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ABSTRACT

Time-frequency representations (TFRs) provide a power-
ful and flexible structure for designing optimal detectors
in a variety of nonstationary scenarios. In this paper, we
describe a TFR-based framework for optimal detection of
arbitrary second-order stochastic signals, with certain un-
known or random nuisance parameters, in the presence of
Gaussian noise. The framework provides a useful model for
many important applications including machine fault diag-
nostics and radar/sonar. We emphasize a subspace-based
formulation of such TFR detectors which can be exploited
in a variety of ways to design new techniques. In particu-
lar, we explore an extension based on multi-channel/sensor
measurements that are often available in practice to facili-
tate improved signal processing. In addition to potentially
improved performance, the subspace-based interpretation
of such multi-channel detectors provides useful information
about the physical mechanisms underlying the signals of
interest.

1. INTRODUCTION

Detection and classification of signals in the presence of
noise and interference is an old and important problem
in communications and signal processing. A wide variety
of applications involve signals with nonstationary or time-
varying characteristics; examples include radar, sonar, com-
munications, machine fault diagnostics and biomedical and
geophysical signal processing. Moreover, in many such sce-
narios, due to the underlying physical mechanisms, the sig-
nals of interest possess certain nuisance parameters which
have to be incorporated in the design of detectors. For ex-
ample, in radar the targets have unknown delay-Doppler,
and in machine health monitoring, the fault signals occur
at unknown time-offsets and often exhibit unknown or ran-
dom frequency shifts [1, 2, 3]. The need for detection in such
nonstationary scenarios has spurred a great deal of interest
in time-frequency-based detection schemes [1, 2, 4, 3, 5].
Time-frequency representations (TFRs) are a versatile
set of tools for the analysis and processing of nonstationary
signals [6]. They are overparameterized signal represen-
tations in terms of time and frequency, and describe the
nonstationary signal characteristics via their time-varying
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spectral content. Prominent examples of such multidi-
mensional representations include the classical short-time
Fourier transform (STFT) and the Wigner distribution, and
more recent ones such as the continuous wavelet transform
(CWT). Linear TFRs such as the STFT (narrowband ambi-
guity function) have long been used in matched-filter radar
detection. However, quadratic TFRs, by virtue of their
richer structure, hold promise for a wider variety of detec-
tion scenarios. Two important classes of such quadratic
TFRs are Cohen’s class [6] which generalizes the con-
cept of the spectrogram (|STFT|?), and the affine class [7]
which generalizes the concept of the scalogram (|CWT|?).

Recently, a comprehensive theory for optimum TFR-
based detection has been developed that has put time-
frequency detection on a firm footing [5]. It also overcomes
the limitations of previously proposed methods that were
mostly ad hoc and did not exploit the structure of TFRs [5].
The theory characterizes the detection scenarios in which
TFR detectors (from both Cohen’s and affine classes) are
“natural”; that is, they are optimal from a detection theo-
retic viewpoint and exploit the degrees of freedom available
in a TFR. It also provides an explicit characterization of
the corresponding TFR detectors.

The TFR detection framework of [5] is optimal for detect-
ing arbitrary second-order nonstationary stochastic signals,
with certain unknown or random nuisance parameters, in
the presence of arbitrary Gaussian noise [5]. For TFR de-
tectors from Cohen’s class, the appropriate nuisance sig-
nal parameters are time and frequency shifts, and for the
affine class, time-shifts and scalings. As mentioned before,
such signal parameters are commonly encountered in prac-
tice. In particular, our experience with applications in ma-
chine fault diagnostics and biomedical signal processing has
shown that signals of interest often exhibit different time-
frequency shifts and scalings in different observations (see,
for example, [3]).

In this paper, we provide an exposition of the optimal
TFR detectors based on an equivalent subspace-based for-
mulation in terms of a bank of spectrograms or scalograms.
This structural description lends considerable insight into
the mechanism of TFR detectors, and can be exploited in
a variety of ways to design new techniques. In particular,
we discuss an extension of time-frequency detectors based
on multi-channel/sensor measurements that are collected
in many applications in order to facilitate the extraction or
classification of relevant signal characteristics. For example,
in machine health monitoring, signals from a number of sen-
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sors, mounted at various critical machine components, are
often recorded. As we will see, in addition to potentially im-
proved performance, the subspace-based structure of such
multi-channel detectors yields useful information about the
physical mechanisms underlying the signals of interest.

