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ABSTRACT

A study of the phase and amplitude sensitivity of the recently
proposed Rényi time-frequency information measure leads to
the introduction of a new “Jensen-like” divergence measure.
While this quantity promises to be a useful indicator of the
distance between two time-frequency distributions, it is lim-
ited to the analysis of positive definite TFDs. In spite of this
rather severe limitation, this measure could prove useful for
time-frequency based detection. We illustrate with an exam-
ple of detecting a signal in additive noise.

1. TIME-FREQUENCY INFORMATION
MEASURES

Information and entropy functionals have shed new light on
the question “what is a signal component” by providing quan-
titative measures of signal complexity in the time-frequency
plane [1, 2, 3]. Their theoretical basis relies on the formal
analogy between the time-frequency distributions (TFDs) of
Cohen’s class and bidimensional probability density func-
tions. In particular, a large class of TFDs possesses the fol-
lowing marginal characteristics (for unit energy signals):

/ .t fdf = |s(o)P, / Ot it = S(HP,

//Cs(t,f)dtdf = 1.

The probabilistic interpretation of a TFD suggests the Shan-
non entropy

H(CS) = _//CS(t’f) log, CS(t’f) dedf

as a natural candidate for a time-frequency information mea-
sure. Unfortunately, however, most Cohen’s class TFDs take
on negative values, prohibiting its application.

Recent research has concentrated on alternative informa-
tion measures, in particular the class of Rényi entropies [4]

Ho(C) = oo, [[ ez panar

parameterized by o > 0 [1, 2, 3]. The Shannon entropy be-
longs to this class, in the limit as o — 1. Unlike the Shan-
non entropy, however, the Rényi measures are defined for vir-
tually all Cohen’s class TFDs for all integer o > 2 [2, 3].
The primary property of the Rényi entropies studied thus far
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has been the component counting property: as two identical,
overlapping components are separated in the time-frequency
plane, the measure Ho(Cs) increases by 1 bit (for o odd). As
an example of this property [1, 2, 3], consider the H3(W,) in-
formation of the signal s(t) = g(t)+g(t+7), with g a lowpass
Gaussian pulse and W, the Wigner distribution. This infor-
mation is plotted in Fig. 1(a) versus the separation distance
T (in units of the RMS time duration of ¢(¢)). (At T = 0,
the two pulses coincide and therefore, because of the assumed
energy normalization, have the same information content as
a solitary pulse.) The time-bandwidth product (TBP) of the
signal is also plotted with a dashed line. It is clear from the
figure that, unlike the TBP, which grows without bound with
T, the information measure saturates exactly one bit above
the value Hg(VVg) = —0.208.) Similar results hold for three
separated copies of g(¢) (log,3 bits information gain), four
copies (2 bits information gain), and so on.

2. PHASE SENSITIVITY

The results of Fig. 1(a) are very appealing, but also incom-
plete and unrealistic, because no phase differences were intro-
duced between the two signal components. Figure 1(b) illus-
trates a more complete set of curves of the Hg(WS) informa-
tion for the signal g(t) cos(wt/6)+g(t+T) cos(w(t+T1)/6+¢).
Each curve corresponds to a different relative phase angle ¢
between 0 and 7 rad. It is apparent from the curves that
while phase changes do not affect the saturation levels of the
information measure, they allow many possible trajectories
between the two levels, including even trajectories where an
“overestimation” [1] of information content occurs.

The phase sensitivity of the Rényi information measure
stems from cross-terms in the Wigner distribution and can
be studied by developing an expansion for Ho(W,) with s a
simple two-component signal. Our signal model is

s(t) = g(t) + (Pay9)(d),
where g(t) is a Gaussian logon of the form
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g(t) = e 202

and
(Dao 9)(1) def i(2mtAf+e) g(t — At)

denotes the same logon phase-shifted by angle ¢ and trans-
lated in time-frequency by the normalized distance

At?
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1Readers should not be alarmed by negative Rényi entropy val-
ues. Even the Shannon entropy takes on negative values for certain
distributions in the continuous-variable case.




with At and Af the separation distances in time and fre-
quency.

