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ABSTRACT

Given a unitary operator .4 representing a physical quantity
of interest, we employ concepts from group representation
theory to define two natural signal energy densities for A.
The first is invariant to .4 and proves useful when the effect of
A is to be ignored; the second is covariant to .A and measures
the “4” content of signals. The construction is quite general
and is also easily extended to the multi-operator case, which
generalizes previously derived joint densities such as the time-
frequency and time-scale distributions.

1. INTRODUCTION

Time-frequency representations, which indicate the energy
content of signals simultaneously in both time and frequency,
have proven indispensable for the study of the nonstation-
ary signals appearing in many applications, including speech,
radar, biological, and transient signal analysis and process-
ing [1]. Most time-frequency representations (the spectro-
gram and the Wigner distribution are two examples) are
based on the time and frequency shift operators and, con-
sequently, perform well in applications where time and fre-
quency shifts are fundamental. In other problems, such as
sonar and image processing, the concept of scale (compres-
sion/dilation) is more relevant than frequency shift; hence
joint time-scale representations have been developed [1,2], the
most popular of which is certainly the wavelet transform.

While time-frequency and time-scale representations are
the natural analysis and processing tools for large classes of
signals, they are not perfectly matched to all signals, just as
time shifts, frequency shifts, and scale changes are not the
fundamental transformations appearing in all applications.
For these different classes of signals, joint representations
based on concepts other than time, frequency, and scale must
be developed. Some progress has been made in this direc-
tion [3,4]; however, at present there is no adequate theory for
generating joint representations in the general case.

In this paper, we take a step towards this goal by for-
mulating a theory for joint distributions of broad classes of
physical quantities that include, but are not limited to, time,
frequency, and scale. Spec1ﬁcall given unitary operators
and B representing two physical quantities of interest, we will
derive classes of distributions that measure the joint “A-B”
energy content of signals.

Following a background section containing some results
from functional analysis and group theory, we will pro-
ceed in steps of increasing complexity, beginning with one-
dimensional transforms that measure the A content of sig-
nals and culminating in the construction of A-B distribu-
tions. While our solution to this problem is quite general, its
construction is also strikingly simple, owing to the powerful
group theoretic arguments employed.

2. PRELIMINARIES

The approach of this paper is to associate physical quantities
with parameterized unitary operators on a Hilbert function
space H [3,4]. In signal processing applications, H is typically
one of the L2(G, dpc) spaces, with G the set of function in-
dices and d,uG a measure on that set. These spaces have inner

product { fG z)dpc(z) for g, h € L*(G,dug)
(h h)

Assuming that the function index z € G represents a
time coordinate, we define the time and frequency opera-
tors on L? as the unitary' time shift (7; g)(z) = g(z — t)
and unitary frequency shift (F;g)(z) = e’*™g(z), respec-
tively. We define as scale operators the unitary dilations
(Dag)(z) = d_l/zg(m/d), d > 0, on L?(IRy,dz) (one-sided
signals) and (Dag)(z) = g(z/d), d > 0, on L*(IRy,dz/z). If
z € G does not represent a time coordinate, then the inter-
pretations of 7, F, and D must be adjusted accordingly. For
example, if z represents frequency, then 7 corresponds to a
frequency shift and F corresponds to a time shift.

and norm || h ||2

Given a parameterized linear operator A, on H, solution
of the eigenequation

(Aa ef)(z) = )\ﬁa el (z)

yields the eigenfunctions {eA } and the eigenvalues {)\fa}

of A,, both of which are indexed by the parameter «. The
eigenvalues and eigenfunctions of the time and frequency op-

erators on L? are casily shown to be
T
Ar s = )\ft = = ¢ etf(z) =8(z +1),

while the eigenvalues and eigenfunctions of the scale operators
are given by

P o] (0

)\D — 6—]271"q10g d’ e?(z) — 6]27‘r7]log.r
on L?(Ry,dz/z) and by )\5 = )‘dn’ El(z) =gz 1/? e?(z)
on L*(IRy,dz).
If A, is unitary, then |)\ﬁa| = 1, and the eigenfunctions

form a complete orthonormal set in H. The expansion onto
these eigenfunctions then yields another operator that we will
refer to as the .A—Fourier transform Fyu

(Fas)(a) = <s, e’aA> = /Gs(z) ef*(z)dug(z).

