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ABSTRACT

We consider the design of digital filters and discuss the
inclusion of explicitly specified transition bands in the fre-
quency domain design of FIR filters. We put forth the no-
tion that explicitly specified transition bands have been in-
troduced in the filter design literature as an indirect and
often inadequate approach for dealing with discontinuities
in the desired frequency response.

We also present a rapidly converging, robust, simple
algorithm for the design of optimal peak constrained least
square lowpass FIR filters that does not require the use of
transition bands. This versatile algorithm will design linear
and minimum phase FIR filters and gives the best L, filter
and a continuum of Chebyshev filters as special cases.

1. INTRODUCTION

We consider the definition of optimality for digital filter de-
sign and conclude that a constrained least squared error
criterion with no transition band is often the best approxi-
mation measure for many physical filtering problems. This
comes from noticing that transition bands are usually intro-
duced to reduce the Gibbs effect for least squares approxi-
mation or to permit the use of Chebyshev approximation.

The basic lowpass filter, for example, is usually designed
to separate a desired signal from an undesired signal or
noise, the spectrums of which exist in bands of frequen-
cies designated the passband and stopband respectively. In
most practical cases there is no separation of the passband
and stopband to give a transition (or “don’t care”) band be-
tween them. Indeed, spectra of the desired and undesired
signals often overlap and one is hard pressed to specify a
point that separates the pass and stop bands and one cer-
tainly cannot give a band to separate them. In most cases,
a transition band is introduced to reduce or remove the
oscillations in the frequency response near the band edges
caused by the Gibbs effect, not because transition bands
naturally arises from the physics of the problem. And when
large peaks occur in the “don’t care” transition band of cer-
tain Chebyshev filter designs, engineers decide they do care
and alter the specifications to eliminate the peaks.

For the meaningful design of filters it is necessary to
choose an error criterion carefully. Moreover, the error cri-
terion should not implicitly require unrealistic assumptions
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on the signals, such as the existence of a band separating
desired signals and noise.

1.1. Error Criteria

In the following discussion we draw upon [8] in which Weis-
burn, Parks and Shenoy present a rigorous motivation for
the use of the Chebyshev and L2 error measures and dis-
cuss the use of zero-weighted transition bands. They show
that best Chebyshev filters minimize the energy of the worst
case error signal, while best Lo filters minimize the point-
wise value of the the worst case error signal. However, the
use of zero-weighted transition bands implicitly requires as-
sumptions on the class of input signals if the corresponding
filters are to possess an optimality property.

If a zero-weighted transition band is used, then the best
Chebyshev and L, filters are optimal in the meaningful way
described in [8] onlyif the signals in the input class have no
frequency content in the transition band. This assumption
on the class of input signals is sometimes difficult to justify.

In light of the preceding discussion, we suggest that the
use of explicitly specified transition bands in FIR filter de-
sign began with the desire to reduce peak errors near the
band edges and that these “don’t care” regions are often a
somewhat artificial contrivance used to make possible the
design of attractive filters. We find that the use of explic-
itly specified transition bands is sometimes inappropriate
and undesirable because, to satisfy a meaningful optimality
criterion, their use requires unrealistic assumptions on the
class of input signals.

1.2. A New Approach to FIR Filter Design

We present a rapidly converging, robust, simple, multiple
exchange algorithm for the design of optimal peak con-
strained least square lowpass FIR filters that does not re-
quire the use of transition bands. The algorithm uses La-
grange multipliers and the Kuhn-Tucker (KT) conditions,
as suggested by Adams [1] and further developed in [2, 4],
to guarantee optimality upon convergence. This design
algorithm will design linear and minimum phase lowpass
FIR filters. It gives the best L. filter and a continuum of
Chebyshev filters as special cases and allows arbitrary error
weighting. However, with the error weighting W(f) = 1,
the optimal filter is obtained by making a simple additive
correction to the Fourier series coefficients.



