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Abstract

Themainobjectiveof this paperis to demonstratein thecontext of a simpleTCP/IP-
basednetworkthatdependingon theunderlyingassumptionsabouttheinherentnatureof
thevariability of networktraffic, verydifferentconclusionscanbederivedfor anumberof
well-studiedandapparentlywell-understoodproblemsin the areasof traffic engineering
andmanagement.For example,by eitherfully ignoring or explicitly accountingfor the
empiricallyobservedvariability of networktraffic at thesourcelevel, we provide detailed
ns-2-basedsimulationresultsfor two commonly-usedtraffic workloadscenariosthatcan
giveriseto fundamentallydifferentbuffer dynamicsin IP routers.Wealsodiscussasetof
ns-2simulationexperimentsto illustratethatthequeueingdynamicswithin IP routerscan
bequalitatively very differentdependingon whethertheobservedvariability of measured
networktraffic over small time scalesis assumedto be in partendogenousin nature(i.e.,
dueto TCP’s feedbackflow controlmechanism,whichis “closedloop”) or is exogenously
determined,resultingin an“open loop” characterizationof networktraffic arriving at the
routers.

1 Intr oduction

Traffic characterizationandmodelingaregenerallyviewedasimportantfirst stepstowardun-
derstandingand solving networkperformance-relatedproblems. At the sametime, thereis
little disagreementthat the resultingunderstandingof andsolutionsto networkperformance
problemsareonly asgoodandcompleteasthe underlyingassumptionson the usageof the
networkandthenatureof thetraffic thatit carries.Themaingoalof this paperis to highlight
with a toy exampleof a TCP/IPnetworkthe extent to which assumptionsunderlyingthe na-
tureof networktraffic caninfluencepracticalengineeringdecisions.More specifically, using
thens-2networksimulator[1], we illustratehow by eitherimplicitly accountingfor or explic-
itly ignoring the empiricallyobserved variability of networktraffic over large andsmall time
scales,a rangeof differentandat timesopposingconclusionscanbedrawn abouttheinferred
buffer dynamicsfor IP routers.While therearemany known causesfor theobservedvariabil-
ity in measuredTCPtraffic (e.g.,see[4]), in this paperwe focuson just two of them. On the
onehand,we considera known causefor variability of thepacketrateprocessover largetime
scales;that is, high variability at theconnectionlevel resultingin self-similarscaling.On the
otherhand,we investigatea suspectedcausefor variability of therateprocessover smalltime
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scales;that is, the dynamicsor actionsof TCP resultingin complex scalingbehavior of the
traffic over smalltime scalethatis consistentwith multifractalscaling[5].

As far aslarge time scalevariability is concerned,the extremecaseof no variability can
be achieved by requiring at the applicationlayer that eachactive sourcehasto transferan
essentiallyinfinite file for the durationof the entire simulation. This infinite source model
lacksthe naturalvariability that hasbeenobserved in measureddataat the applicationlevel
and,in turn, lacksany non-trivial largetime scalevariability in thecorrespondingrateprocess
[11, 3, 6]. In contrast,large time scalevariability that is consistentwith self-similarscaling
over thosetime scalesandhasbecomea trademarkof measuredtraffic rateprocessescanbe
achievedin aparsimoniousmannerby explicitly accountingfor anadequatelevel of variability
at the applicationlayer [15, 14]. In fact, by replacingthe infinite sourcemodelby a SURGE-
like workloadgenerator[2], thatis, by changinganinfinite file transferinto anapplicationthat
imitatesa typical Web session(with appropriatelychosenheavy-taileddistributionsto match
the observed variability of variousWeb-relateditemssuchassessionlengthandsize,sizeof
requestedWeb pages),we obtaina Web-usersource modelthat automaticallygeneratesthe
desiredlargetime scalevariability in the aggregaterateprocess.Theseworkloadmodelsare
describedin moredetailsin Section2.

Subsequently, in afirst setof ns-2simulationexperiments,wedemonstratein Section3how
thetwo sourcemodelsleadto two qualitatively very differentqueueingdynamicsin therouter.
While thequeueingbehavior with theinfinite sourcemodelsis completelydominatedby syn-
chronizationeffects,theseeffectsessentiallydisappearwhenthesourcesareWebusers.Using
the terminologyoriginally dueto V. Jacobson,we illustratehow the presenceof many short-
livedTCPconnectionsor “mice” – a salientfeatureof our Webworkloadmodel– completely
changesthebuffer dynamicsthathasbeennotedin thepastwhenthenetworkloadis entirely
dueto thelong-livedTCPconnectionsor “elephants”of theinfinite sourcemodel.For earlier
studieson TCPdynamicsassuminginfinite sourcemodels,seefor example[9, 12,16,17]).