1A wnitary operator is a linear transformation from a Hilbert
space H back onto itself that preserves energy; that is, |Ug|?> =
lg|? for all g € H. Unitary operators also preserve inner products
(isometry); that is, ({{g,U{h) = {(g,h) for any unitary &/ and for all

g,h € H. A norm-preserving operator mapping one Hilbert space
onto another is termed an isometric isomorphism.



Being an isometric isomorphism, F4 is also invertible. To
continue the example from above, Fr is the usual Fourier

transform (unitary on L?), (Frs)(t) = s(—t), and Fp is a

Mellin transform [3,4]
~ dx
F — D — —j27'r7]10g.r_
®on)) = (s.}) = [ sta)e 3

shown here for s € L*(IRy, dz /).

Because a unitary operator maps H back onto itself in a
manner that preserves exactly its structure — it does not
change the distances or angles between vectors — unitary op-
erators can be interpreted as basis transformations, prompt-
ing the following definition of operators that are equivalent
modulo a change of basis [x,y]:

(1)

Definition 1  Two operators A and B are unitarily
equivalent if we can write B = UTAU with U a unitary
transformation.

The time and frequency operators are unitarily equivalent,
since Fr = F.;l’]}C F7r. The time operator is not equivalent
to either of the scale operators Dy or Dj, however.

The underlying structure of a unitary operator is un-
changed by a unitary equivalence transformation. For ex-
ample, given operators Ay and By = U AU, it is straight-
forward to show that

(2)

Ak = Mss

A powerful tool for studying invariants of any kind is group
theory.? Each parameterized operator that we use to repre-
sent a physical quantity can be interpreted as a unitary repre-
sentation of some group. The particular group and group op-
eration corresponding to a representation .4, are given by the
domain of the parameter a and its behavior when .4, is con-
catenated with itself: A;A, = Azey. It follows immediately
that all unitarily equivalent operators are representations of
the same group, since if B = U~ AU, then

Bzoy = BIB?J = (u_lAfu)(u_lAyu) = u_1A$°yu'

Thus, the group concept partitions parameterized unitary op-
erators into mutually exclusive equivalence classes.

es =U""es, Fp=TFlU.

While we started out this section referring to the time, fre-
quency, and scale operators as “parameterized unitary opera-
tors,” we can now see them for that they really are: the time
and frequency operators are both representations of the group
(IR, +) of real numbers with addition as the group operation,
whereas the scale operators are representations of the group
(IR4,*) of positive real numbers with multiplication as the
group operation. Although, for the sake of brevity we will
consider only these two groups for examples in this paper,
note that all results are valid for arbitrary locally compact
abelian (LCA) groups [5].

Given an LCA group G with group operation e, the sim-

plest possible representation of G on Lz(G', dpg) is the group
translation operator T, defined as

(Trs)(z) = s(:n or_l) , s € Lz(G,dug), z,7 € G.

Translation is unitary if the measure dpug is chosen to be

2A set G with binary operation e is called a group if: 1) G is
closed under o ; that is, rey € G Vz,y € G; 2) the operation e
is assoclative; that is ze (yez) = (rey)ez Vz,y,z € G; 3) there
exists an identity element § € G such that ze0 = ez =z Vz € G
4) for each z € G there exists an inverse element z~! such that
r~ ez =zez7! = 4. A group G is abelian (commutative) if
zey=yezx Vz,y€e G [5].

invariant to 7; that is, if

/G(Trs)(z)dug(z) = /Gs(:n)dug(z), Vred.

The invariant measure can be regarded as the natural mea-
sure for the group G, singling out the space LQ(G,dug) as
the natural space on which the operators unitarily equivalent
to 7 act. We will assume from this point onwards that the
invariant measure is always employed in L2(G,d,ug). Con-
tinuing the examples, for the group (IR,+), the invariant
measure is dug(z) = dz and the group translation opera-
tor is 7;, while for the group (IR4, %), the invariant measure
is dpa(z) = dz/z and the group translation operator is D,.

