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I Introduction

Time-frequency distributions, which indicate the energy content of signals simultaneously
in both time and frequency, have proven indispensable for the study of the nonstationary
signals appearing in many applications, including speech, radar, geophysical, biological, and
transient signal analysis and processing. To date, most time-frequency distributions (the
spectrogram and the Wigner distribution are two examples) have been matched to the time
and frequency shift operators and, consequently, they perform well in applications where
time and frequency shifts are fundamental [1-3]. In other problems, such as sonar and image
processing, the concept of scale (compression/dilation) is more relevant than frequency shift;
hence joint time-scale distributions have been developed [2,4-6], the most popular of which

is certainly the wavelet transform.

While time-frequency and time-scale distributions are the natural analysis and processing
tools for large classes of signals, they are not perfectly matched to all signals, just as time
shifts, frequency shifts, and scale changes are not the fundamental transformations appearing
in all applications. For these different classes of signals, joint distributions based on concepts
other than time, frequency, and scale have been developed. Among these new classes, we
find the generalized Wigner distributions for the extended affine group [5] and arbitrary Lie
groups [6], the hyperbolic class [7,8], the power classes [8], the exponential class [9], the

covariant classes [10-15], and the unitarily equivalent classes [16-18].

Operator methods have played a central role in the development of these new classes
of joint signal distributions. Using ideas from quantum mechanics, these methods associate
to a physical quantity @ an operator A that may be unitary or Hermitian (symmetric).
Operator representations can be manipulated, and typically, we seek transformations that
measure the a or joint a vs. b energy content in a signal through the corresponding operator

representations A and B.

The endless variety of physical quantities necessitates general methods for generating and



characterizing joint signal representations. In [1,19-22] Cohen pioneered such a method. At
once simple and powerful, it is based on Hermitian operators, averages, and characteristic
functions. In this paper, we take an alternate, yet equivalent, path to signal representations
in arbitrary variables using unitary operators and the theory of commutative groups. Our

objectives are to:

1. demonstrate that signal representations can be derived from unitary, as well as Her-

mitian operators. Unitary operators may be more natural in certain applications.

2. clarify the key differences between covariant and invariant signal representations, in

particular for the case of “scale.”

3. emphasize the role of the group Fourier transform in deriving and manipulating covari-

ant and invariant signal representations (in the one-dimensional, commutative case).
4. extend Cohen’s method to allow choice of either covariant or invariant marginals.

5. briefly indicate how Cohen’s results generalize to discrete quantities typical in signal

processing applications.

The ideas developed in this paper were announced in [23] and have already been been put to
use and expanded upon in several papers, including [10-13,24-26]. In particular, Sayeed and
Jones also studied the relationships between Hermitian and unitary operator representations

and covariant and invariant marginals in [24-26].

The close relationship between unitary and Hermitian operator representations (by
Stone’s celebrated theorem [27, p. 614]) enforces an equivalence between our approach and
that of Cohen. (This was proved by Sayeed and Jones in [24,25] and is sketched in Section
IV-E below). Nevertheless, we feel that the insight into operator representations gained by
looking at the “flip side” of the Hermitian operator method makes the development worth

the trip.



Following a background section that reviews some basic results from functional anal-
ysis and group theory, we will proceed in steps of increasing complexity, beginning with
one-dimensional distributions that measure the A content of signals (in Section I1I) and
culminating in the construction of joint A vs. B distributions (in Section 1V). While our
approach to this problem is quite general, it is also very simple, owing to the group theoretic

arguments employed.

II Unitary Operator Methods

In this paper, we set into correspondence physical quantities with parameterized unitary
operators on a Hilbert function space H. In signal processing applications, H is typically

one of the L*(G, dug) spaces, with (@ the set of function indices and dug a measure on that

set. These spaces have inner product (g,h) = [; g(z) h(z) dug(z) for g,k € L*(G,dus) and
norm |[A|]* = (h, k).

We will adopt the relaxed mathematical tone that has become standard in the literature
on joint distributions. For example, we will have occasion to employ generalized functions
such as the Dirac delta §(z) and sinusoid e/2™/% that exist only as the limit of functions in
L*(G,dug). All arguments can be rigorized by working in a suitable Schwartz space or by

using projection-valued measures for eigenfunctions [28,29].