In a secondsetof ns-2simulationexperiments,we focusin Section4 on the small time
scalevariability of thepacketrateprocessandits likely cause,that is, thefeedbackflow con-
trol mechanismthatis partof theTCP/IPprotocolsuite[5, 4]. In particular, wesummarizethe
resultsof our studieson how the networkthroughthe TCPend-to-endcongestioncontrolal-
gorithmshapes(with somedelay)thepacketflow emittedfrom thedifferentsources,which in
turn alterstherateprocessthatarrivesat theIP routerfor buffering(which in turn impactsthe
level of congestion,etc.). Theresultsareobtainedby performinga numberof relatedclosed
loopandopenloopsimulationsandcomparingthemonthebasisof somecommonly-usedper-
formancecriteria. Here,by “closedloop” we meana ns-2simulationwith a fixednetworking
configuration,including buffer sizein the router(s),link bandwidths,delays,etc.,andwhere
all hostsuseTCP. In contrast,“open loop” meanswe collect a packettracefrom a particular
ns-2simulationrun (or alternatively, from a link within the Internet)anduseit to performa
trace-driven simulationof a queueingsystemthat representsour IP router. Note that trace-
drivensimulationscannotaccountfor thecapabilitiesof thenetworkto shapeandthusalterthe
offeredtraffic to thequeue.

We concludein Section5 by commentingon a numberof admittedlyunrealisticassump-
tionsregardingour simulationconfiguration.However, despitetheseover-simplificationsand
a numberof othershortcomingsof our studies,we believe that the findingsreportedin this
paperwill increasethe overall awarenessthat it is in generaleasyto draw conclusionsbased
on infinite sourcemodelsand/oropenloop systemsandtheir performance,but that the real
challengeslie in convincingly demonstratingthat theseconclusioneitherstill hold or become
invalid for realisticallyloadednetworksand/orthecorrespondingclosedloopsystemsandtheir
performance.



Web
server 321 4

420 
clients

40-100 Kb

Delays:
  20 ms

100 Mb

640 ms
or

40 ms

100 Mb

5ms

B
1.5 Mb

to
3.0 Mb

5ms

AC

Figure1: Networkconfiguration

2 The Simulation Setup

In this section,we give a descriptionof the networkingconfigurationusedthroughoutthis
paperandspellout thedetailsof our workloadmodels.In addition,we discussthesimulation
engineusedfor ourstudiesandreview someTCP-specificfeaturesthatarenecessaryto present
anddiscussthefindingsof our simulationexperiments.

2.1 A simplenetworking configuration

All of the simulationexperimentsreportedin this paperinvolve thesimplenetworktopology
depictedin Figure1. Our toy networkconsistsof a singleserver (node � ), a setof low-speed
clients(nodes���	��
�� ), anda numberof links. Theclientsareconnectedto thenetworkvia
�

�����
�
 Kbpslinks, theserver hasa ��
�
 Mbpsconnectionto thenetwork,andtwo additional
links ( � , � ) comprisethe rest of the network. Link � is usedto limit the capacityof the
networkto avaluebetween����� Mbpsand � Mbpsandrepresents,in fact,thebottlenecklink in
oursimulationsetup.Thelink � bandwidthis setat ��
�
 Mbps,andweusethis link to observe
the dynamicsof the traffic beforeit traversesthe bottlenecklink � . To gaugethe impact
of the buffer size in the router, we vary the numberof buffer spacesavailablefor buffering
packets1 in node � for link � ; dependingon the particularexperiment,this numbercanvary
anywherefrom ��
 to ��
�
�
 . Note that this network configurationallows for no variability
as far as delays,round-trip times and crosstraffic are concerned.While all of thesethree
aspectsof realisticnetworktraffic areknown to becrucialfor matchingthevariability inherent
in measuredInternettraffic [4], our focus in this paperis on an extremecaseof networking
homogeneity, wherethereis a single bottleneckthroughwhich all the traffic hasto go and
whereall packetsexperienceoneandthe samedelayin the network,namely ����� seconds(to
compare,we alsoexperimentwith a link delay of 
������ seconds).We chosethis admittedly
unrealisticnetworkconfigurationbecausewe wantedto illustrateour findingsin a settingthat
hasbeenusedin a numberof previousstudiesof thedynamicsof TCP(e.g.,[12, 16,17]).

2.2 Two differ ent workload models

In contrastto ourhomogeneousnetworkconfiguration,ourworkloadmodelsfor theclientsare
heterogeneousin natureandallow for a spectrumof variability at the userlevel. On the one
sideof thespectrum,wedealwith thecaseof nouserlevel variability by considering��
 infinite
sourcesthatalwayshavedatato transferfor thedurationof theentiresimulation(thatis, 4200

1Ns-2allocatesbuffer spacein termsof numberof packetsandnotnumberof bytes.



