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ABSTRACT

We describe a Remez type exchange algorithm for the de-
sign of stable recursive filters for which the Chebyshev norm
of H(w) — F(w) is minimized, where H(w) and F(w) are the
realized and desired magnitude squared frequency responses.
The number of poles and zeros can be chosen arbitrarily and
the zeros do not have to lie on the unit circle. The algorithm
allows us to design filters with non-conventional frequency re-
sponses with arbitrary weighting functions. It also gives opti-
mal minimum phase FIR filters and Elliptic recursive filters as
special cases. We discuss three main difficulties in the use of
the Remez algorithm for recursive filter design and give ways
to overcome them.

1. INTRODUCTION

The approximation algorithm we use minimizes the Chebyshev
norm of H(w)—F(w) where H(w) and F(w) are the realized and
desired magnitude squared frequency responses respectively.
Our approach constrains the approximation H(w) to be non-
negative, for then it can be spectrally factored to obtain a
stable filter whose magnitude squared frequency response ap-
proximates F'(w). To obtain these nonnegative approximations
we modify the rational Remez exchange algorithm described by
Powell [14] (also see [20]).

It appears that the rational Remez exchange algorithm is
infrequently used for the design of recursive (IIR) digital fil-
ters. Among the possible reasons for this is the need to solve
a set of nonlinear equations at each iteration. These equations
have multiple solutions and are generally solved with Newton’s
method which may give a useless solution. However, by turning
the nonlinear equations into a generalized eigenvalue problem
one obtains every solution.

Another reason that the rational Remez exchange algorithm
is not commonly used is the necessity that the magnitude
squared approximation be nonnegative. The relevant con-
strained approximation problem can, however, be solved as
easily as the unconstrained problem. In fact in [7] it was shown
how to incorporate upper and lower bound constraints in the
Parks-McClellan FIR filter design program. Here, we describe
the necessary modifications to the rational algorithm.

Possibly the most important reason the rational Remez ex-
change algorithm has not been more widely used is that it is
not guaranteed to converge. It fails to converge when all the
solutions to the nonlinear equations associated with the inter-
polation step have denominators that are not strictly positive.
We suggest a method for overcoming this situation by perturb-
ing the reference set appropriately. We have observed that it
is sometimes necessary to change the reference only slightly to
make the rational Remez converge successfully.

Some papers on the design of IIR filters according to the
Chebyshev norm require all the zeros of the filter to lie on
the unit circle [8, 9, 13, 18] or require a special form for the
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frequency response [19]. Although the best Chebyshev approx-
imation may indeed have all its zeros on the unit circle, it may
not and the above referenced methods will then give a sub-
optimal solution. For example, an optimal wide band low pass
filter with only 2 poles will often possess zeros off the unit
circle. Deczky [3, 5] poses a general optimization procedure
based on second order sections and hence these algorithm may
converge to a local optimum. In [12] an algorithm is given
which relies on the desired frequency response being bandpass
so that the numerator and denominator can be treated inde-
pendently. The differential correction algorithm used in [6]
is a robust algorithm but is computationally intensive since it
requires the solution to a sequence of linear programming prob-
lems and does not take advantage of the alternation property
(see below). An earlier paper that also uses linear program-
ming methods is [15].

2. THE RATIONAL REMEZ EXCHANGE
ALGORITHM

The Remez exchange algorithm for Chebyshev approximation
by rational functions is based on the alternation property and
an interpolation step, as is the polynomial Remez algorithm.
We use the notation,

H(w) = bo + b1 cos(w) + ... + by cos(mw) (1)

1+ ay cos(w) + ... + an cos(nw)

for the realized magnitude squared frequency response and de-
note the numerator and denominator by B(w) and A(w) re-
spectively. We call the set of all such functions R,, .. We let

Ry, n be the subset of Ry, , for which the denominator has no
zeros in [0, 7).