II-A  Unitary representations of physical quantities

On L*(R,dz) (continuous-time signals), we define the time and frequency operators as

the unitary! time shift
(Tig)(z) = g(z—1)
and unitary frequency shift

(Frg)(z) = & 7g(x),

LA wunitary operator U is a linear transformation from one Hilbert space H onto another that preserves
energy; that is, |[Ug||? = |g|? for all ¢ € H. Unitary operators also preserve inner products (isometry); that
is, (Ug,Uh) = (g, h) for any unitary U and for all g, h € H.




with z,¢, f € R. On L*(IR;,dz) (one-sided continuous-time signals), we define the scale

operator as the unitary dilation

(Dig)(z) = d7'*g(«/d),

with z,d € Ry. On L?(Ry, dz /) unitary dilation becomes
(Dag)(z) = g(z/d).
On both L2(RR, dz) and L*(Ry,dz), we define the “Mellin” operator as
(Hps)(z) = 2087 5(3) = 2727 5(2),

with h € RR. Scaling can also be defined in terms of the (one-sided) Fourier transform of the

signal, in which case the signal time domain becomes that of analytic signals.

Throughout this paper, we will assume that the function index x € G represents a
time coordinate. Otherwise, the interpretations of T, F, D, and H and other operators
must be adjusted via a similarity transform. For example, if x represents frequency, then T

corresponds to a frequency shift and F corresponds to a time shift. (More on this in Section

II-C below.)

II-B Eigenanalysis and generalized Fourier transforms

Given a parameterized linear operator A, on H, solution of the formal eigenequation
(Awud)(r) = A2, ul(e)

yields the formal eigenfunctions {uﬁ‘(:z;)} and the eigenvalues {)\ﬁa} of A,, both of which are
indexed by the parameter a.? The eigenvalues and eigenfunctions of the time and frequency

operators on L*(IR,dz) are easily shown to be

/\Ey — e—j27rmf’ UE‘(ZL’) — €j27r1/x (1)

)\FJ = e7I2mIT uF(:L’) =d(x+7)

T

2When the operator A, is unitary, the eigenequation is merely algebraic, and the eigenfunctions are
actually tempered distributions. More rigorously, we could employ projection-valued measures for the eigen-
functions [28,29].



with z.¢, f,v, 7 € IR. The eigenvalues and eigenfunctions of the scale operators are given by

D _ _—j2mnlogd D _ _i2mlogzx
iy = € ) u,(z) =e

on L*(Ry,dz/x) and by /\B;7 =\D

i u?(a:) =g~ 1/? u?(:z:) on L*(RR,dz), with d,z € Ry, n €

IR.

= 1 and the formal eigenfunctions form a complete orthonor-

If A, is unitary, then )\ﬁfa

mal set in H [30]. The expansion onto these eigenfunctions then yields another operator

that we will refer to as the A—Fourier transform IFa [16]

(Fas)(@) = (s, ud) = /Gs(x) uA(2) duc(z).

Since IF 4 is unitary, it is also invertible.

To continue the examples from above, IFy is the usual Fourier transform (unitary on

L*(R)), (Fgs)(t) = s(—t), and IFp is a Mellin transform [1,5,6,31]

(Fos)n) = (s, u) = ["sfay emirmmbose &2 )

shown here for s € L*(IR, dz/x). We will use simply IF to denote the usual continuous-time

Fourier transform IFt.

II-C Unitary equivalence

Because a unitary operator maps one Hilbert space onto another in a manner that
exactly preserves its structure — it does not change the distances or angles between vectors
— unitary operators can be interpreted as basis transformations, prompting the following

definition of operators that are equivalent modulo a change of basis [16]:

Definition: Two operators A and A are unitarily equivalent if A = U-'AU,

with U a unitary transformation.



The time and frequency operators are unitarily equivalent, since F, = I[F~'T,IF. The

time operator on L*(IR,dz) is also equivalent to the exponentiated scale operator D.x on

L*(Ry,dx), since DLy = U}jylkaUhyp with

(Unyp9)(z) = VeTzo g(€"x0), 0> 0. (3)

This operator takes functions in L*(IR;, dz) and stretches them into functions in L*(IR). The

time operator is not equivalent to either of the scale operators D, or D, however.

The underlying structure of an operator is unchanged by a unitary equivalence transfor-

mation [16]. Given operators A, and Ka =U"1A,U, it is straightforward to show that

Mooar WA =UA, Fp=RU (4)

a,o’ o’ o’

II-D Unitary operators as group representations

A powerful tool for studying invariants of any kind is group theory [32,33].? Each param-
eterized operator that we use to represent a physical quantity can be interpreted as a unitary
representation of some group. The particular group and group operation corresponding to a
representation A, are given by the domain of the parameter a and its behavior when A, is
composed with itself:

AA, = A,
It follows immediately that all unitarily equivalent operators are representations of the same
group, since if A= U-'AU, then

A = AA, = (UTAUUTA,U) = U7'ALL,U.

Thus, the group concept partitions parameterized unitary operators into mutually exclusive

equivalence classes.

3A set G with binary operation e is called a group if: 1) GG is closed under o ; that is, rey € G Vz,y € G;
2) the operation e is associative; that is ze (yez) = (zxey) ez VYa,y,z € G; 3) there exists an identity
element @ € G such that re 0 =@ ex =2 Yz € G; 4) for each € G there exists an inverse element z~!
such that z7' ez =z ex™! = 0. A group G is abelian (commutative)if zey =yez Vz,y € G [32].



