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Abstract

Wavelet-domain Hidden Markov Tree (HMT) mod-
els are powerful tools for modeling the statistical proper-
ties of wavelet transforms. By characterizing the joint
statistics of the wavelet coefficients, HMTs efficiently
capture the characteristics of a large class of real-world
signals and images. In this paper, we apply this mul-
tiscale statistical description to the texture segmenta-
tion problem. Using the inherent tree structure of the
HMT, we classify textures at various scales and then
fuse these decisions into a reliable pizvel-by-pixel seg-
mentation.

1 Introduction

The goal of an image segmentation algorithm is to
assign a class label to each pixel of an image based
on the properties of the pixels and their relationships
with their neighbors. The segmentation process is a
joint detection and estimation of the class labels and
shapes of regions with homogeneous behavior.

For proper segmentation of images, both the large
and small scale behaviors should be utilized to segment
both large, homogeneous regions and detailed bound-
ary regions. Thus, it is natural to approach the seg-
mentation problem using multiscale analysis. Efforts
have been exerted to model this multiscale behavior
with autoregressive models [1,2] and multiscale ran-
dom fields [3]. In this paper, we propose a multiscale
texture segmentation algorithm based on the wavelet
transform.

Recently, the wavelet-domain Hidden Markov Tree
(HMT) model was proposed to model the statistical
properties of wavelet transforms [4,5]. By modeling
each wavelet coefficient as a Gaussian mixture density
and by capturing the dependencies between wavelet co-
efficients as hidden state transitions, HMTs provide a
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natural setting for exploiting the structure inherent in
real-world signals and images for signal detection and
classification.

In this paper, we apply the tree structure of the
HMT model to multiscale signal classification. By com-
puting the likelihoods of dyadic subblocks of the image
at different scales, we obtain several “raw” segmenta-
tions. Coarse scale segmentations are more reliable for
large, homogeneous regions, while fine scale segmen-
tations are more appropriate around boundaries be-
tween different textures. By combining raw segmen-
tations from different scales, we obtain a robust and
accurate overall result. We accomplish this interscale
fusion by encoding the segmentation results from differ-
ent scales using a special tree-structured graph. Before
we develop these new algorithms, we sketch some back-
ground on wavelets and wavelet-domain HMT models.

2 Background
2.1 The wavelet transform

The discrete wavelet transform (DWT) represents a
1-d signal z(t) in terms of shifted versions of a low-
pass scaling function ¢(t) and shifted and dilated ver-
sions of a prototype bandpass wavelet function 1 (t)
[6]. For special choices of ¢(t) and (t), the functions
bik(t) = 224 (278 — k), ¢jn(t) = 29/%¢ (27t — k),
with j, k € Z form an orthonormal basis, and we have
the representation [6]

2= Uik bk + DD wiktik (1)
k
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with w; k= [ 2(t) ¢}, (t) dt and wj,x=[2(t) ¢5 .. (t) dt.

The wavelet coefficient w; , measures the signal con-
tent around time 277k and frequency 27 fo. The scaling
coefficient u;; measures the local mean around time
277k. The DWT (1) employs scaling coefficients only
at scale jo; wavelet coefficients at scales j > jo rep-
resent higher resolution approximation to the signal.
Any filter bank DWT implementation produces all of
the scaling coefficients u; 1, j > jo as a natural byprod-
uct [6].



To keep the notation manageable in the sequel, we
will adopt an abstract index scheme for the DWT co-
efficients: w; r — u;, wj K — w;.

We can easily construct 2-d wavelets from the 1-d
¢ and ¢ by setting x = (z,y) € R? and " (x) =
P(@)p(y), ™M (x) = ¢()Y(y), and P (x) =
P(x)Y(y). If we let U = {HL M HHL then the
set of functions {¢jx = 299(27x — k) }yecw jez Kez?
forms an orthonormal basis for L(IR®); that is, for
every z € Ly(IR?), we have

z= Y wikeixt Y Yok bioks  (2)
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with Jre 2(X)$jo x(X)dx and  wjk,y

ng z(x)ipj,k(x)dx.
2.2 Hidden Markov tree model

The compression property of the wavelet transform
states that the transform of many real-world signals
consists of a small number of large coefficients and a
large number of small coefficients. We can consider the
collection of small wavelet coefficients as outcomes of
a probability density function (pdf) with small vari-
ance. Similarly, the collection of large coefficients can
be considered as outcomes of a pdf with large vari-
ance. Hence, the pdf fw,(w;) of each wavelet coeffi-
cient is well approximated by Gaussian mizture model.
To each wavelet coefficient W;, we associate a discrete
hidden state S; that takes on valuesm = 1,..., M with
probability mass function (pmf) pg,(m). Conditioned
on S; = m, W; is Gaussian with mean p; ,, and vari-
ance afﬁm. Thus, its overall pdf is given by

M
fwi(ws) = > psi(m) fwys, (wilS; =m).  (3)

We consider only the case of M = 2 in this paper;
however, the Gaussian mixture model can provide an
arbitrarily close fit to the actual fy (w) as M > 2.

