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Abstract

This paper puts forth the notion that explicitly specified transition bands have been intro-
duced in the filter design literature in part as an indirect approach for dealing with discontinu-
ities in the desired frequency response. We suggest that the use of explicitly specified transition
bands is sometimes inappropriate because, to satisfy a meaningful optimality criterion, their use
implicitly assumes a possibly unrealistic assumption on the class of input signals.

This paper also presents an algorithm for the design of peak constrained lowpass FIR filters
according to an integral square error criterion that does not require the use of specified transition
bands. This rapidly converging, robust, simple multiple exchange algorithm uses Lagrange
multipliers and the Kuhn-Tucker conditions on each iteration. The algorithm will design linear
and minimum phase FIR filters and gives the best L, filter and a continuum of Chebyshev filters
as special cases.

It is distinct from many other filter design methods because it does not exclude from the inte-
gral square error a region around the cut-off frequency, and yet, it overcomes Gibbs’ phenomenon
without resorting to windowing or ‘smoothing out’ the discontinuity of the ideal lowpass filter.
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1 Introduction

We consider the definition of optimality for digital filter design and suggest that a constrained
least squared error criterion with no specified transition band is a useful complement to existing
approximation criteria for filter design.

Consider, for example, a basic lowpass filtering scenario in which a signal of interest whose
spectrum occupies the frequency range (0,w,) is embedded in an additive noise signal whose spec-
trum occupies the entire frequency range (0,7). In this case, without further assumptions, no
transition band naturally arises from the problem of removing the noise from the signal of interest:
No part of the passband is more or less critical than any other part of the passband. Similarly, no
part of the stopband is more or less critical than any other part of the stopband. In many practical
cases there is no separation of the passband and stopband by a transition (or ‘don’t care’) band
between them. Indeed, spectra of the desired and undesired signals often overlap.

An important exception to this is the design of filters used to select one out of two or more
signals which have been designed to occupy well separated frequency bands. In this case, and other
cases in which the signals to be filtered have no energy in a transition band, the use of transition
bands in filter design is well motivated - the transition band constitutes a non-critical part of the
frequency response. But even in these cases, there is in the “guard bands” usually some noise or
other undesirable signals that one wants to remove. It is for this reason that transition region
anomalies in the frequency response are undesirable. Indeed, when large peaks occur in the ‘don’t
care’ transition band of certain multiband Chebyshev filter designs [24], engineers decide they do
care and alter the specifications or employ modified algorithms [32, 33] to eliminate the peaks. In
many cases, a transition band is introduced to reduce or remove the oscillations in the frequency
response near the band edges caused by the Gibbs’ phenomenon, not because transition bands
naturally arises from the physics of the problem.

For the meaningful design of filters it is necessary to choose an error criterion that does not
implicitly require unrealistic assumptions on the signals, such as the existence of a band separating
desired signals and noise. Although these statements are informal, below we draw upon the results
of Weisburn, Parks, and Shenoy [38] to give a mathematical justification for the inclusion of the
transition region in the measure of approximation error.

This paper (an earlier version of which is [28]) is organized as follows: In section 2 we
establish notation and discuss ways in which Gibbs’ phenomenon has previously been treated. We
also discuss the constrained Ly approach of Adams [1, 2] to filter design and the results of Weisburn,

Parks, and Shenoy [38]. In section 3 we take into account the results of Weisburn et al. to modify



the approach of Adams. The resulting design method adopts the view of Adams and is, at the
same time, motivated by the results of Weisburn et al. The rapidly converging, robust, multiple
exchange algorithm algorithm presented in section 4 produces peak constrained least square lowpass
FIR filters. The result is a versatile design algorithm that will design linear and minimum phase
FIR filters and which gives the best L filter and a continuum of Chebyshev filters as special cases.
Section 5 gives some interpretations and extensions of this method. A simple Matlab program that

illustrates the algorithm for odd length lowpass filter design is given in the appendix.

2 Preliminaries

The frequency response H(w) of an FIR filter is given by the discrete-time Fourier transform of its

impulse response h(n):
N-1
Hw)= Z h(n)e ", (1)
n=0
If h(n) = (N — 1 —n), then H(w) has linear phase and can be written as
H(w) = A(w)em M (2)

where A(w) is the real-valued amplitude and M = (N —1)/2 for length-N filters [22]. For simplicity,

symmetric odd length filters will be discussed in this paper, in which case A(w) can be written as

1
= —a
V2
where the impulse response coefficients h(n) are related to the the cosine coefficients a(n) by

ta(M—-n) for0<n<M-1

M
A(w) (0) + Z_: a(n) cos nw (3)

- a(0 forn = M

wwy = | y2©ere (4)
sa(n—M) for M+1<n< N -1
0 otherwise.