Name number inter–page objects/page inter–object objectsize

INFINITE SOURCE Constant Constant Constant — Constant���
1 1 1000000

WEB SOURCE Constant Pareto Pareto Pareto Pareto��� �
mean50 mean4 mean0.5 mean12
shape2 shape1.2 shape1.5 shape1.2

Table1: Summaryof therelevantdistributions(with parametervalues)for thetwo workload
usedin our simulationexperiments.

seconds).To eliminateany transienteffects,the sourcesstarttheir transfersat randomtimes
– pickedaccordingto a uniform distribution – during thefirst !�
�
 secondsof the simulation,
andwhenanalyzingtheoutputof our simulations,wefocuson theremaining��!�
�
 secondsof
eachsimulationrun whenall ��
 sourceareknown to beactive.

To cover the othersideof the spectrum,we rely on a Web workloadmodelconsideredin
[4] that is very similar to SURGE developedat BostonUniversity [2]. The main ideabehind
theseWebworkloadmodelsis thatduringaWebsession,ausertypically requestsseveralWeb
pages,whereeachWebpagemaycontainseveralWebobjects(e.g.jpg imagesor au files).
To parsimoniouslycapturethe observed variability within the different layer of this natural
hierarchicalstructureof a typical Web session(e.g.,see[3, 6, 2]), we considercertaintypes
of probabilitydistribution functionsfor thefollowing sessionattributes:numberof pagesper
session,inter-pagetime, numberof objectsper page,inter-object time, and object size (in
KB). The specificsof thesedistributions, including the correspondingparametervalues,are
givenin Table1. Notethattheempiricallyobservedhighvariability associatedwith theseWeb
Sessionattributesis naturallycapturedvia Pareto-typedistributionswith appropriatelychosen
parametervalues.

In practice,aWebsessionwill requestasetof pages(usually��
�
 ) in thefollowingmanner.2

After thecompletionof the downloadof all objectsin the lastpage,it will wait for a random
amountof time(sampledfrom theinter-pagetimedistribution)beforerequestingthedownload
of the next Web page.At the startof the next Web pagedownload,the client determinesthe
server, which in our setupis alwaysnode � . In addition, the client choosesthe numberof
objectsin the next Web pageby picking a randomnumberaccordingto the objects-per-page
distribution. For eachobject,theclient determinesthesizeof theobject(by samplingfrom the
objectsizedistribution)andthensendsarequestto theserver to downloadtheobject.Thetime
betweentherequestfor twodifferentobjectswithin aWebpageischosenaccordingto theinter-
object-timedistribution. Onceall objectsof a Web pagehave beendownloaded,the process
repeatsitself, i.e.,aftera waiting time (sampledfrom thetheinter-page-timedistribution), the
next Webpageis downloaded,etc.

In our simulations,we alwaysuseat least ��
�
 Websessions,all of whichstartat a random
point in time within the first !�
�
 secondsof eachsimulationrun. Also notethat the infinite
sourcemodelcanbeviewedasa specialcaseof our Webworkloadmodel,wherethenumber
of pagesperclient is � , thenumberof objectsperpageis � , andtheobjectsizeis setto a very
large value(e.g., ��
�
�
�
�
�
 ) to ensurethat the client doesnot run out of datato sendfor the
durationof thesimulation.In this sense,Table 1 providesa completespecificationof thetwo
workloadmodelsusedin our experimentsbelow.

2Notethatin a typicalHTTP 1.0 transaction,a Webclient sendsa requestto theWebserver for a Webobject
afterestablishinga TCPconnection.TheWebserver respondswith areply headerandthencontinuesto sendthe
data.To circumventsomelimitationsin theoriginal ns-2TCPconnectionmodulewe emulatedtheexchangeof
theHTTP headerinformationwith two TCPconnections.



2.3 SomeTCP background

The simulationengineusedthroughoutthis studyis ns-2(NetworkSimulatorversion2) [1].
This discreteevent simulatorprovides a rich library of modulessuchasUDP, differentfla-
vorsof TCP, schedulingalgorithms,routingmechanism,andtracecollectionsupport.For the
purposesof this paper, we rely on the fact that ns-2 comeswith a thoroughly-checkedand
well-studiedimplementationof TCP. To fully appreciatethis advantageof usingns-2for our
experiments,we first review thosefeaturesof TCPwhich areof particularinterestfor thepur-
poseof thisstudy. For amorecomprehensive treatmentof TCP, seefor example[13].

TCPis oneof thepredominanttransportlayerprotocolsin theInternet,providing aconnec-
tion-oriented,reliable,bytestreambetweenasource(or sender)andadestination(or receiver).
TCP provides reliability by splitting the datainto numberedsegments. To insurethat each
segmentis transmittedreliably, TCP– amongotherprecautions– maintainsa timer, RTO, for
thedifferentsegments.If no acknowledgmentfor thesegmentis receivedby thesenderfrom
thereceiver within thetimer periodRTO, TCPassumesthatthesegmenthasbeenlost andre-
transmitsit. Anotherwayfor TCPto detectlossesis baseduponduplicatedacknowledgments.
Sinceacknowledgmentsarecumulative, andsinceevery segmentthatis receivedout of order
(i.e., non-consecutive segmentnumbers)triggersanacknowledgment,TCPassumesthat four
duplicatedacknowledgmentsindicatethat a segmentwas lost. As before,TCP in this case
retransmitsasegmentif it detectsa lost segment.