While we started out this section referring to the time, frequency, and scale operators
as “parameterized unitary operators,” we now see them for that they really are: The time
and frequency operators are both representations of the Lie group (R, +) of real numbers
with addition as the group operation, whereas the scale operators are representations of
the Lie group (IR, *) of positive real numbers with multiplication as the group operation.
Although, for the sake of brevity, we will concentrate mainly these two groups for examples
in this paper, note that all results are valid for arbitrary locally compact abelian (LCA)
groups [32,33]. In Section II-G, we will consider the integer and circle groups relevant to

discrete-time signal analysis.

Given an LCA group G with group operation e, the simplest possible representation of

G on L*(G,dug) is the group translation operator T, defined as
(Tfs) (z) = S(:L‘ o r_l) , s e L*G,dug), =,r e,
Translation is unitary if the measure dyug is chosen to be invariant to T%; that is, if

/G(TSS)(CL’)C[,UG(J?) = /GS(LL’)dILLG(;[;) Vre Q.

This invariant measure, usually referred to as the Haar measure [32,33], can be regarded as
the natural measure for the group G, singling out the space L?((, dug) as the natural space
on which the operators unitarily equivalent to T act. From this point onwards, we will

employ only the Haar measure and write L?(G) for L*(G,dug).

Continuing the examples from above, for the group (IR,+), the invariant measure is
duc(xz) = dzx and the group translation operator is T,, while for the group (IRy,x*), the

invariant measure is dug(x) = dx/x and the group translation operator is D,..

The unitary equivalence transformation Oa linking the representation A, of the group

G with its respective translation T, through

Aa = @Xl T§®A7 (5)



plays a special role in the sequel. An illuminating interpretation of ©a is as a coordinate
transformation from “time” coordinates to “a” coordinates, where the action of A is simpler

than any other unitary representation of the group G.

II-E The group Fourier transform for LCA groups

The fact that all unitary representations of a group G share common eigenvalues (see

(4)) inspires the group Fourier transform IFg [32,33]

(Fos)(x) = [ s(2) X, dug(z).

Here, A% denotes the common eigenvalues, which are called the characters of the group. The
transformation IFg is a unitary map from the space L*(() onto the space L*(G*, duc+) based

on the dual group G* of G [30].

The characters form one-dimensional representations of both groups G and G*. For G,

we have

)\G G _ )\G
z1,X" T2, X T Tmiexme,X

re G, xye G,

For the dual group G*, with group operation o, we have

AENE = )¢ zed, yeG.

X1 T,X2 Z;X10X2 7
The dual group is also LCA, but in general o differs from e. The string of identities
a a a 7! NG
Aimiy = Agymt = ()‘Lx) - )‘gx

echos the properties of the complex sinusoids employed in the traditional Fourier transform.
Throughout this paper, we will use roman letters to denote elements of G and greek letters

to denote elements of G*.

Since IF¢ is unitary, the inverse group transform of a function S(x) € L*(G*) is defined

similarly to the above
(F5'5)(2) = /*S(X) Ao dug-(x), € G.

8



Since /\fx = A{,, this inverse transform can be interpreted as a group Fourier transform in
b b

its own right.

On L?*(G) (using the invariant measure), the group Fourier transform coincides with
the T¢—Fourier transform; therefore, the A—Fourier transforms of all operators unitarily

equivalent to T can be obtained (up to reversal) as
FAo = IFG©a,
with ©a the transformation to “a” coordinates defined by (5).

For the two groups we have focused on thus far, we have (IR,+)* = (R,+) and
(R4, *)* = (IR, +). The (IR, +) group Fourier transform is the usual Fourier transform map-
ping L*(R,+) onto L*(IR,+). The (IR, *) group Fourier transform is the Mellin transform

mapping L*(IRy,dz/z) onto L*(R,+).

II-F Dwual Operators

After group translation T, the simplest nontrivial unitary transformation on L*(@Q) is

the phase shift
(ATs5)(@) = NTos(e) = Ao, s(e),  ©EG, aed

A representation of the dual group G*, this transformation induces a translation in the group
Fourier transform:

Fo A" = T IFg.
Because of the close connection between translation and phase shift, we refer to T and A%
as dual operators on L?(G) and write AS" = d(T%),. Dual operators were introduced in this
context in [34] and studied in more detail in [26,35]. Hlawatsch et al refer to dual operators

as “conjugate operators” [10-13].

If the operator A, translates in a coordinates, then its dual operator will phase shift

in these same coordinates. To find the operator dual to an arbitrary unitary A,, we can



employ the unitary equivalence principle. Given that A, represents the group G, we have

the following diagram:

TG dwel o po

©al ©al (6)

A, & qA),
and the conclusion that

A, = 0;'TY0,, a€cG
(7)
= d(A), = 031" A% 04, a e G

Both A, and d(A), operate on L*((); however, unless G = G*, A and d(A) are nol unitarily

equivalent.