The fact that all unitary representations of a group G
share common eigenvalues (see (2)) inspires the group Fourier
transform Fg [5]

G
(For)e) = [ s(a) 52 duoa),
G
where A9 denotes the common eigenvalues. The transfor-
mation Fg is an isomorphic isomorphism from the space
L*(G, duc) onto the space L?(T', dur) based on the dual group
I' of G.? Consequently, the inverse group transform of a func-
tion S(a) € L*(T, dur) is defined similarly, as

(F5'S)(z) = /FS(a) AS o dpr(a).

On L*(G,dpc) (using the invariant measure), the group
Fourier transform coincides with the 7—Fourier transform;
therefore, the .A-Fourier transforms of all operators unitar-
ily equivalent to 7 can be obtained as F4 = FglU, where
Ay = Ut U. To complete the examples for this sec-
tion, note that the (IR,+) group Fourier transform is the
usual Fourier transform mapping L? onto L?. The (IR4, )
group Fourier transform is the Mellin transform mapping

L*(Ry4,dz/z) onto L? (the dual group is (IR, +)).

The results of this paper spring immediately from the char-
acterization of physical quantities (time, frequency, scale, and
so on) as group objects, specifically, as unitary representa-
tions of groups on certain Hilbert signal spaces. We will now
apply this powerful mathematical machinery to the problem
at hand: energy densities in one and many dimensions.

3. ENERGY DENSITIES

In this section, we define two natural transforms for a unitary
representation A of an LCA group. The first is invariant to
A, while the second truly measures the “4” content of signals.
It is useful to keep in mind as models the operators 7 and
F and the transformations |s(t)|? and |Frs|? which indicate
the time and frequency energy content of a time signal s,
respectively. Note that while the results of this section are
completely general, when interpreting them we will assume
that the signal s(z) has been expressed in the “time domain.”

Invariant Energy Densities. Squaring the .A-Fourier
transform yields an energy density that is invariant to the
operator A

(Fadas)(a)f” = [(Eas)(e).

Thus, we will refer to |Fas|® as the A—invariant energy den-
sity (A-1ED). It is extremely important to note that the A-

3The second parameter o of /\ga belongs to the dual group

I'. We will generally use greek letters to denote elements of I'. A
notable exception is the parameter f of the F;, which lies in both
G=(R,4+)and ' =G.



TED does notindicate the A content of the signal s, precisely
because of this invariance. In fact, the A-TED is the trans-
form of choice when the action of A is to be ignored!

As examples, recall that the 7—Fourier transform reduces
to the usual Fourier transform, which indicates not time but
frequency content. Similarly, the D-Fourier (Mellin) trans-
form (1) indicates not scale but some sort of “logarithmic
chirp” content.

Covariant Energy Densities. Although it is clear that
the energy density indicating the A content of a signal must
change when A is applied to the signal, it is unclear what
type of change should occur.

Definition 2 A transformation © is Z—covariant to an op-
erator A if O Ay = Z;0.

The essence of Z—covariance is that the operator Z de-
scribes the effect of “pulling” A out through the transfor-
mation ©. It follows directly from the definition that if Z—
covariance is desired in an .A—content energy density, then the
density is given by |©s|?>. Note that Z cannot be arbitrary,
since A and Z are unitarily equivalent, A; = ©7'Z; ©, and,
hence, are representations of the same group G.

Since the natural choice for © should lead to the simplest
possible covariance, a group-theoretic argument suggests we
choose Z = T, the translation operator of the group GG. There-
fore, we define the A-covariant energy density (A-CED) as
|®As|2, where A = @;1Tk Q4. An illuminating interpre-
tation of ©4 is as a coordinate transformation from “time”
coordinates to “A” coordinates, where the action of A is sim-
pler than any other unitary operator based on the group G.

Examples. While the A-TED does not indicate the .4 con-
tent of signals, the A-CED does.

For the group G = (IR, +) acting on L? Ty = Ti. The time
and frequency operators produce the expected results: the 7—
IED is the square of the usual Fourier transform |(Frs)(f)[?
and the 7-CED is |s(t)|? while for F these densities are re-
versed. Another interesting unitary representation of G is
the chirp modulation operator (C.s)(z) = ejzmlzlpSg“(I)s(z),
p # 0, which is related back to the time operator by C. =
07'T . O¢ with

(©cs)(c) :/ s(z)eI2melal sen(@) (=112 [1/2 g (3)

Since the C-CED |(©¢s)(c)|? indicates the “chirp” content of
signals, it has been called the chirp transform [4]. The C-TED
is given by |(Fes)(v)* = [p| ™ [v|" /7 [s(|7["/Psgn()) .
This transform demonstrates the nonuniqueness of IEDs,
since the density |s(v)|? is also invariant under C.