Sinceeachend-systemhaslimited buffer spaceandthe networkhaslimited bandwidth,
TCPprovidesend-to-endflow controlusinga sliding window protocol. As far asthe buffer-
limited end-systemsareconcerned,thesendercomputesausablewindow whichindicateshow
muchdatathe receiver buffer can handle. To dealwith the bandwidth-limitednetwork, the
sendermaintainsacongestionwindow of sizeCWND. Thesendercantransmitupto themini-
mumof CWND andtheusablewindow. At thestartof aTCPconnection,theusablewindow is
initializedto thebuffer sizeof thereceiver, andthecongestionwindow is limited to oneor two
segments.Eachreceivedacknowledgment,unlessit is a duplicateacknowledgment,is usedas
an indicationthat datahasbeentransmittedsuccessfullyandallows TCP to move the usable
window andto increasethecongestionwindow. However, increasingthecongestionwindow
dependson thestateof theTCP connection.If the connectionis in slow start,it is increased
exponentially, or moreprecisely, by onesegmentfor everyacknowledgment.If theconnection
is in congestionavoidance,it is increasedlinearlyby themaximumof onesegmentperround-
trip time. TCPswitchesfrom slow startto congestionavoidanceif the sizeof thecongestion
window is equalto thevalueof a variablecalledtheslow startthreshold,or SSTHRESH,for
short. If TCPdetectsa packetloss(which in today’s Internetis interpretedasanindicationof
congestion),eithervia timeoutor via duplicatedacknowledgments,SSTHRESHis setto half
of the minimumof CWND andthe usablewindow size. In addition,if the losswasdetected
via timeout,thecongestionwindow is setto onesegment.

3 Impact of variability at the application layer

In this sectionwe demonstratehow theTCPflow controlalgorithmcanleadto artifactsin the
routerbuffer dynamicsat node � , dependingon which of the two workloadmodelsareused
to generatethe networktraffic. To this end,we comparethe scenariowhereTCP only has
to handlelong-livedconnectionsor “elephants”with that whereit is facedwith a mixtureof
“elephants”andshort-lived“mice.”



3.1 No variability and high synchronization

We first considerthe casewhere ��
 clients generatetraffic accordingto the infinite source
workloadmodelandshow in the left plot of Figure2 sometypical featuresassociatedwith
having 50 long-lived TCP connectionsor “elephants”responsiblefor all traffic seenon the
network. More specifically, the left plot shows (i) the traffic rate process(i.e., numberof
packetspersecond)asit arrivesat thequeueat node� , to beforwardedthroughthebottleneck
link � to thedifferentdestinations,and(ii) theinstantaneousbuffer occupancy of thequeueat
node � . We assumethat themaximumbuffer occupancy of thequeueat node � is ��
 packets
and that the queueingdiscipline is “drop-tail”, i.e., whenever an arriving packetseesa full
buffer, it is droppedby the router. Eachpacketdrop is viewed by TCP asan indicationof
networkcongestionandresultsin a signalbackto the senderof the droppedpacketto slow
down its sendingrate, which in turn reducesthe overall packetrate processarriving at the
node � queue.This feedbackdynamicis aninherentfeatureof TCP’s end-to-endflow control
mechanism,andasfar asthe caseof “elephants”is concerned,Figure2 illustratesthe effect
of this dynamicon therateprocessandthebuffer occupancy. Shortlyafterthequeueis filled
andpacketsaredropped,the rateprocessstopsincreasinganddropsafter sometime from a
maximumof around"���� packetspersecondto about ����
 packetsper second.Sucha drastic
reductionin the rate processarriving at the queueallows the queueto completelydrain its
buffer. Uponexperiencingnodroppedpackets,theindividualTCPconnectionsstartto increase
their sendingratesagain,which in turnresultsin anincreaseof theoverall packetrateprocess
(from about ����
 to "#��� or sopacketspersecond)asseenby thequeue.As adirectresultof this
higherarrival rate,thebuffer at thenode � queuestartsto fill up again.Oncethebuffer is full,
anotherroundof packetdropswill causetheaffectedconnectionsto againreducetheirsending
rates,andthesameprocessasbeforerepeatsitself. Theseargumentsexplain thepredominant
periodicfluctuationsof the packetrateprocessandthe buffer occupancy processdepictedin
theleft plot of Figure2, andtheresultsarefully consistentwith someof theoriginalstudiesof
thedynamicsof TCPasdescribed,for example,in [12] [17].