Time T and frequency F provide the classical example of dual operators, with T = T¢
and F = A% for G = (R, +). Since G* = G in this case, these operators are also unitarily

equivalent, with the usual Fourier transform IF providing the link.

Scale D and Mellin H are also dual operators, with D = T and H = A°" for G =
(R4, *). However, since G* = (R, +) # G, H is not unitarily equivalent to D, but rather

to T = T, with the Mellin transform as link. The interpretation of dual operators is

complicated by the fact that A°" (H here) can operate on both L?(G) and L*(G*).

II-G Further examples

Group GG = (Z,4): Discrete-time signal analysis involves a set of groups different from
(R, +) and (R4, *). On L*(Z) (discrete-time signals with the counting measure), we define
the time shift operator as (T, g)(z) = g(z — n), with ,n € Z. This operator represents
the group (Z,+) of integers with addition as the group operation; in fact, it is the group

translation operator. Its eigenvalues and eigenfunctions are given by
,\;Té _ it ug(:c) _ imte z,neZ, £€[0,1). (8)

The dual group of (Z,+) is the circle group ([0,1),+1) having addition mod 1 as group

operation. The group Fourier transform mapping L*(Z) onto L?[0, 1) is the classical discrete-

10



time Fourier transform. The frequency shift operator (F,, g)(z) = €/2™%g(zx), with m €
[0,1), operates on L*(Z) as a representation of the circle group. In addition to being unitarily

equivalent, T,, and F,, are dual operators.

Group G = (Zn,+n): Finite data sets dictate the group of integers modulo N,
(Zn,+n), having addition modulo N as group operation. With this group, translation
takes the form of a cyclic shift, while the group Fourier transform corresponds to the dis-

crete Fourier transform mapping (Zy, +n) onto itself.

The results of this paper spring immediately from the characterization of physical quan-
tities (time, frequency, scale, and so on) as group objects, specifically, as unitary represen-
tations of groups on certain Hilbert signal spaces. We will now apply this powerful mathe-

matical machinery to the problem at hand: energy densities in one and many dimensions.

IIT Energy Densities

In this section, we define two natural transforms for a unitary representation A of an
LCA group [23]. The first is invariant to A, while the second measures the “a” content of
signals. It is useful to keep in mind as models the operators F and T and the transformations
|s(¢)]* and |IFs(f)|% which indicate the time and frequency energy content of a time signal
s. While the results of this section are general, when interpreting them we will assume that

the signal s(z) has been expressed in the “time domain.”

ITI-A Invariant energy densities

Squaring the A-Fourier transform yields an energy density that is invariant to the op-

erator A
(FaAqs)(a)l* = [(Fas)(@)]”.

Thus, we will refer to |IFas|? as the A—invariant energy density (A-IED). It is extremely

important to note that the A-IED does not indicate the A content of the signal s, precisely

11



because of this invariance. In fact, the A-IED is the transform of choice when the action of

A is to be ignored!

As examples, recall that the T-Fourier transform reduces to the usual Fourier transform,
which indicates not time but frequency content. Similarly, the D—Fourier (Mellin) transform
of (2) indicates a sort of “logarithmic chirp” content. (Cohen refers to this quantity as

“scale” [1,21,22,36].)

III-B Covariant energy densities

Although it is clear that the energy density indicating the A content of a signal must

change when A is applied to the signal, it is unclear what type of change should occur.

Definition: A transformation © is Z-covariant to an operator A if OA, =

Z,0.

The essence of Z—covariance is that the operator Z describes the effect of “pulling” A
out through the transformation 0. It follows directly from the definition that if we desire
Z—covariance in an A—content energy density, then the density of choice is |©s|*. Note that
Z cannot be arbitrary, since A and Z must be unitarily equivalent, with A, = ©7'Z,0,

and, hence, must be representations of the same group G.

Since the natural choice for © should lead to the simplest possible covariance, a group-
theoretic argument suggests we choose Z = T, the translation operator of the group G.
With this choice, the A—covariant energy density (A—CED) becomes the square |(Oas)(a)|?

of the transformation (5) that maps signals from time to a coordinates.

It is straightforward to demonstrate that the d(A)-IED, IF4(a), coincides precisely with

the A—CED and vice versa.

12



III-C Examples

While the A-IED does not indicate the A content of signals, the A—~CED does.

Group G = (R,+): Translation corresponds to T¢ = Ty On L2(R), the time and
frequency operators produce the expected results: The T-IED is the square of the usual
Fourier transform |(IFs)(f)|* and the T-CED is |s(¢)|?, whereas for F these densities are

reversed.