For the group G = (IR4,*) acting on L?*(IR;,dz/z),
Tk = Di. Thus, the D-CED — the true scale indicating
transform — is |s(d)|?, d > 0. This result may be surprising
(and perhaps a little disappointing), but it is also correct,
consistent, and reasonable [6]. First, this density has the cor-
rect covariance property: |[(Drs)(d)|* = |s(d/k)|*. Second,
this density indicates the scale content of the signal s: just
as the 7-CED |s(t)|? indicates the amount of group trans-
lation (7 = 7 in the additive group) required to bring the
signal energy at the point ¢ to the identity element § = 0 of
that group, the D-IED |s(d)|® indicates the amount of group
translation (7 = D in the multiplicative group) required to
bring the signal energy at the point d to the identity element
8 = 1 of that group. Third, since scale is a ratio — “this

thing is twice as big as that thing” — the features on which
the scale content of a signal can be judged exist in the time
domain, and so no elaborate coordinate transformations are
necessary. An enlightening interpretation of the D-CED is
provided by considering the index d of s(d) as a spatial vari-
able in an imaging system, with |s(d)|® the distribution of
an object along the image axis. In this case, d represents a
“zoom” parameter, and the spread of the D-CED indicates
the amount of focus change required to successively bring all
of the object into focus at an image plane at d = 1.

4. JOINT ENERGY DENSITIES

In the previous section, we defined two energy densities that
are natural for any unitary representation operator .A of an
LCA group. The A-IED is invariant to .4, while the A-
CED is covariant to .4 (and thus measures the A content in
signals). In many applications, these densities and their linear
equivalents will be more than adequate for characterizing,
analyzing, and processing signals. One obvious example of
an IED/CED is the square of the Fourier transform, which
has found a multitude of applications.

However, for more complicated signals, several physical
quantities may be meaningful simultaneously, and joint densi-
ties based on several operators are required. Time-frequency
representations, for example, were developed for problems
where both the time shift 7 and frequency shift F are im-
portant.

General Method. A joint distribution of two operators A
and B can be defined as the energy density function (Ps)(u, v)
whose marginal distributions M4 and Mg, given by

/(PS)('u,v)dus('v) = |[(Mas)(u)? (4)

/(PS)('u,v)duA(‘u) = [(Mss)(v)[, (3)

are energy densities for A and B.* Natural possibilities for
My and Mp are the IEDs and CEDs for A and B. If CEDs
are chosen for both A and B (one of the four options), then
(Ps)(u,v) can be interpreted as indicating the joint .A-B con-
tent of the signal s.

The basis for the general method lies in the pioneering work
of Cohen [1,3], who developed a characteristic function ap-
proach to energy densities for the time and frequency oper-
ators. The present work generalizes his approach to covari-
ances based on groups other than (IR, +) and introduces the
choice of IED or CED marginals. For the moment, we assume
that both operators .A and B arise from the same group G.
The construction proceeds as follows:

Step 1. Choose either IED or CED marginals for .4 and B.
For an A-IED marginal, set A, = A,, while for an A-CED
marginal, set Ay = @;1A§ ©4, where (Ags)(z) = )‘ia s(z).
Note that the parameter a lies in G, while « lies in the dual
group I'. Form B in the same manner. To illustrate, we will
work towards .A-CED and B-IED marginals in the following.

Step 2. Form the characteristic function
(Qs)(a,b) = ¢(a,b) (s, AuBss), (6)

where the inner product is taken in LQ(G, dpc). The ordering

of A and B is arbitrary; distributions arising from all possible
orderings can be obtained from a single ordering by an ap-
propriate choice of the kernel function ¢ [3]. A symmetrical

4While joint distribution classes can also be derived using co-
variance arguments [2], we will not follow this approach here.



ordering leads to Wigner-like distributions. Note that when

A-IED and B-IED marginals are desired (A = A and B = B),

Qs is an ambiguity function for .A and B.