Let S C [0,7] be a union of intervals and let F'(w) be the
desired non-negative function. By the best rational Chebyshev
approximation from Fm’n to F(w) over S we mean the function
H(w) in men that minimizes

() = F(w)l| = max |H(w) - Fl)].

For any approximation H(w), we denote the error function
H(w) — F(w) by E(w).

Alternation Property: Recall that the best Chebyshev
approximations by polynomials (n = 0) are uniquely charac-
terized by an alternation property. However, in the rational
case, this condition is only sufficient [14]:

Theorem 1 Let (w1, ...,wm4nt2) be a sequence of points of S
in ascending order (a reference set), and let F'(w) be a contin-

uous function on S. If H(w) is in Rymn and if the equations
H(wi) +(=1)'8 = F(wi) (2)

fori=1,...m+n+2 hold for |§| = ||H(w) — F(w)||, then
H(w) is the best Chebyshev approzimation to F(w) from the
set of rational functions Rmyn.

However, the size of the reference set of the best approxima-
tion may be less than m + n» + 2, and in this case, the best



approximation is called degenerate. For more information, see
the discussion of the defect of the best rational approximation
in [20] or [2].

The progression of the rational Remez algorithm relies on
the following key fact. If (¢) the set S over which the approxi-
mation is performed consists of exactly m + n + 2 points and
(zz) the best approximation does indeed have m + n + 2 ex-
tremal frequencies, then the best approximation over S can be
found by solving (2). This is an interpolation problem and its
solution is explained below.

The rational Remez algorithm follows the same strategy as
the polynomial Remez algorithm:

1. Initialization: Select a reference set of m + n + 2 points.

2. Interpolation: Calculate the best approximation to
F(w) over this reference set. (Solve the system (2)).

3. Update: Update the reference set exactly as in the poly-
nomial Remez algorithm. Go back to step 2.

Interpolation Step: Although the system in (2) is nonlin-
ear in the coefficients of H(w) = B(w)/A(w), it can be written
as a generalized eigenvalue problem [14]: rewrite (2) as

B(w;) + (1) 8 A(w;i) = F(w;)A(w:)

where w; forz =1, ..., m+n+2 is the current reference set and
the unknowns are 6 and the coeflicients of B(w) and A(w). |6|
is called the levelled reference error. In matrix notation,

Mlb—l—éDlea: DzMza (3)

where

b = (bo,...,bm)"

a=(1,a1,...,an)"

(M1b)i = B(wi)  (Mga)i = A(wi)

(D1)ii =(=1)"  (Dg)ii = F(wi)
Specifically, D and Do are diagonal matrices and

1 cos(wy) cos(muw1)

Ml:

1 cos(wr) cos(mwr )

(where L = m+n+2) and similarly for M. Because My has

full rank m + 1 there is a matrix Q of size n+1 by m +n + 2
with full rank such that QM; = 0. Applying Q to (3) we
eliminate b and obtain the equation for é and a

Once 6 and a are found, b is found by solving a linear system
(see (3)). Equation (4) is a generalized eigenvalue problem (it
is of the form Ax = )\BX). Since there are n 4+ 1 general-
ized eigenvalues 8, we must choose an appropriate one. This is
straightforward because there will be at most one generalized
eigenvalue for which the corresponding denominator A(w) is
positive over the current reference set [14, 16]. If there is no

such value, then the best approximation from R, to F(w)
over the reference set is degenerate: it has fewer than m+n+2
extremal points. However, even if there is an generalized eigen-
value that gives rise to a denominator positive over the refer-
ence set, it may become negative elsewhere on S, the domain
of approximation. In either case, the Remez algorithm fails
and one must use some corrective measure or an alternative
approximation method (see below).

The rational Remez algorithm may fail for two reasons, but
in both cases, the failure shows up in the same way: the refer-
ence set on some iteration gives rise to no positive denominator.
The two reasons the algorithm may fail are:

1. The best approximation from men to F(w) over S is de-
generate. In this case, either the best approximation from
Ry, n over some reference set in the course of the algo-
rithm is degenerate, or the algorithm yields a sequence of
approximations that approach degeneracy.