The chirp modulation operator (C.s)(z) = ei?mlzl"en{z)s(z) p £ 0 on L%(IR) is related

to T by C. = O5'TY0O¢ with
(Ocs)(e) = [ s(a) e streblisents) g =072 /2 g, (9)

Since the C-CED |(©¢s)(c)|* indicates the “chirp” content of signals, it has been called the
chirp transform [8,16]. The C-IED is given by |(IFcs)(7)|? = |p|=" |y| =27 |s(|y|'/sgn(7))|?.
This transform demonstrates the nonuniqueness of IEDs, since the density [s(v)|? is also

invariant under C.

The Mellin operator Hj, represents G on L*(Ry) and L*(IRy,dz/x). The H-CED is the
Mellin transform Oy = Fp; an H-TED is |s(z)|?.

Group G = (R4, #): Translation corresponds to TS = D;. The D-IED is the Mellin

transform (Cohen’s “scale transform” [1,36]).

The D-CED is |s(d)|?, d > 0 This result may be surprising (and perhaps a little disap-
pointing), but it is also correct, consistent, and reasonable [34]. First, this density has the
correct covariance property: |(Dgs)(d)|* = |s(d/k)|*. Second, this density indicates the scale
content of the signal s: just as the T-CED [s(¢)|? indicates the amount of group translation
(TG = T in the additive group) required to bring the signal energy at the point ¢ to the
identity element § = 0 of that group, the D-CED |s(d)|* indicates the amount of group
translation (TG = D in the multiplicative group) required to bring the signal energy at the

point d to the identity element § = 1 of that group. Third, since scale is a ratio — “this

13



thing is twice as big as that thing” — the features on which the scale content of a signal
can be judged exist in the time domain, and so no elaborate coordinate transformations
are necessary. An enlightening interpretation of the D—CED is provided by considering the

index d of s(d) as a spatial variable in an imaging system, with |s(d)|? the distribution of an
object along the image axis. In this case, d represents a “zoom” parameter, and the spread
of the D-CED indicates the amount of focus change required to successively bring all of the

object into focus at an image plane at d = 1.

Discrete groups: In discrete-time, over the groups (Z,+) and (Zy,+n), the time
signal |s[n]|* and the square of the (discrete) Fourier transform are the time and frequency

IEDs and CEDs.

III-D From ambiguity functions to energy densities

The correlation, characteristic, or ambiguity function

(Qs)(a) = (s, Aus) (10)

measures the similarity between s and A,s as a function of a. When A = T, (10) corre-
sponds to a group convolution — the usual convolution on (R,+) and multiplicative con-
volution on (R4, *) [5,6,31]. The Fourier transform takes an ambiguity function from the

correlative domain to the energetic domain [3]; two cases will be of interest in the sequel.

The group Fourier transform of (10) yields the A-TED |(IFas)(a)|*. To see this, we recall

the identity A, = O5' TS0, and write

lFG,m—)a <37 Aa5> = lFG7a._>a <®AS, —"—aG@AS>

= [ (@as)(w) [/G(GAS)(uoa_l)/\ga d,ug(a)] dpc(u)
= [ (Ons)w) [ | @0 X dit(w)] dit ()
= [/ (©a8)) 3, dsc ()] [ [ [@x5)0) AL, o)

14



= |(FaOas)(@)]* = |(Fas)(a)|”. (11)

The inverse group Fourier transform of (10) with the dual operator d(A), in place of A,
yields the A—CED |(Oas)(a)|?, as we see from

Foob, (s, d(A)as) = F L, (Oas, AS Ops)
= [ 1@as)@)* | [ A, duce ()] dp(u)
= [ 1@ [ [ A i (@)] diau)

= |(©as)(a)]*. (12)

While merely an intermediate step in the single operator case, ambiguity functions form

the foundation for joint energy densities for multiple operators, to which we now turn.

IV  Joint Energy Densities
IV-A Motivation

In the previous section, we defined two energy densities that are natural for any unitary
representation A of an LCA group. The A-IED is invariant to A, while the A-CED is
covariant to A (and thus measures the A content in signals). In many applications, these
densities and their linear equivalents will be more than adequate for characterizing, ana-
lyzing, and processing signals. One obvious example of an IED/CED is the square of the

Fourier transform, which has found a multitude of applications.

For more complicated signals and systems, several physical quantities may be meaningful
simultaneously, making joint densities based on several operators a necessity. Time-frequency
distributions, for example, were developed for problems where both the time shift T and
frequency shift F' are important. In this section, we build on the above results to construct

joint energy densities for combinations of physical quantities [23].

15



The basis for our method lies in Cohen’s pioneering construction for joint densities of
arbitrary variables [1,19]. Like Cohen, we will employ ambiguity (characteristic) functions
to extend the one-dimensional construction of Section I1I-D to two and higher dimensions.
Unlike Cohen, we will begin with unitary operator representations and finish with an ex-
tended construction that supports groups beyond (IR, +) and offers a choice of either IED or

CED marginals.