Step 3. Compute the .A-B distribution as the double group

Fourier transform of Qs. For IED marginals, use the forward

transform; for CED marginals, use the inverse transform:
(7)

(Ps)(a,8) = FoaaFop ¢(a,b) (s, AaBss).

The marginal properties of Ps follow directly from the
properties of the group Fourier transform, which parallel
those of the usual Fourier transform [5]. We begin with the

A-CED marginal. Setting A and B for the correct marginals
and integrating with respect to dur(3) yields®

[ e -
ng_,a/ (s, AaBes) [/ Ao 4 dur(ﬂ)] dpc(b).

Formally, the term in brackets equals the Dirac delta function
8(); hence, the integration over b sifts the value b = 6 into
B. Since By = Z, the identity operator, the .4 marginal of Ps
equals

FGa_,a ,.Z s> =

/|®As

FG ima (Oas, AGO.s)
[/ )\3; )\f,a d,up(oz):| duc(u)
r
/|®As

[ [ dur(w] dpe(w)
= @)@l

The B-IED marginal follows similarly. Integrating Ps with
respect to dug(a) (a € G) yields (skipping the disappearance

of A, which occurs as above for B)

FG,b—»,B( Bbs> = FG b—p3 <®BS Tb®55>

/(@BS [/ Ops)* (ueb” )Abﬁdug(b)] dpc(u)
@65 [/ ©5s)"(v) uov_lﬁduG(U)] duc(u)

[/ (©ps)(u) AZ } duc(u H/ (©53)" (i

(FaOss)(B)]” = |(Fss)(p

AV duG('U)]

Examples and Extensions.

Time and Frequency. Cohen’s class of time-frequency distri-
butions [1,3] is recovered by setting A = 7, B = F and select-
ing CED marginals for both operators. A symmetry exists in
this case: the CED for one operator is the IED for the other.
The class of A-B distributions sharing this attractive prop-
erty was characterized in [4] and contains distributions of all
operator pairs A, B such that A=U"'TU and B=U""'FU
simultaneously.

Time and Cherp. We obtain a class of time and
chirp distributions by setting A = 7 and B = C, the
chirp modulation operator from Section 3.  For CED
marginals, the prescription specifies A = F and (Bs)(z) =

- (p-1)/2
5<mp(m1/p($) - b)) |$|(1 p)/2p |m1/p($) - b| ?

5Since § is a member of the dual group I', the measure dur
must be employed in (4).

,  where

mp(u) = |ul"sgn(u). A symmetrical combination of these
operators in the characteristic function (6) yields the Wigner-
like time-chirp distribution

(Ps)(t,c) = / (B_y/25) () (Boyas) ™ (t) ?*7 db
having as marginals |s(t)|* and |(©Ocs)(c)|? from (3).

Time and Scale. Distributions of time and scale cannot be
computed directly using (7), since .A and B are assumed there
to be representations of the same group . However, using
the fact that all 1-d LCA groups are isomorphic (equivalent)
[5], we can obtain distributions of operators representing dif-
ferent 1-d groups via a coordinate transformation. For exam-
ple, the operator 7 is equivalent to the exponentiated scale
operator DLy on L?>(IRy,dsz), since Dl = U Ty Unyp with
Unyp the following isometric isomorphism

(Unyps)(z) = e*/?s(e”).
Applying the above formulas for 7-CED vs. D-IED distribu-
tions (the 7-CED vs. D-CED distributions are trivial) yields
the time-scale distributions of Marinovic and Altes [3], which
have |s(¢)|? and |(Fp/s)(n)|* as marginals.

YpP

5. CONCLUSIONS

Viewing invariant and covariant signal energy densities from a
group theory perspective has proven illuminating. These sim-
ple concepts are central for studying both single- and multi-
operator energy distributions.

While the present approach to joint distributions is a modi-
fication of that of Cohen [3], our construction differs from his
in two important respects. First, by working directly with
unitary operators, rather than their Hermetian counterparts,
a more direct derivation results. Second, the general method
provides the added flexibility of choice of any combination of
IED or CED marginals. In fact, it was the inability of the
formulations in [3] to manufacture a true 7-CED vs. D-CED
distribution that elicited the general approach.

Finally, note that the above formulation is easily extended
to distributions of more than two operators simply by ap-
pending extra terms to the characteristic function (6).
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