We start with a brief review of TFRs in the next section,
followed by a description of the time-frequency detection
framework in Section 3. This includes a characterization of
the detection scenarios for which TFR detectors are canon-
ical, and a subspace-based characterization of the corre-
sponding detectors. In Section 4, we provide an insightful
interpretation of the subspace-based formulation. An ex-
tension of the TFR detectors to multi-sensor scenarios is
explored in Section 5. Finally, in Section 6, we present
some conclusions regarding the applications and scope of
time-frequency detectors.

2. TIME-FREQUENCY REPRESENTATIONS

Two well-known linear TFRs will be instrumental in the
subspace-based formulation: the short-time Fourier trans-
form (STFT) and the continuous wavelet transform (CWT).
The STFT is defined as

STFT(t, f; 9) = / s(r)g*(r = t)e > "dr | (1)

where g is the analysis window which is usually lowpass.
The STFT represents signal characteristics jointly in terms
of time (t) and frequency (f). The continuous wavelet
transform (CWT), on the other hand, is defined as

—t

CWT,(t, a; 9) = %/s(f)g* (TT) ir @)

and is a joint representation in terms of time (¢) and scale
(a > 0). The window g is called the mother wavelet which is
usually bandpass. The squared magnitude of the STFT is
known as the spectrogram, and that of the CWT is known
as the scalogram.

Bilinear TFRs provide a richer structure than linear ones,
and two important classes are Cohen’s and affine classes
[6, 7]. Both classes can be defined as smoothed versions of
the Wigner distribution (WD) which is defined as

Wit f) = /s (t+ %) s (t - %) eI g (3)

Cohen'’s class, which is a generalization of the spectrogram,
can be expressed as a convolutional smoothing of the WD

[6]
Ps(t, ;@) = //Ws(u,v)d’(u—t,v — f)dudv  (4)

where the two-dimensional (2D) kernel ® completely char-
acterizes the TFR P,;(®). The affine class, on the other
hand, is a generalization of the scalogram, and is character-
ized by an affine smoothing of the WD [7]

cg(t,a;n)s//ws(u,v)n(“;t,

(w) dudv  (5)

where the kernel II completely characterizes the TFR
C,(1I).

Two fundamental properties of TFRs underlie the theory
of time-frequency detection: Cohen’s class is covariant to
time and frequency shifts; that is, s(t) — s(t — 7)e/ 2™ =
Py(t, f; ®) — Ps(t—7, f—v; @), and the affine class is covari-
ant to time-shifts and scalings; that is, s(t) — %s (tfr) =

Cs(t,ya; II) — Cs (t_T “'H).

c '¢!?

3. TIME-FREQUENCY DETECTION
FRAMEWORK

Signal detection is a binary hypothesis testing problem, and
we consider hypotheses of the form

Hiy : z(t) = s(t) + n(t)
Ho : z(t) =n(?) (6)

where ¢ € T, the observation interval, = is the observed
signal, s is the underlying signal to be detected, and n is
additive noise. Based on the observation z, it has to be de-
cided whether the signal s is present (Hi) or not (Ho). For
a variety of performance criteria, such as Neyman-Pearson,
Bayesian or minimax, the optimal decision is made be com-
paring a real-valued function L(z), the test statistic, to a
threshold.

From the viewpoint of time-frequency detection, there are
two key observations:

1. Bilinear TFRs are quadratic in the observations, and

2. TFRs possess additional degrees of freedom pro-
vided by the TFR parameters; time and frequency
for Cohen’s class, and time and scale for the affine
class.

The first observation leads us to consider scenarios in which
quadratic detectors are optimal, namely the detection of
Gaussian or arbitrary second-order signals in the presence
of Gaussian noise [8, 5]. The second observation leads to
composite hypothesis testing in which the signal to be de-
tected has a couple of nuisance parameters that are un-
known or random [8, 5]. That is, the hypothesis testing
problem becomes [5]

Hy : z(t) =s(t;a, 8) + n(t)

Ho : z(t) =n(t) (7)
where
(a,8) : nuisance signal parameters
s(t;a, B) Gaussian or arbitrary second-order signal
n(t) : arbitrary Gaussian noise .