A relaxable marginalization constraint will ensure that the axes of our joint distributions
lie oriented along the right quantities. We will say that a two-dimensional mapping (Ps)(u,v)

is a joint density for A and B if its marginal distributions M s and Mg, given by

J(Ps)(w.v)dps(v) = [(Mas) ()
J®s) (w0 dpatu) = [(Mas)(v)2
are energy densities for A and B. Natural possibilities for M s and Mg are the [EDs and

CEDs for A and B. If CEDs are chosen for both A and B (one of the four options), then

Ps can be interpreted as indicating the joint A-B content of the signal s.

IV-B Construction

We will explicitly formulate joint energy densities only for pairs of unitary operators;
the jump from two to higher dimensions is straightforward. For the moment, we will assume
that both operators represent the same LLCA group (. This assumption will be relaxed in
Section IV-E. The construction of joint densities for two operators A and B proceeds as

follows:

Step 1: Choose either IED or CED marginals for A and B. For an A-IED marginal, set
A*, = A,, while for an A-CED marginal, set A*, = d(A),, the dual operator. Form

B* in the same manner.

16



To illustrate, we will work towards A-CED and B-IED marginals in the following.
Hence, we have A* = d(A) and B* = B.

Step 2: Form the ambiguity function

(Qs)(a,b) = (s, A", B%s), (13)
with the inner product taken in L*(G).
Different orderings of A* and B* yield different joint distributions [1,20]. In general,
any function ord(A*, B*; a,b) of A* and B* is permissible as long as*

ord(A*,B*; a,0) = A%, (14)

ord(A*,B*; 0,b) = B% (15)
with @ the identity element appropriate for the group. (With A* = d(A) and B* = B,
6 € Gin (14) and § € G* in (15).)

Rather than enumerating all orderings, we can fix a single valid ordering in (13) and

obtain a large class of others using a kernel function ¢(a, b)

(Qgs)(a,b) = &(a,b) (s, A%BYs), (16)

Kernels satisfying the constraint ¢(«, 0) = ¢(6,b) = 1V a, b will generate distributions
satisfying the correct marginals. Distributions generated by kernels that violate this
constraint will not marginalize correctly, but are nonetheless useful. Note that the

kernel method is not foolproof, however; see [35,37,38].

Step 3: Compute the A-B distribution as the double group Fourier transform of Qs. For
IED marginals, use the forward transform; for CED marginals, use the inverse trans-

form. Given our choice of A-CED and B-IED marginals, we have

(Pys)(a.B) = Fai'y, Faup d(a,b) (s, d(A).Bys). (17)

4Using unitary equivalence, we can expand the class of operators that when inserted into (13) yield
distributions that marginalize appropriately. See [25] for more details.
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To obtain distributions of more than two variables, simply place all of the relevant operators

into the ambiguity function (16) and Fourier transform accordingly.

IV-C Marginal and covariance properties

The marginal properties of Ps,

J(Ps) (@) duc-(3) = |(Ons)(a)l (18)
[(Ps)(a,3) dug(a) = |(Fes)(B)], (19)

follow directly from the properties of the group Fourier transform. We begin with the A—

CED marginal (18). Integrating Ps with respect to dug«(3) yields

[ (Ps)(@.B)duce(5) = Feoly, [ dlab) (s, d(A)Bus) | [ N, duc-(8)] dc(b).

Formally, the term in brackets equals the Dirac impulse §(3); hence, the integration over b
sifts the value b = 6 into B and ¢. Since By = I, the identity operator, the analysis of (12)

confirms that the A marginal of Ps equals |(©as)(a)|? provided ¢(a, ) =1V a.

The B-IED marginal (19) follows similarly. Integrating Ps with respect to dug(a) (and

skipping the disappearance of d(A), which occurs as above for B), an analysis similar to

(11) confirms that the B marginal of Ps equals |(IFgs)(3)|* provided ¢(6,b) =1 V b.

The covariance properties of Ps are completely determined by the operator A* B* that
rules over the ambiguity function (16). Here the theory departs from that of Section III,
because in general the composition A* B* is neither commutative nor even a group represen-
tation. Thus, even if we select A-CED and B-CED marginal distributions in Ps, it might
not exhibit any covariance aside from in those marginals. A complete discussion of covari-
ance lies beyond the scope of this paper; we refer the reader to [5,6,14,15, 18,24, 25,37, 38]

for results applicable to continuous groups.
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IV-D Examples

Time-frequency: By setting A* = F, and B* = T, in (17), we obtain the classical
Cohen’s class of time-frequency distributions. The resulting distributions possess a special
symmetry: each marginal plays a dual role as IED for one variable and CED for the other.
Distributions generated by fixed kernels sport covariance to both time and frequency shifts.