Let D(w) denote the desired amplitude. For example, see figure 2 in which the desired
amplitude of an ideal lowpass filter is shown. Approximating this discontinuous function by the
cosine polynomial A(w) given in equation (3) is the most basic filter design problem. Many of the
various methods in the filter design literature can be distinguished by the ways in which they treat
this discontinuity. Indeed, controlling the behavior of A(w) in the region around the discontinuity
has strongly influenced the development of filter design methods.

Two primary measures of approximation error are used in filter design. Let E(w) = D(w) —
A(w). (i) The weighted integral square error (or ‘Lj error’) is given by

@l = (2 [ Weraw) - pofa)’ 5)



(ii) The weighted Chebyshev error is given by

1E(W)l[ee = max [W(w)(A(w) - D(w))]. (6)

)

In both cases, W(w) is a nonnegative error weighting function. When W(w) is set to unity over
[0, 7], the approximation measures above are called the unweighted (or uniformly weighted) integral
square error and the unweighted (or uniformly weighted) Chebyshev error. The simplest method
to design optimal FIR filters minimizes ||A(w) — D(w)||2 and the resulting filter we call the best
L filter. As is well known, if the error weighting function is set to unity over [0, 7], then the best
L, filter is obtained by truncating the Fourier series of D(w) (the rectangular window method).
Hence, for simple D(w), a closed form expression for the filter is easily found. But W(w) = 1 is
not generally used in practice because best Ly filters with this error weighting possess large peak
errors near the band edges. Moreover, the peak value of these ‘overshoots’ does not diminish with
increasing filter length. To overcome this behavior, known as Gibbs’ phenomenon, three main
approaches have been employed: () the use of non-rectangular windows, (iz) the use of transition
functions to continuously connect adjacent bands, and (iii) the use of zero-weighted transition
bands placed between adjacent bands.

The use of these approaches has spawned a variety of filter design procedures having the

following two desirable properties:
1. The procedure produces filters that do not suffer from Gibbs’ phenomenon.
2. The procedure can be implemented using a computationally efficient numerical algorithm.

For example, variable order spline transition functions can be used with the integral square error
approximation measure to obtain expressions for filters having good response behavior around the
discontinuity [8]. Alternatively, when a zero-weighted transition band is used, the best weighted Lo
filter can be found by solving a system of linear equations [37]. In this case Gibbs’ phenomenon is
also eliminated: the peak error diminishes as the filter length increases. The use of zero-weighted
transition bands also permits the meaningful use of the Chebyshev norm, an error measure for
which the Parks-McClellan (PM) program produces optimal linear phase filters [22]. In fact, in
order to design lowpass filters by minimizing the Chebyshev norm, either a transition function or
a zero-weighted transition band must be specified: For the discontinuous lowpass response given in
figure 2, the filter minimizing the unweighted Chebyshev error has a Chebyshev error of one half
and is not unique.

Unfortunately, each of the three enumerated methods has its shortcoming:



1. Windows: Although the multiplication of the Fourier coefficients of D(w) with a non-
rectangular window is very simple, the method is generally considered sub-optimal because
it is difficult to use it to minimize meaningful error measures (but see [12]) and because error

weighting in the sense of (5) is not achieved.

2. Transition Functions: Although modifying the desired amplitude D(w) (so that it is no
longer discontinuous) yields approximations that do not suffer from Gibbs’ phenomenon, the
method does not directly approximate the original discontinuous desired lowpass amplitude

function.

3. Zero-Weighted Transition Bands: By a zero-weighted transition band, we mean a region
placed between two adjacent bands where W(w) is taken to be 0. Because A(w)— D(w) is not
weighted there, zero-weighted transition bands are sometimes called ‘don’t care’ regions. The
use of zero-weighted transition bands make the approximation problem easier. But if they
are used, then unless the input signals have no energy in the transition band, the optimality

of the best Chebyshev and L, filters in the operator norm sense [38] is problematic.