The algorithm can be modified to allow different error
weighting in different bands, to allow other types of con-
straints, and to achieve complex approximation. We have
designed lowpass filters of lengths over 3,000 and have used
loose and tight constraints that differed in the pass and
stop bands by factors as much as 1,000,000. Although we
have not proven its convergence for lowpass filter design,
the algorithm never failed to converge to the optimal solu-
tion. We feel this new approach could be a useful method
for many FIR filter designs.

2. THE FILTER DESIGN METHOD

We begin by reviewing strategies employed for the reduction
of large peak errors in FIR filter design. After discussing
the constrained L, approach and viewpoint of Adams [1],
we introduce our approach to filter design. With it, we
adopt the valuable insight of Adams and at the same time
we do not use a zero-weighted transition band, a transi-
tion function, or a window. To achieve this, we formulate
the constrained L: approach differently than does Adams.
We then describe an algorithm that designs FIR filters ac-
cording to this new formulation and give examples of its
efficacy.

2.1. Preliminaries

Define the error function E(f) = A(f) — D(f) where A(f)
and D(f) are the realized and desired real-valued frequency
response amplitudes of a linear phase FIR filter. The Lo
measure is given by ||E||3 = 00'5W(f)2E(f)2df.

The simplest method to design optimal FIR filters min-
imizes ||E||2 and the resulting filter we call the best Lo
filter. As is well known, if W(f) = 1, then the best L filter
is obtained by truncating the Fourier series of D(f) (the
rectangular window method). But this is not done in prac-
tice because the resulting filters possess large peak errors
near the band edges. To overcome this behavior, known as
Gibbs phenomenon, two approaches have been employed:
(i) non-rectangular windowing and (#) the introduction of
explicit transition bands.

Although windows are simple to use, they are generally
considered sub-optimal because it is difficult to use them
to minimize meaningful error measures and because error
weighting is not allowed.

By a transition band, we mean a region placed between
two bands where either W(f) is taken to be 0 or a function
is used to (continuously) connect the two bands. Because
E(f) is not weighted there, zero-weighted transition bands
are sometimes called “don’t care” regions.

2.2. Adams’ Error Criterion

In [1] Adams described perhaps the most meaningful error
criterion to date and suggested an algorithm to design the
corresponding best filters. Using zero-weighted transition
bands Adams asks that ||E||> be minimized subject to a
constraint on the Chebyshev error, ||E||. He provides an
excellent motivation for this approach, an approach which
yields best L and Chebyshev filters as special cases. Adams

notes that it is possible to reduce the Chebyshev error of a
best Lo filter with only a slight increase in the L; error.

2.3. The New Problem Formulation

Our problem formulation is similar to that of [1, 2, 7, 4]:
the error measure we minimize is || E||2, but with W(f) =1
over [0,0.5], and we impose a constraint on the maximum
value of |E(f)|, but we impose this constraint only where

%(ff) = 0. The associated minimization problem is:

min || £,

subject to |E(f)| < T(f), V f for which E'(f) = 0.

When D(f) is discontinuous this constraint is differentthan
a constraint on ||E||s. This constraint addresses directly
the size of the “overshoot” near the band edge, for it liter-
ally constrains the peaks of |A(f)| at its local maxima. It
is straight forward to use arbitrary weighting functions and
to impose more general constraints.

2.4. The Algorithm

The algorithm we use solves a succession of equality con-
strained square error minimization problems where the con-
straints are on A(f) for the frequency points in a constraint
set. The constraint set is updated so that at convergence
the only frequency points at which constraints are imposed
are those where A(f) touches the constraint. The equal-
ity constrained problem is solved with Lagrange multipli-
ers [6]. According to the KT conditions, the equality con-
strained problem solves the corresponding inequality con-
strained problem if all the multipliers are non-negative.

Let the constraint set be {f1,..., fr}. If f; is a candi-
date local maximum (minimum) of A(f), then it is nec-
essary to impose the comstraint A(f;) < D(fi) + T(f)
(A(fi) > D(fi) — T(fi)). Together, these can be written
as s; A(fi) < siD(fi) + T(fi) where s; is 1 and —1 respec-
tively.