2. Sensitivity to the initial reference set. In this case, the
algorithm fails even though the best approximation from

Ry, n is not degenerate.

Unfortunately, it is not possible (to our knowledge) to decide
at the time of failure which of these two reasons led to failure.

It is interesting to note that degeneracy of the best approx-
imation over the set S is very rare: for a given function, all
intervals on which it has degenerate best approximations form
a set of measure zero [17]. For this reason, we assume in this
paper that the best approximation is non-degenerate. Near
degenerate best approximations are, however, not uncommon.
Furthermore, it is the nearly degenerate best approximations
that are more computationally difficult to find, for they are
sensitive to the initial reference set. Unless the usual reference
set update procedure is modified failure of the the rational
Remez algorithm for these near degenerate cases is imminent.

If Ey,, denotes the Chebyshev error of the best approxi-

mation from Rmyn and if the best approximation from Rmyn
is nearly degenerate, then EJ,_;,_;, the Chebyshev error of

the best approximation from R,,_1 -1, is usually only slightly
higher than £, ,. That is, by reducing the number of poles
and zeros both by one, a nearly equivalent approximation can
be obtained. Therefore, it is advantageous to reduce the or-
der in this way. For by doing so, the computation required
for implementing the filter is reduced while the increase in the
Chebyshev error is small. (See example 2 below.) Although
a nearly degenerate best approximation may be discarded in
preference for a lower order best approximation, the ability to
compute nearly degenerate best approximations is nevertheless
valuable for the purposes of comparison.

Updating the Reference Set Assuming the algorithm has
not failed, the reference set is updated in exactly the same way
as in the polynomial Remez algorithm. That is, a new reference
set is found such that

1. The current error function, E(w), alternates sign on the
new reference set.

2. |E(w)| > |8| for each point, w, of the new reference set.

3. |E(w)| > |8] for at least one point, w, of the new reference
set.

As long as the three conditions above are satisfied and there
is a corresponding positive denominator, the levelled reference
error will increase.

Convergence: As in the polynomial Remez algorithm, it
can be shown that the levelled reference error || increases from
one iteration to the next as long as the reference set at each
iteration gives rise to a positive denominator. Moreover, on
each iteration, || gives a lower bound for the Chebyshev error
of the best approximation, That is, |§] < E*, where E™* is the
Chebyshev error of the best approximation. On each iteration,
an upper bound for E* is given simply by the maximum of the
absolute value of the error function, F(w). As in the polyno-
mial Remez algorithm, these upper and lower bound for E*
give a meaningful stopping criteria.

3. OVERCOMING FAULTY REFERENCE SETS

When no solution to the generalized eigenvalue problem of the
interpolation step gives rise to a positive denominator, we sug-
gest perturbing the reference set in a systematic manner.



First, suppose that the reference set on some iteration gives
rise to a positive denominator (there exists a generalized eigen-
vector solving (4) that are the coefficients of a positive cosine
polynomial). As noted above, it may be the case that the new
reference set obtained by updating the current reference set
with a multiple (or single) point exchange scheme may fail to
give rise to a positive denominator.

One way of overcoming this failure is given by the differential
correction algorithm [1, 4, 6, 11]. It is a method for calculating
best rational Chebyshev approximations by solving a sequence
of linear programming problems. It is possible to combine the
Remez and differential correction algorithm as is done in [10],
but because the differential correction algorithm is itself an
iterative procedure, we prefer another method for overcoming
failure explained as follows.

The single point exchange scheme for updating the refer-
ence set 1s typically carried out by first finding the point, call
it Wpew, at which |E(w)| attains its maximum value and sec-
ond, by replacing a point in the reference set by wnew. The
appropriate point to replace, call it wy, is uniquely determined
by the conditions listed above for updating the reference set.