We focus our attention on zero-mean signals and noise,’
and assume that the signal s(¢; «, 3) is characterized (up to
second-order) by the correlation function R )(tl,tz) =
E[s(t1; a, B)s*(t2; @, 8)], and the noise is characterized by
the correlation function R,,.

I Nonzero-mean situations can be handled by including linear
TFRs in the detectors.



In order to characterize the situations for which TFR
detectors are “naturally” suited, we need to identify the
nature of the nuisance signal parameters (a,3) in (7). In
other words, we need to characterize the dependence of the
signal correlation function R™# on (a, B), which is done
next.

3.1. Signal models for time-frequency detectors
It is shown in [5] that the following signal models char-
acterize the scenarios for which TFR-based detectors are
canonical.

3.1.1. Cohen’s class

Not surprisingly, for TFRs from Cohen’s class, the
parameters (a,) must correspond to time-frequency
shifts; that is, (o, 3) = (7,v) € T x R and for (¢1,t2) €
TxT

Rg-r,u)(tl,t2) =R,, (ty — 7 ts — T)ejQT(the*jZWVtg (8)

for some correlation function R,.,..”> Note that (8) is equiv-
alent to s(t;7,v) = s, (t—7)e?* ™ in (7), where, for each
(1,v), s (r.) 18 any Gaussian or second-order signal with cor-
relation function R, .; that is, for each (7,v), s(t;7,v) is a
time-frequency shifted version of some random signal with
correlation function R, ..

3.1.2. Affine class

For TFRs from the affine class, the parameters must cor-
respond to time-shifts and scalings; that is, (o, 3) =
(1,¢) € T x (0,00) and for (t1,t2) €T x T

Rgr’c)(tl; t2) = cRrg (c(tr —7), et = 7)) ©)

for some correlation function R, .. Again, (9) is equivalent
to s(t;7,¢) = +/c s, , (c(t — 7)) for any second-order signal
8(r.c) With correlation function R¢. That is, for each (7, c),
s(t; 7, ¢) is a time-shifted and scaled version of some random
signal with correlation R, .

3.2. Characterization of TFR detectors

The correlation functions R, and R, in (8) and (9) com-
pletely characterize the second-order statistics of the under-
lying signal, and play a fundamental role in the characteri-
zation of TFR detectors. In [5], it is shown that the optimal
detectors for various composite hypothesis testing problems
of the form (7), coupled with the signal models in the pre-
vious section, can be naturally realized using the following
TFR-based structures:

Lyp(z) = I(T:i})( [Py(T,v; @) + Frp(T,0)] (10)
Lps(z) = %35( [Cy(T,1/c;TT) + Frg(7,0)] , (11)

where the kernels ® and II characterizing the TFRs can
be expressed explicitly in terms of the underlying correla-
tion functions R, and R, respectively [5]. In the above
expressions

y=R.'z (12)

2We assume that the support of R, is small compared to
T x T. A similar assumption applies to R,.¢ in (9).

where R, ! is the inverse® of the operator R, defined by
the noise correlation function as?

(Rns)(t) = /Rn(t,u)s(u)du. (13)

The deterministic functions F,., and F,.; depend on the
joint probability density function of the parameters in the
case of random parameters [5].

A note on optimality. The above TFR structures can
realize the optimal detector based on the likelihood-ratio
(LR) for Gaussian signals in white Gaussian noise (WGN),
and the locally optimal® or deflection-optimal detectors for
arbitrary second-order signals in arbitrary Gaussian noise
[5]- Moreover, due to the presence of nuisance parameters, a
generalized-likelihood-ratio-test (GLRT) or its locally opti-
mal analogue is used: maximum likelihood (ML) estimates
of the parameters are used in the case of unknown param-
eters, and the maximum a posteriori probability (MAP)
estimates are used in the case of random parameters [5, 8].

3.3. Subspace-based formulation

For all practical purposes,® the underlying correlation func-
tions admit eigenexpansions:

Rpp(tit) = Y N (h)ug(ta),  (14)
k

Rps(tiyte) = D mu (t)vg(ts) (15)
k

where A\, > 0, g, > 0, and {u,} and {v, } are orthonor-
mal. Using these eigenexpansions in conjunction with some
fundamental properties of TFRs, the TFR detectors can be
expressed in terms of weighted sums of a bank of spectro-
grams/scalograms [5]. More specifically, the TFRs P, (®)
and Cy(II), in the detector structures (10) and (11), can be
expressed in terms of spectrograms and scalograms (using
the eigenfunctions as windows) as

Py(t, f;9) D A STET,(t, fw)* (16)
k

Cy(t,1/aT) = Y6, [CWTy (4, 1/ci0,)]*  (17)

where

v, = {A:\ﬁ LR detector for WGN
= o

AL locally optimal detector for arbitrary GN
5 — #:an LR detector for WGN
b s, locally optimal detector for arbitrary GN

and N, denotes the power spectral density of WGN. Equiv-
alently, the kernels ® and II can be expressed in terms of

3Which we assume to exist. In particular, the presence of a
white noise component guarantees its existence.