To minimize ||E||2 subject to siA(f,') = siD(fi)—FT(fi),

the use of Lagrange multipliers yields the equations
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Note that ¢ are the Fourier series coefficients and that

= (GG (Ge—d) a=c—G'yu (7
is the solution to eq (3). Therefore, if the number of con-
straints (L) is small compared to the number of filter coeffi-
cients (m + 1), then (3) is computationally simple to solve.
On each iteration the cosine coefficients, a, are obtained by
adding the correction G’y to the best L, (Fourier) coef-
ficients, ¢. This is in contrast to the window method, in
which the best Lz coefficients are multiplied by a window.

The algorithm begins with the best unconstrained Lo
filter. Then constraints are iteratively imposed upon A(f)
at selected frequencies until the best constrained L. filter
is obtained. The algorithm can be summarized as follows:

1. Initialize the constraint set to the empty set.

2. Use eq (7) to calculate the multipliers and the fil-
ter that minimizes || E||2 subject to the equality con-
straints siA(fi) = siD(fi) + T(fi) for all f; in the

constraint set.

3. If there is a constraint set frequency f; for which the
Lagrange multiplier p; is negative, then remove from
the constraint set the frequency corresponding to the
most negative multiplier and go back to step 2. Oth-
erwise, go on to step 4.

4. Set the constraint set equal to the set of frequency
points satisfying both (¢) E'(f) = 0 and (i) |E(f)| >
T(f). If A(f;)is a local maximum (minimum), then
set 5 = 1 (si = —1). If |E(f)] < T(f) + € for all
frequency points in the new constraint set, then con-
vergence has been achieved. Otherwise, go back to
step 2.

As in [2, 4, 7], according to the KT conditions, optimality
is guaranteed upon convergence because g > 0.

The Matlab program below implements this algorithm.
For the sake of space and clarity, it uses a grid of frequency
values. It is much preferable, however, to refine the location
of the extremal frequencies by Newton’s method; otherwise
a rather dense grid is sometimes required for convergence.
Some of the computational techniques [3] used to improve
the Parks-McClellan program can also be used here.
Example 1: We let D(f) be the ideal low-pass filter with
a band edge at 0.15 and 7'(f) = 0.025. We use 31 cosine
coefficients (the filter length is 61). In 3 iterations, the
proposed algorithm converges to the response in fig 1. The
circular marks indicate the constraint set frequency points.
Compared to the best unconstrained Lo filter in fig 2, the
constrained filter has a considerably smaller peak error near
the band edge. This is achieved with a small increase in the
transition width and the Lo error.

3. CHEBYSHEV SOLUTIONS

The proposed algorithm gives as special cases a continuum
of best Chebyshev filters. First, observe that if, for a fixed
filter length, the constraint on ||F|| in [1, 2, 4] is chosen
too small, then no filter satisfies the constraint and the
algorithms of [1, 2, 4] can not converge. However, there
is no minimum 7'(f) below which the proposed approach
fails to converge. If T'(f) is taken to be small, then the

transition between the bands simply becomes wider, as we
find in example 2.
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Figure 1: The frequency response for example 1.
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Figure 2: The frequency response of the best unconstrained

Lo filter.

Example 2: We use the same desired response with m =
30, but take T'(f) = (0.025)2. The resulting response in fig
3 is obtained in 6 iterations. The peak error is significantly
reduced with a corresponding increase in transition width
and L, error.
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Figure 3: The frequency response for example 2.

Although this filter was not designed by the Parks-
McClellan program, it is a best Chebyshev filter for an
appropriate transition band. By varying the constraint, a
continuum of best Chebyshev filters is obtained. This is in
contrast to the approach in [1, 2, 4] where a transition band
is specified so that only one value of the tolerance gives rise
to a Chebyshev solution.