To generate a realization of W using the mixture
model, we first randomly select a state variable S ac-
cording to ps(s) and then draw an observation w ac-
cording to fws(w|S = s). Although each wavelet
coefficient W is conditionally Gaussian given its state
variable S, the wavelet coefficient has an overall non-
Gaussian density due to the randomness of S.

HMT models are multidimensional mixture models
in which the hidden states have a Markov dependency
structure [4]. Once we model the marginal density of
each wavelet coefficient as a Gaussian mixture model,
the correlation between wavelet coefficients can be cap-
tured by specifying the joint pmf of the hidden states.
To capture the “persistence” of large/small values of
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Figure 1. (a) Tiling of time-frequency plane by the
atoms of the wavelet transform. FEach box depicts
the idealized support of a scaling atom (top row) or
a wavelet atom (other rows) in time-frequency. The
figure also illustrates our tree notation for indexing
coefficients. (b) 1-d wavelet-domain Hidden Markov
Tree (HMT) model. We model each coefficient as a
Gaussian mixture with a hidden state variable. Black
nodes represent wavelet coefficients; white nodes rep-
resent hidden mixture state variables. Connecting the
states vertically across scale yields the HMT model.

wavelet coefficients across scales, we can model the cor-
relations between wavelet coefficients as a binary tree
where each branch indicates the dependency between
the connected coefficients. Although coefficients that
are not connected by the binary tree model are also
correlated, we ignore these dependencies to simplify
the model.

Figure 1(a) shows the tiling of the time-frequency
plane by a wavelet transform and the binary tree that
models the dependencies between wavelet coefficients
across scale. In order to describe the relationships be-
tween wavelet coefficients, we will use the notation p(7)
for the parent of node i. We also define 7; as the sub-
tree of wavelet coeflicients with root at node 4, so that
the subtree 7; contains coefficient w; and all of its de-
scendants.

The HMT model is specified via the Gaussian mix-
ture parameters ft; m, 01-2’ m, the transition probabilities
€ty = PS:|S, ) (M[Sp(s) = n), and the pmf pg, (m) for
the root node S;. These parameters can be grouped
into a model parameter vector ®@. We train the HMT
to capture the wavelet-domain characteristics of the
signals of interest using the iterative Expectation Max-
imization (EM) algorithm [4]. For a given set of train-
ing signals, the trained model ® approximates the joint
pdf f(w) of all wavelet coefficients.

In the HMT model, each wavelet coefficient W; is
conditionally independent of all other random variables
given its state S;. Furthermore, given the parent state
S,(i), the nodes {S;, W;} are independent of the entire
tree except for S;’s descendants. The Markov structure
of the model is on the states of the wavelet coefficients,
not on the coefficients themselves (see Figure 1(b)).

The wavelet HMT model easily generalizes to 2-d us-
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Figure 2. (a) Quadtree of 2-d wavelet coefficients
for each subband, (b) 2-d wavelet-domain HMT
model. Black nodes represent wavelet coefficients;
white nodes represent hidden state variables.

ing a quadtree model to capture the dependencies be-
tween the wavelet coeflicients, with each wavelet state
connected to the four “child” wavelet states below it
(see Figure 2). The EM algorithm for the 1-d HMT
model in [4] can be used without modification if we
interpret the parent-child relations between nodes ap-
propriately for quadtrees.

3 Multiscale Segmentation using HMT
3.1 Multiscale classification

The key step in our segmentation algorithm is to
classify dyadic blocks of the image at different scales
based on trained HMT models. For classification, we
use the principle of maximum likelihood detection.!