4Note that for white noise, Ry, = I, the identity operator.

5Which is optimal under a weak signal (low SNR) assumption
8, 5].

61f, for example, the observation interval T is compact.



the WDs of the windows and the combining weights as

ot f) = Y Wt f), (18)
k

M, f) = Y §Wu (1) - (19)

Thus, the optimal detectors project a time-frequency
shifted (STFT), or time-shifted and scaled (CWT), version
of the preprocessed observed signal (y) onto the eigenfunc-
tion of the underlying signal correlation function, and take
a weighted sum of the magnitude-squared output of such
matched-filter processors to produce the test statistic. This
yields a subspace-based formulation of the TFR detectors:
a nonlinear function of the projection of the signal onto
a subspace, spanned by the signal eigenfunctions, realizes
the optimal detectors. This subspace-based formulation, in
terms of the eigen-modes of the signal, is depicted in Fig-
ure 1.

. BT LK
STFT(t, 119,) —
Fin STFT(t fi9,) || - Lt 2y
() :
0
STFTy(t Hig) —
(a)
C(t,a;N)
CWT(t,a;g,) Y L)
y 1
CWT (t,a;9,) 1
X H y ’ rg’g(-)izy
Ho
CWTy(t,a:gN)
(b)
Figure 1. Subspace-based structure of TFR de-
tectors; H = R,'. (a) Cohen’s class; g, = u, and

a, =7,. (b) Affine class; g, = v, and o, =§,.

4. INTERPRETATION OF THE
SUBSPACE-BASED FORMULATION

As evident from Figure 1, general TFR detectors are com-
posed of simpler elements consisting of matched-filter de-
tectors realized by the different spectrograms and scalo-
grams. This interpretation is intimately related to the
structure and complexity of the underlying stochastic signal

to be detected. From the viewpoint of second-order statis-
tics, the rank” of the signal correlation function (R,g or
R,s) is a measure of complexity. The number of spectro-
grams/scalograms in the TFR detector structure is exactly
equal to the rank of R,./R,;. Moreover, the windows
for the different spectrograms/scalograms are precisely the
eigenfunctions of the correlation function.

Each realization of a second-order signal admits the
(second-order) Karhunen-Lo&ve expansion

s(t) =) s (1) (20)

k

where the w, ’s are the eigenfunctions, and the s, ’s are un-
correlated random variables with variance, E|s|*, equal to
the corresponding eigenvalues. The eigenfunctions are the
natural modes of the signal, and the number of such modes
is equal to the rank. Each spectrogram/scalogram in the
TFR detector, with an eigenfunction as the window, is op-
timally matched for processing the corresponding natural
mode.

Thus, the subspace-based structure of TFR detectors pro-
vides a whole range of possibilities from simple rank-1 pro-
cessors (only one element in the bank) for detecting es-
sentially deterministic signals, to the more general higher-
rank detectors for more complex stochastic signals. The
subspace-based formulation can be exploited to optimize
this complezity versus performance tradeoff [9].

Each rank-1 matched-filter component in Figure 1 nat-
urally incorporates nuisance parameters (time-frequency
shifts in Cohen’s class, and time-shifts and scalings in the
affine class) due to the implementation via spectrograms
and scalograms. In fact, the exact time-frequency or time-
scale location at which the maximum occurs (see (10) and
(11)) in the TFR detector is precisely the ML or MAP esti-
mate of the nuisance parameters. As mentioned earlier, the
TFR detectors effectively realize a GLRT in which an esti-
mate of the parameters is first formed and then used in the
optimal detector structure corresponding to those values of
the parameters [5].