Therefore, although the use of these approaches makes easier the approximation of the discon-

tinuous desired amplitude, they are all rather indirect methods for dealing with the discontinuity.

2.1 Adams’ Error Criterion

An early comparison of error criteria was made by Tufts and Francis [36]. More recently Adams
[1, 2] described perhaps the most meaningful error criterion for filter design to date and suggested
an iterative algorithm to design the corresponding best linear phase filters.

As Adams has noted, L, filter design is based on the assumption that the size of the peak
errors can be ignored. Likewise, filter design according to the Chebyshev norm assumes the L,
measure of approximation error is irrelevant. In practice, however, both of these criteria are im-
portant, a point Adams elaborates in [1]. Furthermore, Adams finds that the peak error of a best
L, filter can be significantly reduced with only a slight increase in the Ly error. Similarly, the L,
error of an equiripple filter can be reduced with only a slight increase in the Chebyshev error. In
Adams’ terminology, both equiripple filters and best L, filters are inefficient.

Consider lowpass filter design. To obtain filters having a better trade-off between these
two criteria, Adams uses zero-weighted transition bands and proposes that ||A(w) — D(w)]||z be

minimized subject to a constraint on the Chebyshev error. This is formulated as a quadratic



program [1] as follows:

mip 14() ~ D)l )
such that
L(w) < A(w) < U(w) for all w € [0, w,] U [ws, 7. (8)

In (7), Adams weights the integral square error by the weight function:

W, for all w € [0,w,)]
Ww)=4¢ 0 forall w € [wy,,ws] (9)
W, for all w € [ws, 7].

In (8), the upper and lower bound functions L(w) and U(w) are given by

_J 1-46, forallw € [0,w,)
Liw) = { 8, for all w € [w;, 7] .

and by
(11)

where 6, and 65 are the maximum allowed deviations from 1 and 0 in the passband and stopband.

R

This constrained L, approach allows the user to control the trade-off between the Lo and
Chebyshev errors, and produces best Ly and Chebyshev filters as special cases. Of course, for a
fixed filter length and a fixed 6, and 6, (each less than 0.5), it is not possible to obtain an arbitrarily
narrow transition band. Therefore, if the band edges w, and w, are taken to be too close together,
then the quadratic program (7,8) has no solution. Similarly, for a fixed w, and wy, if ¢, and 65 are
taken too small, then there is again no solution. In the terminology of quadratic programming [10],
the feasible region is empty.

Although the algorithm in [1] tests for optimality upon termination by checking the non-
negativity of Lagrange multipliers, during the iterations it does not enforce this non-negativity.
For this reason, it may converge to a non-optimal filter. In [17, 18] an algorithm for the design of
nonlinear phase FIR filters according to the same error measure is proposed. It inspects the signs of
Lagrange multipliers on each iteration so that, if the algorithm converges, then the filter to which
it converges is guaranteed to be optimal. However, the algorithm in [18] is also not guaranteed to
converge. But it was found that for lowpass filter design, whenever there exists a filter satisfying
the constraints specified by the user, the algorithm converges in practice. To develop exchange
algorithms for solving (7,8) that are guaranteed to converge to optimal filters, it is necessary to
modify the algorithms of [1, 17, 18]. In [2], Adams et al. describe in detail appropriate modifications
based on [11] that guarantee convergence. In [35], Sullivan and Adams extend the algorithm of [2]

to the design of nonlinear phase FIR filters with constraints on the group delay.



2.2 Approximation by Operator Norms

Weisburn, Parks, and Shenoy [38] present a rigorous motivation for the use of the Chebyshev and L,
error measures and discuss the use of zero-weighted transition bands (see also [30, 31]). Using the
theory of operator norms, they show that best Chebyshev filters minimize a worst case error signal
energy, while best L, filters minimize a worst case pointwise error in the time domain. However,
to show this optimality in the operator norm sense when a zero-weighted transition band is used,
a hypothetical ideal prefilter is placed at the input, the frequency response of which is zero on the
don’t care region and 1 everywhere else [38].