If the reference set obtained by the single point exchange
scheme fails to provide a positive denominator, instead of re-
placing w, by wpew, our approach replaces wy by (wr+wnew)/2.
If wy and wpew are located on opposite ends of [0, 7], as occa-
sionally occurs, then subtracting = is necessary. If the resulting
reference set again fails to provide a positive denominator or
if |E((wr + wnew)/2)| < |(5|, then our approach replaces w, by
%wr + %wnew. For as long as the new reference fails to provide
a positive denominator and an increase in |§| our approach
replaces w, by (1 — %)wr + %wnew. That is, our approach
employs successively smaller perturbations to the reference set.

If no viable reference set is found, then, with respect to the
grid density, the new reference point (1 — #)wr + %wnew will
eventually equal w,. In this case, our approach uses another
value for wpew. Namely, wpeyw is taken to be the point at which
|E(w)| attains its second greatest local maximum. With this
new value of wypew, our approach carries out the single point
exchange again, and subsequently replaces w, by (1 — QL,C)wT +
%wnew for Kk =1,2,3,... until a viable reference set is found.
Again, if none is found, wyew is taken to be the point at which
|E(w)| attains its third greatest local maximum, and so on.

By testing this sequence of candidate reference set updates,
our approach usually finds one that yields a positive denomi-
nator and an increase in |§|. Continuing in this manner usually
results in successful convergence to the best approximation.

Sometimes however, no perturbation of the reference set by
a grid point results in a viable reference set. In this case, either
the best approximation is actually degenerate, or more likely,
more than a perturbation is needed to obtain a reference set
from which the Remez algorithm can be made to converge.
In our experience, this can be overcome by moving a reference
point from one end of the interval [0, 7] and inserting it between
the two reference points on the other side of the interval.

These observations were collected primarily from experi-
ences with the design of low pass filters, but it is our expecta-
tion that the same phenomena are found in general and that
the same corrective measures will prove useful. The preceding
discussion also assumes that a viable initial reference set has
been found. Usually it is not difficult to find an initial ref-
erence set giving rise to a positive denominator, although we
have not arrived at an entirely robust method for doing so.

4. CONSTRAINED RATIONAL REMEZ
ALGORITHM

In the design of IIR filters, we wish to find a nonnegative func-
tion approximating the desired magnitude squared frequency

response. This constrained approximation is addressed in [7]
for FIR filter design. Furthermore, the optimality property of
the resulting approximations is maintained [7]. Here we make
appropriate modifications to the rational Remez algorithm.

We impose a constraint on the maximum and minimum val-
ues of H(w). We call these constraints u(w) and !(w) for ‘upper’
and ‘lower’. We modify the interpolation step by constructing
the rational function interpolating F(w;) 4+ (—1)%6, u(w;), or
l(wi) at w; depending on the error function. The lower con-
straint is violated at w; if

Fws) — |8]sgn(F(wi) — H(wi)) < l(w) (5)
while the upper constraint is violated at w; if
F(w:) + |6|sgn(H(wi) — F(wi)) > u(w). (6)

The resulting equations are as above, (3), but

(P = {?—1)1‘ e o (OB (7)
u(ws) i (6) at w;

(Dg)i;i = l(wi) if (5) at w; (8)
Fw;) else

As above there is a matrix Q such that QM = 0, and by
applying Q to (3) we obtain again a generalized eigenvalue
problem. Except for the differences in D and Do, the inter-
polation step of the (upper and lower bound) constrained and
unconstrained Remez algorithms are the same.

Updating the reference set from one iteration to the next in
the constrained Remez algorithm requires some more care than
it does in the unconstrained version. For the unconstrained
version, it is sufficient to use the value of the error function at
its local maxima and minima to choose new reference points.
However, for the constrained version, it is necessary to check
points of H(w) that violate the constraints. While the un-
constrained version uses |H (w;)| — |8] to select new reference
points (this value should be positive), the unconstrained ver-
sion should use this value at points where the constraint is not
violated and one of the values, {(w;) — H (w;) or H(w;) —u(w;),
where the upper or lower bound constraint is violated.