Given an image of 27 x 27 pixels, we define the
dyadic squares at scale j to be the squares obtained by
dividing the image into 2/ x 27 square regions of size
27=J x 2777 pixels each for j = 0,...,.J. Denote each
dyadic square as D;, where ¢ is an abstract index, with
J(7) the scale of D;. In the sequel we will use the Haar
wavelet transform. Because each Haar wavelet coef-
ficient is computed from the pixel values in a dyadic
square, we have a one-to-one correspondence between
the wavelet coefficients and the dyadic squares.

Although the dyadic squares at a certain scale are
correlated, we assume that they are independent for the
multiscale classification step. We capture the depen-
dencies later by combining classification results from
different scales.

Texture classification using the HMT is simple:
First, we obtain wavelet-domain HMT models for
the candidate textures by training HMTs on hand-
segmented training images. Then, to classify a dyadic
block, we compute the conditional likelihood of the cor-
responding subtree for each candidate texture model;
the texture model maximizing the likelihood is chosen
as the texture of the block. This likelihood computa-

1We can also use the maximum a posteriori probability de-
tection if we have prior pmfs of texture classes.

tion is easily implemented using the HMT EM algo-
rithm [4].

In a 2-d HMT model ®, we have three quadtrees
corresponding to three different subbands. Denote the
three quadtree models as ®"H, @HL and OLH, re-
spectively. For subtree T,'H in subband ©"H corre-
sponding to dyadic square D;, we compute the con-
ditional likelihood B;(m) = f(THH|S; = m,©HH)
and conditional probability p(S; = m|w, @") where
w = {w;} is the collection of all wavelet coefficients
in the subband HH. Then, the conditional likelihood
F(THE|®HH) can be computed as

M
F(TEOT) = 3 Bi(m)p(Si = m|w, @) (4)

For the HL and LH subbands, we can similarly compute
the likelihoods f(7;1V|©®HL) and f(T.1|@M), respec-
tively.

There are several ways in which we can combine
the likelihoods of the wavelet coefficients from differ-
ent subbands. The simplest and most effective method
we have found assumes that all three subbands are in-
dependent. Then, we simply multiply the three likeli-
hood functions together to obtain the total likelihood
f(D;|®) of the dyadic square D;. Another possibility
ties the three root nodes of the quadtrees together and
compute likelihoods for the combined tree.

For each node i, the dyadic square D; can be clas-
sified by finding the texture model ® for which the
likelihood f(D;|®) is maximized, producing a raw seg-
mentation of the image down to 2 x 2 pixels image
blocks. We call this segmentation a “raw” segmenta-
tion, because we do not use any relationship between
segmentations across different scales. We expect this
“raw” segmentation to be more reliable at coarse scales,
because classification of large image blocks is more re-
liable due to their richness in statistical information.
However, at coarse scales, the boundaries between dif-
ferent textures will not be captured accurately. At fine
scales, the segmentation is less reliable, but boundaries
are better captured.

When we compute the likelihoods of wavelet coeffi-
cient subtrees, we ignore the scaling coefficients. Thus,
we do not take advantage of the information in the lo-
cal brightness of the image. This is why we can classify
only down to 2 x 2 blocks. We can obtain a pixel-level
classification using the histogram of pixel brightness for
each texture.

However, because we ignore the scaling coeflicients,
the local brightness levels of the texture regions do not
affect the performance down to 2 x 2 scale. This is an
advantage of the use of HMT model for texture segmen-
tation. The HMT model captures only joint statistics



between pixels, and thus it is robust to the change of
local average brightness. This is a desirable feature be-
cause the local brightness of an image often varies at
different regions. We now propose a way to combine
the classification results at different scales to obtain a
final, reliable segmentation.

3.2 Context-based Bayesian interscale fusion

Because we obtain the multiscale classifications
without incorporating the dependencies between dif-
ferent dyadic squares in a scale, the raw segmentation
results often leave much to be desired. In order to ob-
tain an accurate segmentation result, we need to cap-
ture the dependencies between dyadic squares.

To model the dependencies between dyadic squares,
we consider the labeling tree (LT) that is a tree-
structured graph where the nodes correspond to dyadic
squares of the given image (see Figure 3(a)). Because
the square under inspection is highly correlated with
its parents and neighbors, the decisions (class labels)
of these neighboring squares should influence the deci-
sions. For example, if the parent square was classified
as a certain class, this can provide prior information
on the class of its children, since parent and children
squares are likely to be of same class. The same intu-
ition holds for neighboring squares.