To demonstratethatthesepronouncedsynchronizationeffectsfor thepacketrateandbuffer
occupancy processesarenot anartifactof theextremelylargedelayvalueof ! ��
 milliseconds
for link $ , we show in theright plot of Figure2 theresultsfor of thesamesimulationexperi-
ment,exceptthatthelink $ delayis now reducedto ��
 milliseconds.Notethatwestill observe
pronouncedperiodicbehavior, but sincethefeedbackto theclientsis now muchmoreimmedi-
ate,thequeuedoesnot have time to draincompletely, thecycle lengthis significantlyshorter,
theoverall link utilization is larger, andtherateprocessis somewhat lessvariable.Neverthe-
less,theargumentsfor theobservedsynchronizedbehavior remainthesameasbefore:many
of the“elephants”experiencemultiple packetdropswithin a shortperiodof time andarethus
forcedinto into slow-start;from this point on,they proceedmoreor lessin lock-step.

3.2 High variability and no synchronization

To demonstratehow allowing for realisticvariability at theapplicationlevel changesthequal-
itative featuresof Figure2, we replacethe infinite sourcesby clientsthat generatetraffic ac-
cordingto our Webworkloadmodel.Intuitively, while retaininga few “elephants,” thissource
modelensuresthatasignificantportionof theTCPconnectionsareshort-lived(i.e.,represent-
ing many “mice”). Theresultsareshown in Figure3, whereweagaindepictthepacketrateand
buffer occupancy processesfor the caseof a ! ��
 milliseconds(left plot) and ��
 milliseconds
(right plot) link $ delay, respectively. In starkcontrastto thevisuallyobvioussynchronization
effectsin thecaseof theinfinite sources,theinherentvariability of theTCPconnectionsin the
caseof theWebsourcesresultsin a completelack of any synchronizationeffects.
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Figure2: Packetrateprocessandbuffer occupancy process(left: 50 infinite sources,link $
delay640milliseconds;right: 50 infinite sources,link $ delay40 milliseconds).
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Figure3: Packetrateprocessandbuffer occupancy process(left: 350 PARETO 1-type Web
clients,link $ delay640milliseconds;right: 350PARETO 1-typeWebclients,link $ delay40
milliseconds).

The differencebetweenthe two workloadscenariosis especiallystriking for the caseof
a link $ delayof !��

 milliseconds.While in the presenceof many “mice”, the buffer never
hasa chanceto completelydrain, it doessoon a regular basisfor the “elephants-only”case.
Also notethat while in the caseof the Web sources,the packetrateprocessarriving at the
node� queuenever dropsbelow ��,�
 or so,it dropsto about �-�

 in thecaseof infinite sources.
Together, theseeffectsresult in a significantlyhigheroverall utilization when thereexists a
propermixture of “mice” and“elephants.”. In the “elephants-only”case,even if we wereto
increasethe numberof long-lived connections,becauseof the presenceof synchronization
causedby the interactionbetweenthis type of workloadandTCP feedback,the overall link
utilizationwould not increasesignificantly.

3.3 On why “mice” canget rid of synchronization

In contrastto theinfinite sourcemodel,our Webworkloadmodel– via its built-in Pareto-type
distributionsfor thedifferentWeb sessionattributes– guaranteesthata significantamountof
TCPconnectionsarevery smallandhenceshort-lived. However, TCP’s feedback-basedcon-
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Figure4: Effect of synchronization:Fractionof connectionsthatexperiencepacketlosses.

gestioncontrolmechanismwasnot intendedfor dealingwith all these“mice” but wasinstead
designedto work well in thepresenceof “elephants”thatgeneratetheoverallnetworkload.In
fact, in thecaseof the “mice,” it is hardor evenpointlessto rely on feedbackbecauseby the
time thefeedbacksignalreachestherelevantsource,thatsourcetypically hasno moredatato
sent. Althoughin today’s Internet,the “elephants”areresponsiblefor a majorportionof the
overall workload(i.e., numberof bytes),thetotal numberof packetsdueto the“mice” gener-
atessufficient traffic to createlossesat randompointsin time. This featureandthefact thatthe
arrival patternsof the“mice” tendto behighly bursty(e.g.,see[5]) suggestthat thepresence
of significantlymany “mice” makesit nearlyimpossiblefor the“elephants”to synchronize.3

