegative.
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Figure 3. L, design for J = 5 and lower bound inequality con-
straints only. The dashed lines correspond to the Daubechies
filter of length 4 and 10 respectively. (a) M = 0; (b) M = 4.

Example 3: Here we use the same design parameters
as in the previous example but additionally impose the up-
per bound constraint H(2) < 0.04,© € B. The resulting
frequency responses are depicted in Figure 4 and exhibit
an equiripple behaviour. Note that an arbitrarily small up-
per bound could be prescribed due to the fact that we do
not specify a stopband frequency. Note also that arbitrary
tradeoffs between the Lz and these equiripple solutions can
be attained by continously decreasing the upper bound con-
straint. Again there is an obvious tradeoff between flatness
of the filters (Daubechies filters) and selectivity (M = 0).

3. DISCUSSION AND SUMMARY

As the examples above show we have presented two very
flexible and versatile algorithms for the design of parauni-
tary 2 band filter banks. The algorithm for an L. design
essentially solves the same problem as does [14]. Our for-
mulation, however seems to be more straightforward and
gives rise to a slightly more general formulation.

The second algorithm finds a constrained L, solution for
ﬁ(z), which corresponds to an L4 solution for Ho(z). We
are currently investigating whether the results of this design
can be used as initial solutions for the algorithms based
on an Ly approximation for Ho(z). As mentioned above
these approaches employ a nonlinear optimization approach
and an L4 design should lie relatively close to the La solu-
tion. The second algorithm allows a wide range of speci-
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Figure 4. L, design for J = 5 and upper (0.04) as well as lower
bound inequality constraints. The dashed lines correspond to
the Daubechies filter of length 4 and 10 respectively. (a) M =
0; (b) M =4.

fications. It is possible to include arbitrary linear (in the
coefficients bx) equality constraints, like the flatness con-
straints, and also arbitrary (possibly frequency dependent)
upper bounds. As a special case we get equiripple filters.
There are tradeoffs between the Lo design, the L. design
and the order of flatness possible. Also, we may use arbi-
trary (possibly frequency dependent) weighting of the L.
error or prescribe a stopband frequency thus giving up the
possibility of prescribing arbitrarily small tolerances.

Another interesting question is the impact of the differ-
ent designs on the scaling and wavelet functions and espe-
cially on their degree of regularity. Furthermore, it might
be advantageous to use these filters for applications such as
wavelet denoising of SAR images, enhancement of decom-
pressed images or image compression [3, 5]. We will discuss
these problems in more detail and give more examples in a
planned journal version. Matlab m-files are available from
the authors.

REFERENCES

[1] Adams, John W. FIR digital filters with least-squares
stopbands subject to peak-gain constraints. I[FEF
Transactions on Circuits and Systems, 39:376-388,
April 1991.

(2]

(3]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

Daubechies, Ingrid . Orthonormal bases of compactly
supported wavelets. Comm. Pure Appl. Math, 41:909—
996, 1988.

R. A. Gopinath, M. Lang, H. Guo, and J. E. Odegard.
Wavelet-based post-processing of low bit rate trans-
form coded images. Technical Report CML TR94-15,
Computational Mathematics Laboratory, Rice Univer-
sity, Houston, TX, February 1994. accepted for ICIP
1994, Austin, TX.

Grenez, F. Design of linear or minimum-pase
FIR filters by constrained Chebyshev approximation.
EURASIP Signal Processing, 5:325-332, 1983.

H. Guo, J. E. Odegard, M. Lang, R. A. Gopinath, I. Se-
lesnick, and C. S. Burrus. Wavelet based speckle reduc-
tion with application to SAR based ATD/R. In Proc.
Int. Conf. Image Processing, Austin, TX, November
1994. IEEE. Also Tech report CML TR94-02, Rice

University, Houston, TX.

Herrmann, Otto . On the approximation theorem in
nonrecursive digital filter design. IFEF Transactions
on Circuit Theory, CT-18:411-413, May 1971.

Lang, Markus. A new and efficient program for finding
all polynomial roots. Technical Report 9308, Depart-
ment of Electrical and Computer Engineering, Rice
University, Houston, TX, 1993.

Lang, Markus, and Joachim Bamberger. Nonlinear
phase FIR filter design with minimum ls error and ad-
ditional constraints. In IEFE International Conference
on Acoustics, Speech, and Signal Processing, pages 111-
57-111-60, 1993.

Lang, Markus, and Joachim Bamberger. Nonlinear
phase FIR filter design according to the I3 norm with
constraints for the complex error. FURASIP Signal
Processing, 36, 1:31-40, March 1994, reprint (subject
to type setting errors) in July.

Mintzer, F. Filters for distortion-free two-band mul-
tirate filter banks. IFEFE Transactions on Acoustics,
Speech, and Signal Processing, ASSP-33, June 1985.

Nguyen, Truong. A quadratic-constrained least-
squares approach to the design of digital filter banks.
In IEFFE International Symposium on Circuits and Sys-
tems, pages 1344-1347, 1992.

J. E. Odegard, M. Lang, and C. S. Burrus. Design
of filter banks and wavelets using Lagrange multipli-
ers. Technical Report CML TR94-07, Computational
Mathematics Laboratory, Rice University, Houston,
TX 77251, 1994.

Parks, T. W. and C. S. Burrus. Digital Filter Design.
John Wiley, New York, 1987.

Rioul, Olivier, and Pierre Duhamel. A remez ex-
change algorithm for orthonormal wavelets. submitted

for IEEE CAS 1L
Ivan W. Selesnick, Markus Lang, and C. Sidney Bur-

rus. Constrained least square design of FIR filters
without specified transition bands. submitted to IFEFE
Transactions on Signal Processing.

Vaidyanathan, P. P. Multirate Systems and Filter
Banks. Prentice Hal, Englewood Cliffs, NJ, 1992.