The Wigner distribution of s can be expressed as sum of
two auto-terms and a cross-term

Ws(taf) = va(taf) + VVg(t_Ataf_Af) + I(t’f)a

with I(t,f) = 2ReW,p, 4 corresponding to the cross-
Wigner distribution between g and Dg ,g. Denoting the or-
der o Rényi entropy of the Wigner distribution of s(¢)/||s| as
Ho(Wy,d), we have
Ho(Wg,d) = Hoa(Wg,0) + 1 4 6(d, 0, a)
.
(1—a)log.(2)

cla)e — %c2(a)52 + 0(65)] (3)

il (i) cos(g),
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H = H,(Wy),and e = e~ 7. This expansion holds under the
hypothesis of well-separated logons, that is, assuming that (1)
there is no substantial overlap between the cross-term and the
auto-terms, and (2) e € 1

Equation (3) quantifies the effects of separation d, phase ¢,
and order « on the Rényi information measure:

r Ho(Wy) + 1 +

where ¢ = o+27Af (t+AL/2), c(a) =

1. As d — oo, the third term decays to zero, and we have
the asymptotic, “counting” result. Clearly, then, the in-
teresting action takes place for small d.

2. For small d, the phase difference ¢, through ¢, imposes
an oscillatory structure on the entropy value. This be-
havior is clearly evident in Fig. 1(b).

3. The coefficient ¢ = e~ 1 controlling the amplitude of the
third term decays more slowly for larger values of . As a
consequence, larger values of o lead to larger departures
from the asymptotic values of H,. This property was
to be expected; lar§e values of o emphasize the larger
values of the TFD,* which for the Wigner distribution
occur on the cross-term.

The analysis leading to Equation (3) did not take into ac-
count the fact that for each separation and phase the Wigner
distribution was normalized to unit energy — the energy
lg + Papgl> = 2 only asymptotically. Making a more ex-
act calculation of this energy, we have

1 + log, (1+cos(¢) 6_%)

cos(¢) e~ (et
log..(2) ol

with 0(6_%) = 0(e®). Including the effects of normalization
vields the following sharpened estimate

log,(lg + DPaegl?) =

~ 1 +

1
(1—a)log.(2)

c(a)e — %62(0)52 + acos(¢)e” + 0(55)

Ho(Wg,d) =~ Hoa + 1+

Since relative phase information is carried by the cross-
terms of the Wigner distribution, smoothing lessens the sen-
sitivity of Rényi information estimates. To demonstrate the

?In fact, we have that limg—oo Ha(W,) = max(; y) Ws(t, F)!

relevant variables, in Figure 2 we perform the same experi-
ment as in Figure 1(b) for several different smoothed Wigner
distributions. We employ two-dimensional Gaussian smooth-
ing functions of varying TBPs w and consider the values
a = 3,5,7. Smoothing with w = 0 yields the Wigner dis-
tribution, plotted as the bottom curve in each plot. We can
draw the following conclusions from the Figure: (1) smooth-
ing decreases the sensitivity (excursions) of the information
estimate, (2) smoothing increases the convergence rate of the
information estimate, (3) larger values of « slow the conver-
gence rate of the information estimate. The price paid for im-
proved performance through smoothing is a signal-dependent
bias of information levels compared to those estimated using
the Wigner distribution. However, some amount of smooth-
ing is crucial for accurate information estimates for com-
plicated multicomponent signals with overlapping auto- and
cross-terms.

3. AMPLITUDE SENSITIVITY

A similar analysis yields insight on the behavior of the Rényi
measures for signal components of different amplitudes. For
the signal

s(t) = g(t) + k(Daypg)(t),
with k a scaling factor, it is simple to show that in the limit
as d — oo

Ha(Wg) = Ha(Wy) + H(;(Pl,m)'

2 .
Here, p1 = ﬁ and pz = # represent the relative energy

levels between g and Dg . g, and H(p1,p2) is given by

Hi(pr,p2) = log, (pT" + p3 ).

l—«o
H! (p1,p2) corresponds to the order o Rényi entropy of the
binary probability distribution {p1, p2} [4].

4. DISTANCE AND DIVERGENCE MEASURES

The sensitivity of the Rényi entropy to phase and amplitude
differences between components could limit its utility as a
time-frequency analysis tool. As a better tempered alterna-
tive we now propose two time-frequency divergence functions
that indicate the distance between different TFDs. These
measures could prove useful, for example, as time-frequency
detection statistics in applications comparing reference and
data distributions.