Oneway to gaugethedegreeor severity of synchronizationamongthedifferentTCPcon-
nectionsis to checkwhatpercentageof connections(out of all connections)experiencesa loss
of (at least)onepacketduringa timeinterval of size 021 . Figure4 shows thedensitiesof these
fractionsfor our two differentworkloadsmodelsandfor differentvaluesof 021 . Note that
for the infinite sourcemodel(left plot), as 021 increasesfrom � secondto � and ��
 seconds,
thedensitiesbecomemorecenteredaround60%,andwhen 031 is increasedevenmoreto "�

seconds,thecorrespondingdensityfunctionshiftstoward100%,with ameanlargerthan90%.
Thus,the TCPstatesof morethan50% of the connectionscan,in general,be assumedto be
very similar. Moreover, given that the buffer occupancy processin Figure2 (left plot) hasa
periodicity of about ��
 seconds,we canconcludethat about60% of all connectionsloseat
leastonepacketwithin this periodandthat almostevery connectionlosesat leastoneof its
packetswithin two suchperiods. Thus,even if a connectionmanagedto avoid droppinga
packetduringonecongestionepoch,it is almostcertainto experienceapacketdropduringthe
subsequentcycle. In contrast,for theWeb workloadmodel(right plot), thedensityfunctions
correspondingto thedifferent 021 valuesturnout to beessentiallyidenticalto oneanother(the
plot only shows thedensitycorrespondingto 021546��
 ), andthey areall sharplyconcentrated
around25%. To explain this difference,notethat“mice” canstartwhenotherconnectionsare
reducingtheir sendingrates,andthey oftenfinish beforethey experienceany droppedpacket.
This alsoexplainswhy the fractionof connectionsexperiencingpacketdropsis significantly
smallerthanin theabsenceof any “mice.”

For anotherway to illustratehow thepresenceof many “mice” manifestsitself in theob-
served TCP dynamics,we considerall connectionsthat had (at least)one of their packets
droppedanddepictin Figure5 the percentage7 of thoseconnectionsthat werein slow-start

3Anotherknown causethatworksagainstthepresenceof synchronizationeffectsin realnetworktraffic is the
observedvariability in round-triptime [4], but thiscauseis notaccountedfor in our simulationsetup.
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Figure6: Left plot: Effect of synchronization– distribution of numberof consecutive packet
drops. Right plot: Openvs. closedloop – lossprobability asa function of bottlenecklink
capacity.

at thetime of packetdrop(notethat ���87 givesthe percentageof connectionsin congestion
avoidance);the left plot is for the infinite sourcemodel,the right plot shows the sameinfor-
mationfor theWebsourcemodel.4 Thedifferencesbetweentheplotsareagaintelling. In the
presenceof many “mice” (right plot), mostof theconnectionsthathadany packetdroppedare
in slow-start,meaningthat they areeithervery shortor experiencemultiple droppedpackets;
a closerlook (not shown here)revealsthat both casesgenerallycontribute to this dominant
slow-starteffect. In any case,with many of theconnectionsgoingthroughslow-start,thereby
increasingtheir bandwidthusagemuch moreaggressively thanthosethat are in congestion
avoidance,the Web sourcesgenerallysucceedvia the presenceof the many “mice” to claim
any unusedbandwidthandutilize thenetworkresourcesefficiently. In contrast,in theabsence
of any “mice” (left plot), lots of the affectedconnectionsarein congestionavoidanceandin-
creasetheir bandwidthusagemore gradually. Indeed,if we consider(not shown here)the
sizeof the congestionwindow whenlossesoccurfor the infinite sourcecase,it turnsout to
be significantlylarger thanwhenthe sourcesgeneratetraffic accordingto our Web workload
model.

As a resultof theseobservations,it is reasonableto expectthe dynamicsof packetdrops

4Thesepercentagesarecalculatedfor successive time intervalsof lengthtwo seconds,ignoringintervalswith-
outany droppedpackets.Dif ferentchoicesfor thelengthof thetime interval yieldsessentiallyidenticalplots.



to be qualitatively different for the two workloadscenarios.To confirm this conjecture,we
considerin Figure6 (left plot) thedistribution of thenumberof consecutively droppedpacket
(for theaggregatepacketstream)for theinfinite sourceandWebsourcemodels.As expected,
the infinite sourcemodelresultsin a distribution that implies a lessbursty dropprocessthan
for theWebsourcemodel.To explain, “elephants”aremorelikely to bein congestionavoid-
ancethanin slow-start,which meansthat they canonly sendonepacketfor every received
acknowledgment.In contrast,we have seenthatthepresenceof many “mice” resultsin many
connectionsbeing in slow-start, which in turn increasesthe likelihood that more than one
packetof a givenflow canbedroppedwithin a shortperiodof time. In otherwords,while the
lossdynamicsinducedby TCP whenthereis no variability at the applicationlayer resultsin
smallburstsof consecutivepacketdrops,theseburstscanbesignificantlylargerwhenallowing
for application-layervariability in accordancewith our Webworkloadmodel.