5. SOME EXTENSIONS

Measurements from multiple sensors or channels are often
collected to facilitate improved extraction and classification
of signal characteristics. For example, for enhancement and
classification of electrocardiogram signals, signals from mul-
tiple probes are often recorded. Similarly, multi-sensor mea-
surements are fairly common in machine monitoring.

In this section, we explore a straightforward extension of
the TFR detectors to such multi-sensor measurements. For
simplicity, we will discuss the simpler case of quadratic de-
tectors as opposed to TFR detectors; the essential ideas re-
main the same. But first, we briefly describe an extension of
the binary hypothesis testing scenario (6) which is more re-
alistic and would be helpful in interpreting the multi-sensor
detectors.

"The number of nonzero terms in the eigenexpansion.



5.1. A more general binary hypothesis testing
problem

The signal + noise model under H; adopted in (6) is not
always appropriate in practice. A more general and more
realistic setting, which we will adopt in the multi-sensor
discussion, is one in which the signals under the two hy-
potheses are zero-mean Gaussian with different correlation
functions R, and R,. In this case, the optimal detector is
given by

L(z) = (Qua, a) = / Qo))" (Odt (1)

where the linear operator Q, is defined as® [8, 5]
Q,=R;'—R;'. (22)

We note that although Q, is nonnegative definite in the
signal + noise scenario, it is not necessarily so in the general
case.

5.2. An extension to multi-sensor measurements

Suppose that measurements from N sensors, &,,Z,,  *Z,,
are available over a finite observation interval [0,7). If
we define a “concatenated” observation z over the interval
[0,NT) as

2(t)=w=,(t) , for t€[(i—1)T,iT) ,i=1,2---N (23)

then we can directly use the optimal detector (22) if
we know the correlation functions of z under the two
hypotheses.’

The eigenexpansion (subspace-based formulation) of the
multi-sensor optimal detector

Qq' (b, t2) = ) Aew, (b)wy (t2) (24)
k

(t1,t2) € [0, NT) x [0, NT), yields some very useful infor-
mation. The operator QY can be decomposed into two def-
inite operators Q2 (positive definite) and Q2. (negative
definite) as

Q5 (t1,t2) = Qi (t1,t2) + Qil(t1,t2)
= > Awt)wi(t) + Y Aew, (b)w] (t2) (25)

ke, keT_

where Zy = {k : A\, >0} and Z_ = {k : A\, < 0}. The
eigenvectors w,’s corresponding to Z; roughly correspond
to the “natural” modes dominant under H;, whereas those
corresponding to Z_ roughly reflect the modes dominant
under Hy. Moreover, the eigenvectors can be partitioned
into components, corresponding to different channels, ex-
actly similar to the partitioning of z in (23). Thus, in the
case of machine fault diagnostics, for example, if H; rep-
resents “fault present”, then the presence of Z, modes or

8The corresponding generalization to the locally optimal or
deflection optimal detector is given by Qo = Ral (R1 —RO)REI.

9Which require, in addition to the correlation functions for
each individual channel, the cross-correlation functions between
the different channels under the two hypotheses.

the absence of Z_ modes would roughly reflect the presence
of the fault. Similarly, in terms of different channels, the
presence (Z4) or absence (Z_) of certain signal characteris-
tics in the different sensor measurements would reflect the
occurrence of the fault. Moreover, the relative energy in
the different partitions of an eigenfunction reflect the rela-
tive importance of the corresponding sensors in that mode.
These concepts are illustrated in Figure 2, and explained in
the next example.

5.3. An example with real data

Figure 2 is based on real data collected from firepumps.'®
It corresponds to a 2-channel quadratic detector (256 x 256
matrix) that was designed from training data collected from
two accelerometers (2 channels), one mounted on the pump
side, and the other on the motor side. The training data was
used to estimate the correlation matrices R (fault present)
and Ro (fault absent), from which the optimal detector was
derived using (22). Each of the correlation matrices can
be partitioned into four 128 x 128 submatrices correspond-
ing to the partitioning of the two channels. We found that
indeed such multi-channel detectors improved the perfor-
mance relative to single-channel processors, albeit at the
expense of higher complexity. However, in addition to im-
proved performance, the subspace-based structure of such
multi-channel detectors yields useful information about the
underlying physical mechanisms which we illustrate next.