We assume ¢ = 1 throughout this section.

To analyze continuous-time signals on L*(IR), we employ v, 7 € IR and construct distri-

butions on (IR, 4) x (IR, +). The central Wigner distribution [1]

(WS)(t7f) = /5<t —+ %) s* (t _ %) e—j?wff dr
results from plugging T, ;,F, T,/ = e F, T, into (16).

To analyze discrete-time signals on L*(Z), we employ v € [0,1), 7 € Z and construct
distributions on (Z,+) x [0,1). Note that although F, and T, represent different groups in
this case, they both act on the same signal space, L*(Z), and so the construction remains
valid. Use of the ordering e=/™” F, T, in (16) with double-oversampled signals results in the
discrete-time Wigner distribution of Claasen and Mecklenbrauker [39]

(Wys)(n,m) = Z s(n+71)s*(n—71)e ™7,
Other orderings yield alternative definitions of the discrete-time Wigner distribution (see [40]
and the references in [41]).

To analyze finite length discrete-time signals on L*(Zy), we employ v,7 € Zy and

1N

construct distributions on (Zy,+n) X (Zy,+n). The ordering e=/™~ F,/nT; results in

the discrete-time, discrete-frequency Wigner distribution of Richman, Parks, and Shenoy [41]

1 N-1 i
(Wys)(n,k) = 55 30 s(l)s7(L+ 7)) e ¥ Blwtbn=lmm2d,
7,0,0=0

(Operations (+)y are carried out modulo N.)
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Time-scale: Since time T and scale D are not dual variables, there exist several species

of time-scale distributions.

Time-scale CED distributions are of limited interest, as both the T-CED and D-CED

marginal will be of the form |[s(¢)]?.

The T-TIED vs. D-IED distributions have Fourier and Mellin marginals. We will work
with continuous-time analytic signals whose Fourier transforms live in L?(IRy). The Altes
@ distribution results from (16) with the ordering Dy, T¢Dj/o, with ¢t € R, d € IR} [42].
The ordering T%tDQ [6] yields the Bertrand “tomographic” distribution [5], which has also
been obtained by Shenoy and Parks [6] and by Cohen [1, p. 257]. The @ distribution is

covariant to scale changes, but not to time shifts. The Bertrand distribution is covariant to

both scale changes and time shifts.

The T-CED vs. D-IED distributions have time and Mellin marginals. The ordering
D}/ F Dy, yields the time-scale distribution of Eichmann and Marinovich [43] and Altes [42]

for single-sided signals in L*(IR;).

Time-A: For analyzing time signals, joint distributions with a time marginal are funda-
mental. Joint distributions of T and A measure joint time and A content. For the distributed

ordering Aa—l/QF_yAa—l/2,5 T-CED vs. A-IED distributions assume a symmetrical form

(Ps)(t,0) = IFg arra (Auy2s)(t) (Aumijas) (1)

_ /G (Ausos) (1) (Aum)os) (1) NG, duc(a)
Distributions measuring the A-CED use the dual operator and the inverse group trans-
form. This prescription generalizes the time-scale distribution formulation of Fichmann and

Marinovich [43].

For example, setting A to

(A(C)sl(x) = s(mpmagp(a) =) [P [my,(2) — 4"

®The a=!/2 factor should be interpreted as the group element such that (a=1/2) e (a=1/2) = a~!.

3
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with m,(u) = |u|Psgn(u), results in a Wigner-like time-chirp distribution having marginals

of time |s(¢)|* and chirp |(©¢s)(c)|* from (9).

Unitarily equivalent distributions: The powerful unitary equivalence concept applies
also to joint distributions. Given a joint distribution P,; matched to two operators A and
B, we can easily obtain a distribution PE,? matched to the unitarily equivalent operators A=
U~'AU and B = U'BU by simply preprocessing the signal by the unitary transformation
U [16,17]

(Pz35)(@b) = (P.Us)(@b).

The analysis of unitarily equivalent distributions is straightforward [16,17]. Hlawatsch,

Boleskei, and Twaroch have also studied a closely related set of classes in great detail [10-13].

Distributions generated by operator pairs that are unitarily equivalent to the time and
frequency operators share the total marginal symmetry of Cohen’s class time-frequency dis-
tributions. The hyperbolic class of Papandreou, Hlawatsch, and Boudreaux-Bartels [7] pro-

vides a prime example, with U = Uy, from (3).

IV-E Relationship to Cohen’s Method

Cohen pioneered the construction of joint distributions of arbitrary variables [1,19,36,44].
In this section, we show that the steps of Section IV-B and Cohen’s method yield equivalent
distributions, assuming we are interested in CED marginals over the real numbers. (This
fact was originally proved by Sayeed and Jones in [24,25], so we will merely sketch the result.

See [1] for more information on Cohen’s method.)