To summarize,our simulationexperimentshave demonstratedthat the dynamicsof TCP
can interactin intricate wayswith the dynamicsof the underlyingworkload model for the
sources.Staticworkloadssuchasinfinite sourcesallow for no variability at the sourcelevel
andaredestinedto synchronizeandto proceedin lock-stepthroughperiodsof no congestion
andperiodsof congestion.However, assoonas the workloadmodelaccountsfor sufficient
variability at thesourcelevel, the“elephants”areforcedto competewith many “mice” for the
availablenetworkresources.The resultingheterogeneityin TCP statesis sufficient to break
up any potentialsynchronizationeffects and as a result, usesthe available resourcesmore
efficiently. In contrast,synchronizationgenerallyleadsto lower link utilization, lessbursty
losses,andmorehomogeneityin termsof TCPstates.

4 On the impact of feedbackflow control

In the following, we briefly describesomeof the resultsof a secondset of ns-2 simulation
experimentsthat wasintendedto demonstratehow the networkthroughthe TCP end-to-end
congestioncontrolalgorithmshapes(with somedelay)thepacketflow emittedfrom thediffer-
entsources,whichin turnalterstherateprocessthatarrivesattheIP routerfor buffering(which
in turnimpactsthelevel of congestion,etc.).To thisend,weperformedanumberrelatedclosed
loopandopenloopsimulationsandcomparedthemon thebasisof somecommonly-usedper-
formancecriteria. Here, by “closed loop” we meana ns-2 simulationwith a fixed simple
topology, including buffer size in the router(s),link bandwidths,delays,etc. and whereall
hostsuseTCP. In contrast,“openloop” meanswe collecta packettracefrom aparticularns-2
simulationrun anduseit to performatrace-drivensimulationof a queueingsystemthatrepre-
sentsour IP router. Notethat theopenloop natureof trace-drivensimulationscannotaccount
for thecapabilitiesof thenetworkto shapeandthusaltertheofferedtraffic to thequeue(e.g.,
asa resultof changingcongestionlevels in the networkthrough,say, increasingthebuffer in
therouteror by meansof changingthecapacityof thebottlenecklink).

To illustrate,a commonlyusedmethodfor investigatingthe buffer dynamicsin a queue
with constantservicetime is to consideran actualpacket-level traffic trace,collectedfrom
somelink in, say, the Internet,and useit as input for a numberof openloop trace-driven
simulations.For example,by changingthebandwidthof theoutputlink of thequeue,we can
changetheserviceor drainrateof thequeueand,asresult,studythepacketlossprobabilityasa
functionof the(bottleneck)link bandwidth.Theright plot in Figure6 showstheresultsof (i) a
setof 5 openlooptrace-drivensimulations(maximumbuffer sizeof ��
 ; thetracewascollected
from a ns-2simulationrun thatuseda maximumbuffer sizeof ��
 anda bottlenecklink speed
of ����� Mbps), wherewe fixed the bottlenecklink capacity(i.e., link � ) at ������9�����:#9;"��<"�9;"#��!
and � Mbps, respectively (“ = ”); (ii) anotherset set of 5 openloop trace-driven simulations
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Figure7: Openloop vs.closedloop, infinite sources(left) vs.Websources(right): Lossprob-
ability vs.buffer size.

(maximumbuffer size of ��
 ; the tracewas collectedfrom a ns-2 simulationrun that used
againa maximumbuffer size of ��
 but had a bottlenecklink speedof � Mbps), wherewe
considerthe sameset of a bottlenecklink capacities(“ > ”); and (iii) a set of 5 closedloop
(i.e.,ns-2) simulations,all with amaximumbuffer sizeof ��
 , but with differentbottlenecklink
capacities,namely���<��9�����:�9?"���"#9;"��<! and � Mbps,respectively (“ @ ”). Notethatwhile thecase(i)
simulationresultssignificantlyunderestimatethe actuallosses(i.e., the case(iii) results)and
aregenerallyway too optimistic,thecase(ii) simulationssignificantlyoverestimatetheactual
lossesandgivesriseto overly conservative performancepredictions.Both of theseeffectsare
dueto the TCP feedbackflow control mechanismthat is explicitly ignoredin the openloop
trace-drivensimulations.To illustrate,if TCPnoticesthat thereexistsavailablebandwidth,it
will in generalallow the individual connectionsto increasetheir sendingrates.On the other
hand,if TCP receives too many indicationsof networkcongestion(via droppedpackets),it
hasmechanismsin placethatensurethattheofferedloadwill bereduced.Similar results(not
shown here)hold for performancemeasuresotherthanlossprobability, or whenvarying,for
example,themaximumbuffer sizeinsteadof thebottlenecklink capacity.