Figure 2(a) shows the eigenvalues and certain eigenfunc-
tions of the optimal 2-channel detector. First, note in Fig-
ure 2(a) that effectively only about 50 to 60 of the eigen-
values are nonzero; the rank of the detector is substantially
smaller (50-60) compared to its size (256). The eigen-modes
in Figures 2(b)-2(c) correspond to some dominant nega-
tive eigenvalues (Z_), whereas those in Figures 2(d)-2(f)
correspond to a few dominant positive ones (Z4). More-
over, in the eigen-modes of (c) and (e), channel 2 is domi-
nant, whereas in (d) channel 1 has more energy. In (b) and
(f), which correspond to the most dominant eigen-modes
(largest absolute eigenvalues), both channels seem to be
relevant.

These observations reveal useful information about the
nature of the fault(s). For example, since channel 1 corre-
sponds to measurements made on the motor side, the pres-
ence of dominant channel 1 components in the eigen-mode
(d) (Z4) suggests that the presence of such modes on the
motor side indicates the occurrence of fault. On the other
hand, the dominant pump-component (channel 2) in the
eigen-mode (c) (Z-) suggests that such modes are normally
present on the pump side and their absence could possibly
indicate the occurrence of fault. Such information can also
be used to identify critical modes from the two channels
that together provide better classification than individual
channels but still result in a detector that is lower in com-
plexity than the full two-channel detector.

1016 pumps running at 3600 RPM; 5 faulty and 11 OK. Vi-
bration data collected from three (tri-axial) accelerometers each
on the motor and pump side (6 channels in total; 50 kHz sam-
pling rate). We thank Dr. Douglas Lake of the Office of Naval
Research for providing the firepump data and permitting us to
use it in this paper.



150 20 250 30

\\\ IME

(a) @

2
o1sf o
& o
H
2 oo o
Z
8
F-00 o
15
o 02
o o 150 £ 3 E) %0 150 70 0 0
e TME
015}
o1sf
01
8o
§ o
8 oo
H
g -o0s|
8005
04
04
o 05|
E] 3 150 £ 3 E) %0 150 70 0 30
e e

Figure 2. Eigenvalues and eigenfunctions of a 2-
channel quadratic detector (256 x 256 matrix); the
first 128 samples correspond to channel 1 and the
second half to channel 2. (a) Eigenvalues \, : k =
1,2,---256. (b) First eigenfunction: w, (A, < 0). (¢)
w, (A, <0). (d) Wz (Agzo > 0). (€) Wags (Aysy > 0)-
(£) wass (Aass > 0)-

6. CONCLUSIONS

In many real applications involving detection and classifica-
tion, the signals of interest are nonstationary and often pos-
sess certain nuisance parameters which are either unknown
or random. For example, the machine fault signatures occur
at unknown times and often exhibit random modulations.
The TFR-based optimum detection framework described in
this paper provides powerful detector structures that can be
successfully applied in such scenarios.

The subspace-based formulation in terms of a bank of
spectrograms/scalograms illuminates the flexible structure
of such TFR-detectors: they range from the simple rank-
1 matched-filter detectors, optimal for detecting essentially
deterministic signals, to the more complex higher-rank pro-
cessors for the detection of arbitrary stochastic signals.
Time-frequency shifts and scalings are the appropriate nui-
sance parameters and are naturally incorporated by such
TFR detectors via a generalized likelihood ratio test.

Our experience with real data in machine fault diagnos-
tics has shown significant promise for such TFR detectors;
the fault signatures have unknown time-offsets and often ex-

hibit frequency modulations and/or scalings. For an appli-
cation to engine knock detection see [3]. In cyclostationary
applications, such as those involving rotating machinery,
we have found that time-alignment is crucial to the perfor-
mance of fault detectors. In addition, scalings also seem
to be relevant in biomedical applications such as sleep data
classifications. Moreover, our experience has shown that the
effective rank of the underlying signals is usually relatively
low, making the subspace-based interpretation particularly
useful for designing computationally efficient low-rank de-
tectors which yield most of the performance gain [9].

Such reduced-rank structures could also be potentially
useful in the multi-sensor detection that we briefly discussed
in this paper; the detector size increases by a factor of N
for N sensors. The simple multi-sensor structure explored
in this paper has shown promising results with real data,
suggesting that higher performance gains may be achiev-
able with more sophisticated techniques. In addition to im-
proved performance, the subspace-based interpretation of
such multi-sensor detectors yields useful information about
the underlying physical mechanisms that may in turn be
exploited for improved signal processing.
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