In order to obtain non-negative approximations, we simply
take {(w) to be 0 and we do not use u(w). In order to design
Elliptic filters, it is necessary to take u(w) to be 1.

5. EXAMPLES

Example 1 The 13 minimum phase filters with a total number
of poles and zeros equal to 12 were designed for an ideal low
pass filter with a pass band edge at 13417/2048 and a stop
band edge at 13907/2048 (so that the band edge is at 27/3).
The total number of grid points used was 2049 for the interval
[0, 7] including the end points and the zero weighted transition
band.

The Chebyshev error as a function of the number of zeros is
plotted in Fig. 1. As can be seen, the use of two poles signifi-
cantly reduces the Chebyshev error of the best approximation.

For this example, when the number of zeros is greater than
6, the optimal filter possesses zeros lying off the unit circle.
For these cases, the optimal filter can not be found with the
methods for filter design requiring the zeros to lie on the unit
circle.

Example 2 We design a filter with 8 zeros and 3 poles whose
magnitude squared frequency response is nearly degenerate.
The ideal frequency response is a low pass filter with a pass
band edge at 14267/2048 and a stop band edge at 14757 /2048.
The total number of grid points used was 2049. This is an
example in which updating the reference set from iteration to
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Figure 1. The Chebyshev error as a function of the number of
zeros for example 1.
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Figure 2. The filters for example 2.

iteration requires small perturbations, for the usual exchange
methods lead to failure.

The Chebyshev error for the resulting filter was Eg,; =
0.040120. The pole-zero plots, the magnitude squared fre-
quency response and the error function are shown on the left
in Fig. 2. A pole and a zero almost cancel as is typical for
nearly degenerate approximations. Here, the zero is at z = —1
and the pole is just inside the unit circle on the real line.

Since a pole and zero almost cancel, it makes sense for prac-
tical considerations to decrease the number of poles and zeros
by one each. The resulting lower order filter, shown on the
right in Fig. 2, is no longer nearly degenerate and the Cheby-
shev error is only slightly greater at E7, = 0.040581. Notice
that the lower order filter has an ‘extra’ ripple. However, the
frequency at which this extra ripple occurs is not an extremal
point, for |E(w)| does not attain its maximum there.

In general, as the best approximation for a fixed number
of poles and zeros becomes more degenerate, the size of the
extra ripple in the best approximation of lower order rises to
the Chebyshev error. When the best approximation is in fact
degenerate, then there is exact pole-zero cancellation and the
best approximation of lower order is identical.

If the degree of the approximating function is reduced by
reducing only the number of poles by one, then one obtains
Eg 5 = 0.040483. If the number of zeros is reduced by one,
then one gets E7,; = 0.040487. As expected, Eg, and E7,
lie between Ej ; and E7 ,, suggesting that, since E3 s = E7 5,
the best trade-off between complexity and quality of approx-
imation is given by the filter with 7 zeros and 2 poles. That
is, when an approximation is nearly degenerate, reducing both
the number of zeros and poles by one generally makes sense.

6. SUMMARY

We have described a flexible, efficient Remez algorithm for the
magnitude squared design of IIR digital filters in the frequency
domain. The number of poles and zeros can be chosen arbi-
trarily and the zeros do not have to lie on the unit circle.

We have addressed three main difficulties in the use of the
Remez algorithm for IIR filter design: We use the generalized
eigenvalue problem to solve the relevant nonlinear equations of
the interpolation step. We impose nonnegativity constraints
so that spectral factorization can be employed. Reference set
degeneracy is overcome by adjusting the reference set using a
sequence of successively smaller perturbations.

One example illustrated the way in which the Chebyshev
error of the optimal filter behaves as a function of the number
of zeros when the number of poles and zeros is kept constant.
A second example examined a nearly degenerate best approx-
imation and aspects of near degeneracy were discussed.
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