Cohen’s method: A physical quantity @ has a Hermitian (self-adjoint) representation
A in addition to a unitary representation A [1]. Projection onto the eigenfunctions of A

measures the a content in a signal. In fact, the square |(IF 4s)(a)|* coincides with the A-CED.
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Exponentiating a Hermitian operator yields a unitary operator

€j27ra.A = io: (JQWGA)n
= n!

sharing the same eigenfunctions. For example, the Hermitian representations for time,

(Tg)(z) = xg(x), and frequency, (Fg)(z) = ﬂ%g(x), exponentiate to the unitary repre-
sentations for frequency, F¢ and time T_;, respectively. (Note carefully the reversed order

of the unitary operators.)

Cohen constructs joint a—b distributions by plugging the corresponding Hermitian oper-

ator representations A and B into a characteristic function formula [1,19,36,44]

(PCOhenS)(CE, b) — // <ej27r(aA+ﬁB)S’ S> e—i2maa —j2mpb g da. (20)

The exponentiation e/27(*A+85) can be performed many different ways — as long as

eﬂ”(a““+53)|5:0 — ei?moA and ejQ’T(aA+ﬁB)|a:0 = ¢/?™8_ distributions of this form will correctly
marginalize to the A—-CED and B-CED. To generate a class of distributions corresponding
to many possible exponentiations, Cohen fixes one and introduced a kernel function ¢(c, 3)

into (20) to take care of the others.

We now will sketch the equivalence between Cohen’s formulation (20) and the formulation

of (17) for the case of CED marginals.

Equivalence on (R,+): When the quantities of interest a and b live in the group
(R, +), the equivalence between (17) and (20) is direct and immediate. The key in this case
lies in the fact that exponentiating a Hermitian operator representation A yields the dual

unitary operator d(A) (by Stone’s theorem, see [27, p. 614] and [24,25]). Therefore, we have
d(A), = ™4, AT, = e, dpige () = da,
and simple substitution equates (17) to (20).

Equivalence on more groups related to (R,+): Matters are hardly more compli-

cated when the quantities of interest lie in arbitrary unbounded groups over the reals. Key
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in this case is that all groups of this kind are equivalent, meaning there exists a one-to-one

warping function w : G* — (IR, +) such that (we illustrate with the dual group)
ay oy = w[w_l(o/l) + w_l(ag)} , a,ap € G o, ay € (IR, +).

with o the group operation on G*. For example, w(z) = log = takes (IR, *) to (IR, +), while
w(a) = 1/a takes the group (R\{0}, <), with oy o g = 1/(1/as + 1/a2), to (IR, +).

The warping w remaps the operators, eigenfunctions, and measures in a predictable way.
By Stone’s theorem again and the equivalence of the groups, we have the Hermitian-unitary
operator equivalence

d(A)a — €j27rw(oz).A’ aeG*

or

d(A)y-1(ay = €24 o' e (R, +).
These operators still share common eigenfunctions, but with a different indexing scheme,
since
d(A)y-1 (o '™ = e u®)
w1l (a’) w=l(a!) — w=l(a’),a Sw=1(a’)"

Under the warping, the Haar measure changes to

A (w(a') = du®(a) = da.

With these three changes in place, the general formula (17) would yield (P<hns)(a, b),
but with a,b with not necessarily in (IR,+). In order to assure this (and link our result
to Cohen’s), we use the warping transformation v that takes a € G to o’ € (IR, +) (plus a
similar transformation for b). Under this warping, the characters of GG become additive and
we have

Ag*_l(a/)w—l(a/) = €j2wa/a/, O/, a’ € (|R7 —I-)

Thus, for real-valued variables, we can interpret (17) for CED marginals as equivalent

to a warped version of Cohen’s construction (20). (See [24,25] for more details.)
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The utility of warping extends beyond demonstrating this equivalence. Consider the case
in Section IV-B where A and B represent different, but equivalent groups. By warping one
of the variables, we can base (17) in a common group and signal space. A simple dewarping

procedure on the resulting distribution can then restore the variable to its natural state.

Discretized versions of (20) can be implemented by an FFT-based algorithm. Discretiza-
tion of (17) will lead to number theoretic transforms [45], which also have fast implementa-

tions.

V Conclusions

Viewing invariant and covariant signal energy densities from a group theory perspective
has proven illuminating. These simple concepts are central for studying both single- and
multi-operator energy distributions. Our approach to joint distributions — simply combining
two one-dimensional energy densities to form one joint density — is simple, but effective.

Somewhat surprisingly, this method is equivalent to Cohen’s general prescription.

In constructing joint densities for multiple operators, we have ignored the important
fact that in certain special cases, operator pairs can be representations of (noncommutative)
higher-dimensional groups. For general constructions that utilize the resulting noncommu-

tative group theory, see [5,6,41].
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