Although the dependencies between squares can be
modeled using a general probabilistic graph [4], the
complexity of the algorithms to handle the graph be-
comes prohibitively high when the number of incorpo-
rated neighborhood nodes is large. In this paper, we
propose a context-based method [5] to capture the de-
pendencies that is easy to manipulate with minimal
computational expense. To further simplify the algo-
rithm, we specify the contexts causally in scale, where
the contexts of nodes in a certain scale are determined
based on the decisions in the previous coarse scale, and
the final segmentation is obtained by a simple descent
of the LT.

We define the context for dyadic square D; as the
length-P vector V; = [V;1,Vi2,...V; p] formed as a
function of the likelihoods of other parent/neighboring
dyadic squares (see Figure 3(a)). We condition the
likelihood of D; on V; to determine its class. The idea
is for V; to provide supplementary information to the
labeling tree, so that given the context, we can treat
each node of the labeling tree as independent.

Assume we have L candidate classes of texture
¢; =1,...,L. By conditioning the likelihood of dyadic
square D; of labeling tree on V;, we have the context
based mixture model for D;:

L
FDIVi,0) = pe,v. (e =Uvi) f(Di|®1), (5)
=1
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Figure 3. (a) Context-based labeling tree (LT) for
segmentation. To each dyadic square (dark square),
we augment a (triangle) context node. The context
is a function of the other dyadic squares, (b) Context
model used in simulations. For each dyadic square,
we consider its parent node and two adjacent blocks
of the parent. Depending on the classification of these
3 squares, the context v; is assigned such that v; =1
if all three are classified as wood (ground, for aerial
photo), v; = —1 if all are classified as grass (sea, for
aerial photo), and v; = 0 otherwise.

where the likelihoods f(D;|®;) = fp,c;(Dilc:) are
computed using HMT models for texture I, pc; v, (I|vs)
is the probability that node i is of class [ given the con-
text V;, and the summation is over all candidate tex-
tures for ¢;. We assume that the pmfs of texture class
Pc;|v, are constant at each scale (i.e., independent of
iif J(i) = k).

Denote the entire image as D;. Let k be the scale
under consideration, and let V¥ denote the collection of
all contexts at scale k. The contextual Bayes classifica-
tion starts by estimating the probabilities pc, v, (I|v;)
to maximize the likelihood of the entire image com-
puted in scale k, assuming all subtrees with root node
at scale k are independent, given as

L
I Dopev. (v (Dil®y). (6)

i 8.b. J(i)=k =1

F(Dyv*) =

The values of pc;|v,(I|vi) are obtained by averag-
ing over all the nodes in that scale. In practice, we
do not specify pc,|v,(I|v:) directly, but rather spec-
ify pv,|c, (vi|l) and apply Bayes rule. Thus, the actual
probabilities that should be computed are ¢; , = pc; (n)
and ajv,n = pv,|c,(Viln). The set of probabilities
P = {€in,qivn} are computed using the EM algo-
rithm below.

EM Algorithm for Contextual Labeling Tree

Initialize: Choose P° and set I = 0.
The natural choice of PP is the set of parameters ob-
tained in the previous coarse scale.

Expectation (E): Given P’ calculate (Bayes rule)
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Maximization (M): Compute the elements of P/+!

1
€in = 570 Z

k S.b. J(k)=J(3)

1
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Po;vi,; (n|vi, D;)

PCy Vi, De (P Ve, Di),  (8)

PCy Vi, Di (M| Vi, Di).

(9)
Iterate: Increment I — I + 1. Apply E and M until
converged.

Once €;,, and o;v,n are computed, the context-
based Bayes classification is performed by finding the
class label to maximize pc,|v, p, (n|vi, D;).

A pixel level segmentation requires a model for the
pdf of a single pixel for each of the textures. The his-
togram of pixel intensities for each texture provides
one simple model. For textures, it can be well approx-
imated as a Gaussian mixture model. For the pixels of
the training images, we fit a 2-state Gaussian mixture
model to the pixel values, and we compute the likeli-
hood of each pixel. Then, using the same algorithm to
go down to pixel level segmentation using the results
at 2 x 2 block scale, we obtain the final-pixel level
segmentation.

4 Examples

In the first set of simulations, we segment a simple
synthesized texture image consisting of a combination
of “grass” and “wood” texture images from the USC
Image Database.? To keep things simple, we consid-
ered only 64 x 64 images in the simulation. First we
randomly selected five 64 x 64 blocks from the original
“grass” and “wood” images to train respective HMT
models. The training was performed with intra-scale
tying [4] to avoid over-fitting. The test image was cre-
ated from randomly chosen 64 x 64 grass and wood
images. The mosaic test image is shown in Fig. 4(c);
the (i, j) elements with |i — j| < 18 correspond to wood
texture and the remaining region is grass texture.