4. MULTIBAND FILTERS 7. A MATLAB PROGRAM

function h = ¢121p(m,wo,up,lo,L)

% Constrained L2 Low Pass FIR filter design

% Author: Ivan Selesnick, Rice University, 1994
% Please retain this header and cite:
%
%

For the design of multiband filters, the algorithm described
above must be modified to obtain robust convergence. Al-
though it works for some multiband specifications, when
the tolerance T(f) is taken to be relatively small, we have
found that it is often necessary to use a single point update
procedure for some iterations. We are currently developing

Constrained Least Square Design of FIR
Filters Without Specified Transition Bands
% by I.W.Selesnick, M.Lang, C.S.Burrus

algorithms for the multiband case. % h : 2#m+i filter coefficients
% m : degree of cosine polynomial
5. CONCLUSION % wo : cut-off frequency in (0,pi)

% up : [upper bound in passband, stopband]

. . . .. . % lo : [lower bound in passband, stopband]
We have discussed the inclusion of explicitly specified tran- % L : grid size P P

sition bands in the design of optimal FIR filters. We have % example

put forth the notion that explicitly specified transition bands
have been introduced in the filter design literature as an
indirect approach for dealing with discontinuities in the de-

up = [1.025, 0.025]; lo = [0.975, -0.025];
h = ¢121p(30,0.3%pi,up,l0,2710);

sired frequency response. However, we have found that by r = sqrt(2); w = [0:L]’#pi/L;
imposing appropriate constraints, Gibbs phenomenon can Z = zeros(2#L-1-2%m,1); q = round(wox*L/pi);
be eliminated without the use of explicitly specified transi- u = [up(1)*ones(q,1); up(2)*ones(L+l-q,1)];
tion bands. Furthermore, (i) the elimination of Gibbs phe- 1= [10(1)*"“95.(‘1:1” 10(2)*01195(1-"'1‘%%)];
nomenon does not depend on smoothing the desired (dis- ¢ = 2*[wo/r; .[Sln("o*[lzm]?'/[1”“]].’](1)1?
continuous) frequency response, and (éi) the proposed ap- a=c ./' best L2 cosine coefficients
proach does not ignore the Ly error around the band edge, e Ll ,/' Lagrange multipliers
. .. . . SH = 1e-7; % Small Number

and thereby does not implicitly assume that signals in the while 1
input class have no frequency content there. Y —mmen calctlate H —mmmmmmmmm oo e

The algorithm we have described for our new design for- H = fft([a(1)*r;a(2:m+1);Z;alm+l:-1:2)1);
mulation is robust and efficient. It also gives the best Lo H = real(H(1:L+1))/2;
filter and a continuum of Chebyshev filters as special cases. % —-—-- find extremals ——---—--———-—-———---—-
In addition, the constraints imposed upon the “overshoot” kmax = local_max(H); kmin = local_max(-H);
can be made arbitrarily small. The proposed algorithm al- kmax = kmax( H(kmax) > u(kmax)-SH );
lows arbitrary error weighting, however, with the weighting kmin = kmin( H(kmin) < 1(kmin)+SN );
function W(f) = 1, the optimal filter coeflicients are ob- % === check stopping criterion —-—-----—-—-

Eup = H(kmax)-u(kmax); Elo = 1(kmin)-H(kmin);

tained by making a simple additive correction to the Fourier B
E = max([Eup; Elo; 0]); if E < SN, break, end

series coefficients.

% -——-- calculate new multipliers -----------
nl = length(kmax); n2 = length(kmin);
6. REFERENCES 0 = [ones(nl,m+1); -ones(n2,m+1)];
G =0 .* cos(w([kmax;kmin])*[0:m]);
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G(K,:) = [1; d(k¥) = [1;

mu = (G*G’)\(G*c-d);

[min_mu,K] = min(mu);
end

% === determine new coefficients ----------

a = ¢c-G’*mu;
end
h = [a(m+1:-1:2); a(1)*r; a(2:m+1)]1/2;

function x = local_max(c)

% finds location of local maxima

s = size(c); ¢ = [c(:)].?; N = length(c);
bl = c(1:0-1)<c(2:M); b2 = c(1:0-1)>c(2:M);
x = find(b1(1:H-2)&b2(2:H-1))+1;

if c(1)>c(2), x = [x, 1]; end

if c(M>c(B-1), x = [x, B]; end

x = sort(x); if s(2) == 1, x = x’; end