A familiar way of deriving distance measures from entropy
functionals is to form the Jensen difference [5]. The Jensen
difference of two probability densities p and ¢ is defined by

H(l’;‘Q) _ H(p);—H(q) (4)

Positivity of this quantity relies on the concavity of the en-
tropy function H. Since the Rényi entropy H, is neither
concave nor convex for a # 1, (4) makes sense for only the
Shannon entropy. In light of this (somewhat disappointing)
fact, we restrict ourselves to positive TFDs® for the remainder
of the paper.

As noted in [2, 3], the Rényi entropy can be derived from
the same set of axioms as the Shannon entropy, the only dif-
ference being the employment of a more general exponential
mean rather than arithmetic mean [4]. This realization in-
spires the modification of (4) from an arithmetic to a geo-
metric mean, and we have the following quantity (for two

3Smoothed spectrograms, unless we walk out on Cohen’s class.



smoothed spectrograms C; and Cs and o # 1):

NH(C1,C) = Ha(VTi G5 ) — Ha(C1) + Ha(C2)

2 )
where (v/C1 C2 )(t, f) = \/C1(t, f) Ca(t, f). This quantity is
obviously null when C; = Cs; we now show that J; is positive
definite. The Cauchy-Schwartz inequality gives

[fcenein
S//Cf“(t,f)dtdf //Cg(t,f)dtdf’

and, since the log function is monotonically increasing, we
have for o > 1
// Ci(t, f) Ca(t, £

logz//Q tf)dtdf-l- logQ//CQ t, f) dt df.

Thus, using (1) yields
Ho(Cr) + Ho(C
Ha(\/CﬁCz) > ( 1)2 ( 2)’

and the result follows.

(3)

log2 >

The Ji divergence has the property that it diverges for
disjoint TFDs such that C1(¢, f)Cz(t, f) = 0Vt, f. To prevent
this divergence of the divergence, we can consider also the
modified form

C C.
N e e A

. ,cl). (6)

The definite positiveness of J2 follows directly from the same
property for Ji, and Jo = 0 if and only if C; = C5. Unfor-
tunately, however, Js is not a symmetric function of C; and

Co.

We now demonstrate the usefulness of these new diver-
gences using a simple time-frequency detection experiment
(see Figs. 3 and 4). Our goal is detecting a Gaussian lo-
gon embedded in additive white Gaussian noise. As a refer-
ence TFD, we employ the spectrogram of the logon at high
SNR (30dB), computed using the logon itself as the window
(matched-filter spectrogram). In the Figures, we compare
the distances between this reference TFD and matched-filter
spectrograms of the same logon submerged in varying levels of
noise (SNR range: -30dB to 30dB). As distance measures, we
took Ji, J2, (o = 3) and the following Kullback divergences

[5]:

Ka(Cy,Co) = //c1 (t, f) log2%dtdﬁ
Ki(Cy,Co) = //02 t,f) log, CE g dt df,

1Kaiv(C1,Co) = Ka(C1,Ca) + Ki(Ci,Cs).

All curves are plotted normalized by their maximum value, for
increased readability. The new J divergences appear to yield
the most efficient statistics for detecting the logon embedded
in noise; in fact, their values stay quite small down to negative

SNRs.

5. CONCLUSIONS

While the Rényi entropy has great potential for time-
frequency applications, its phase and amplitude sensitivity
must be taken into consideration. Owur attempts at design-
ing an inter-TFD distance measure avoiding these problems
have met with some degree of success; however, our results
hold only for the positive TFDs of Cohen’s class (smoothed
spectrograms). Extending our results to all of Cohen’s class
will require either a different approach for combining Rényi
entropies or a completely different entropy base function.
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Figure 1: (a) H3(W,) information of the Wigner distribution
and TBP (dashed) vs. component separation. (b) Hs(W,) in-
formation vs. component separation, various relative phases.
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Figure 2: Rényi information of Gaussian-smoothed Wigner
distributions of a signal composed of two Gabor logons. The
spread of the smoothing kernel is expressed in TBP units w,
normalized by the TBP of the logons composing the signal.
The lowest curve gives the Ho (W) measure.