Inspired by the success of hybrid tree model in [3],
we use a very simple context structure: the context of
each dyadic square depends on the class labels of three
squares in the previous coarser scale (see Fig. 3(b)).
The dyadic square to be classified corresponds to a
quadrant of its parent square. We use the class labels
of the parent square and its two neighbors bordering
on the quadrant in order to specify the context. The
context v; used in the examples is a scalar (P = 1) tak-
ing three different values according to the class labels

thtp://sipi.usc.edu/services.html
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Figure 4. (a) Grass and (b) wood texture images
from the USC image data base. (c) 64 x 64 mosaic
test image to be segmented.

Figure 5. Raw segmentation of the grass-wood test
image: (a) 4 x 4-block scale, (b) 2 x 2-block scale,
(c) pixel-level segmentation. Classification accuracy
increases with block size (coarser scale) because more
statistical information is available.

of the three squares (parent and its two neighbors) as
shown in Fig. 3(b).

Figure 5 illustrates the raw segmentation results be-
fore interscale fusion processing. At coarse scales, the
classification is reliable, but the details at the tex-
ture boundaries are not well represented due to the
large block size. The boundaries are better classified
at finer scales, but we make many classification errors
because of the paucity of statistical information in each
small block. The pixel-level raw segmentation was ob-
tained using a 2-state Gaussian mixture pixel bright-
ness model.

Figure 6 shows the segmentation results resulting
from interscale fusion of the raw segmentation results.
Comparing Figures 5 and 6, we observe an enormous
increase in the segmentation accuracy.

In the next set of simulations, we segment a real
aerial photograph from the USC Image Database. The
original image is a 1024 x 1024 image with “ground”
and “sea” regions as shown in Figure 7(a). Figure 7(b)

(a) (©)

Figure 6. Segmentation results for grass-wood im-
age using context-based Bayesian processing: (a) 4
x 4-block scale, (b) 2 x 2-block scale, (c) pixel-level
segmentation.



Figure 7. (a) Original aerial photo and (b) test
subimage.

(b)

Figure 8. Raw segmentation of aerial photo: (a) 4
x 4-block scale, (b) 2 x 2-block scale, (c) pixel-level
segmentation.

shows a 256 x 256 subblock of the full image that is
to be segmented using our algorithm. First, the ho-
mogeneous “ground” and “sea” regions were obtained
by hand-segmenting the original 1024 x 1024 image.
These homogeneous regions were used to train two
HMT models. Although the size of the images we
segment is 256 x 256, the HMT models were trained
using only 64 x 64 images. For the raw segmenta-
tion, we divide the 256 x 256 image into sixteen 64 x
64 blocks, and each block is classified using the HMT
model. We used the same context model as in the syn-
thetic grass/wood segmentation problem.

Figure 8 shows the raw segmentation results of the
aerial photo. Again, the pixel-level raw segmentation
was obtained using a 2-state Gaussian mixture model
for pixel brightness of ground and sea textures. The
pixel brightness model is clearly not appropriate in this
case, because the overall brightness level in different
portions of the full image varies considerably. As a
result, the pixel level raw segmentation is not desirable.

Figure 9 illustrates the segmentation results after
utilizing the coarse-to-fine interscale fusion. We ob-
serve very good segmentation results down to 2 x 2
block scale. The pixel level segmentation is again un-
desirable because the raw segmentation data at pixel
level affects the final segmentation adversely.

5 Conclusions

In this paper, we have developed a new framework
for texture segmentation based on wavelet-domain hid-
den Markov models. By concisely modeling the sta-
tistical behavior of textures at multiple scales and by
combining segmentations at multiple scales, the algo-
rithm produces a robust and accurate segmentation of

(c)

Figure 9. Segmentation of aerial photo using
context-based Bayesian processing: (a) 4 x 4-block
scale, (b) 2 x 2-block scale, (c) pixel-level segmenta-
tion.

texture images.

We believe the proposed segmentation algorithm can
be applied to many different types of images, including
radar /sonar images, medical images (CT /ultrasound),
and document images (text/picture segmentation). To
incorporate different characteristics of various images,
the use of different wavelet bases and more complicated
context models should be investigated. In addition, the
analysis of detection errors for wavelet-domain HMT
based classifiers remains future research topic.
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