Finally, wecommentonanothercommonly-usedapproachfor inferringbuffer dynamicsin
anInternet-likesettingfrom openloop trace-drivensimulations,wherein addition,thework-
loadmodelcomesinto play. It is commonengineeringpracticeto usethethecomplementary
probabilitydistribution of thebuffer occupancy in aninfinite buffer queueasanaccuratesub-
stitutefor the lossprobability in a finite buffer system.To checkthe validity of this practice
in our simplenetworkingsetting,we run a numberof identicalns-2simulations,exceptthat
weconsidereddifferentmaximumbuffer occupanciesatnode� , namely��
#9;"�
#9;��
#9;��
#9;"���
 and
��
�
�
 , andobtainedthe actuallossprobabilitiesasa functionof the buffer sizeat the node �
queue.As ourinfinite buffer system,wetakethesimulationwith maximumbuffer sizeof ��
�
�

andinfer from it thecomplementaryprobabilitydistribution functionthatthebuffer exceedsa
certainvalue A . Theresultsaredepictedin Figure7 (thesolid linescorrespondto theinfinite
buffer approximation,while the crossesindicatethe actuallossprobabilities),wherethe left
plot is for the infinite sourcecaseandthe plot to the right is basedon the Web sources.For
the infinite sourcesand a maximumbuffer sizeof ��
�
�
 , the queuelengthprocessresulting
from the ns-2simulationrun (i.e., closedloop) turnsout to tightly fluctuatearound BC"�� . In
fact, themaximumbuffer capacityis never exceeded,resultingin no lossesandimplying that
in this scenario,the sourcesarebandwidthlimited on their accesslinks. In contrast,the ns-
2 simulationfor the ��
�
�
 buffer sizecasewith Web sourcesdoesoccasionallyfill the whole
buffer resultingin significantlossesof morethan � %. On theotherhand,notethattheinfinite



buffer approximationsareby definitionopenloopbasedandpredict,for example,almost��
�
 %
packetlossesfor the ��
 buffer case,even thoughthe actualpacketlossesarebelow ��� % for
Websourcesandbelow � % for theinfinite sources.Overall,Figure7 illustratesthattheinfinite
buffer approximationcanleadto extremelyconservative performanceprediction,makingthis
openloop-basedapproachto inferringaspectsof aclosed-loopsystemessentiallyuseless.The
sameconclusionholdstrue if we considerotherspecificationsof our networkingconfigura-
tion andcanbe backedup by a carefulstudyof the connections’TCP statesin the different
scenarios(detailsof suchastudywill bediscussedin a forthcomingpaper).

5 Conclusion

Eventhoughthenetworkingconfigurationconsideredin our simulationexperimentsis admit-
tedly unrealisticandoversimplified,basedon our findings,a word of cautionis in placewhen
generalizingresultsobtainedin environmentswith infinite sourcesandopenloop systemsto
realnetworkssuchastheInternet,wherea majorpartof thetraffic is generatedby Webusers
andusesTCP. In fact, we have illustratedwith a few examplesthat suchgeneralizationscan
leadto highly conservative if not meaninglessperformancepredictions.While infinite source
modelsandopenloop toy examplescanprovide deepinsightinto andphysicalunderstanding
of the dynamicsof real networks,we believe that their credibility could be substantiallyen-
hancedby demonstratingthattheinsightandunderstandingthey provide (i) remainessentially
unchanged,or (ii) mayrequireappropriatemodifications,or (iii) arenolongerapplicablewhen
accountingfor realisticvariability atthesourcelevel andwhentakingtheimpactof closedloop
feedbackcontrolsinto seriousconsideration.

Looking ahead,it will beinterestingto seewhetheror not someof thegenericdifferences
observed in our abstractsettingwill remainvalid for morerealisticnetworkconfigurations.
Anotherlessobvious shortcomingof our experimentspresentedin this paperis thatwe com-
pletely ignorethe potentialof feedbackfrom the networkall the way backto the application
layer; that is, the congestionstateof the networkmay have a direct impacton our Web-user
sourcemodelbecauseit maydirectlyinfluencetheWeb-browsingbehavior of individualusers.
While thereexists mainly anecdotalevidencefor the presenceof suchtypesof feedbackbe-
havior (e.g.,Internet“storms” [8]), we have seenlittle empiricalevidencefor thewidespread
existenceof suchfeedbackin our analysisof a wide varietyof Internettraffic measurements.
Nevertheless,the potentialpitfalls associatedwith assumingan openloop characterizationat
the sourcelevel shouldbe kept in mind andmay requirerevampingthe currentapproachto
sourcemodeling,dependingon how theInternetdevelopsin thenearfuture.Otheraspectsnot
consideredin our experimentalstudiesconcernreplacingthe drop-tail queueingdisciplinein
therouterby, say, RED, for “randomearlydrop” [7]; incorporatingTCPfeaturessuchasSACK

(selectedack)or delayedacks[10]; anddealingwith the problemof two-wayor crosstraffic
(e.g.,see[17, 4]). Part of our ongoingefforts to understandthedynamicsof TCP traffic in a
realisticnetworkingsettingdealswith someof theseaspectsandhow they impactour current
understanding,andwill bepublishedelsewhere.
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