Weisburn et al. begin by defining £(w) = A(w)— D(w) as the frequency response of an error
filter, £. They view the error filter as an operator, and use an operator norm as a measure of
approximation. The filter design problem then becomes one of finding A to minimize |[|[A — D]]
where the norm is an operator norm. To define the norm of an operator, it is necessary to define a
norm on the class of input signals, which we will denote || - ||;, and a norm on the class of output
signals, || - [[,. Note that the norms used for the input and output signals do not have to be the
same. The operator norm of E is then defined as

| E]]
||E|] = sup -
zeU ||2|li

(12)
where x represents the input signal of the error filter £/ and y = Fz represents the corresponding
output signal. The supremum is over the space of input signals U. This ratio indicates the amount
by which the filter £ ‘magnifies’ or ‘attenuates’ the input signal with respect to the chosen input
and output norms.

It turns out that when the class of input signals is taken to be the space of all finite energy
sequences and when the input and output signal norms are both taken to be the I norm, (||z||; =

Yo,x(n)? and || -|]; = || - ||lo), then the operator norm is equal to the unweighted Chebyshev
norm, ||E(w)||s, defined in equation (6). Therefore, the best Chebyshev filter minimizes a worst
case output signal energy over a set of bounded energy input signals [38].

On the other hand, if the input signal space and norm is kept the same, but the output signal
norm is taken to be ||y||, = |y(n)| for some fixed index n, then the operator norm is equal to the
unweighted integral square error, ||E(w)||2, defined in equation (5). Note that it is independent of
the index n. Consequently, the best Lo filter minimizes a worst case pointwise error in the time
domain over a set of bounded energy input signals [38].

Suppose D(w) is the usual discontinuous ideal lowpass frequency response. Further, suppose

an error weighting function is used which is zero in a specified transition band. If the signals in



the input class have no energy in the transition band, then the filters obtained by minimizing the
weighted Chebyshev and L, norms are optimal in the operator norm sense [38]. However, if the
input signals do have energy in the specified transition bands, then the way in which the filters are
optimal is unclear in general.

Suppose on the other hand, that a transition function is used to modify D(w) so that it has
a smooth transition between the passband and stopband. Then the best filters obtained according
to any approximation measure do not correspond to the original desired discontinuous frequency

response D(w).

3 A New Criterion for Lowpass Filter Design

In light of the preceding discussion, we suggest that the use of explicitly specified transition bands
in FIR filter design began in part with the desire to reduce peak errors near the band edges and
that these ‘don’t care’ regions are, in some cases, used because they facilitate the approximation
problem, not because they naturally arise from the filter problem under consideration.

Furthermore, because the minimization of the Chebyshev norm for lowpass filter design re-
quires the use of a transition band, we propose for some problems that the Ly norm be the primary
optimization measure and that the peak errors be controlled by a constraint.! In the next section
we present an algorithm for the design of peak constrained lowpass FIR filters according to an
integral square error criterion that does not require the use of specified transition bands.

Let us define F(w) = A(w)— D(w), where D(w) is the ideal discontinuous lowpass amplitude.
It will be convenient to make the meaning of the term ‘peak errors’ more precise. By peak errors
of a lowpass filter, we mean the values of |E(w)| at the local minima and mazima of A(w). With
this definition, the peak errors do not include values of £(w) at the edges of a transition band (see
figure 4).

Let w, be the cut-off frequency (the frequency at which the ideal lowpass amplitude is discon-
tinuous). The design problem we propose uses the Ly weight function and lower and upper bound

functions given by:
1. W(w)=1for all w € [0, 7]
2. Uw)=1+46,, Lw)=1-46,, for all w € [0,w,]

3. Ulw) = b,, L(w) = b5, for all w € (w,, 7]

!There are cases where the Chebyshev error should be truly minimized (e.g. narrow band interference at an
unknown frequency) but simply reducing it or constraining it is generally sufficient.



We propose the following problem formulation:

new criterion Minimize the unweighted integral square error (5) subject to the constraint that the

local minima and maxima of A(w) lie within the specified lower and upper bound functions,

L(w) and U(w).

The filters produced by the algorithm described below produces lowpass linear phase filters
according to this criterion. They have frequency response amplitudes that are very similar in
appearance to those obtained using the approach described by Adams. However, there are three

main differences:

1. There is no region around the discontinuity that is excluded from the integral square error
approximation measure. The algorithm minimizes the square error over the entire frequency

range from 0 to m subject to the peak constraints.

2. The transition region is implicitly defined by the constrained L, minimization procedure. It
is not dictated by the specification of transition band edges. Indeed, band edges are not

specified.

3. There is no minimum achievable peak error size. That is, filters having arbitrarily small peak
errors can be obtained. The problem of infeasibility encountered in the quadratic program

formulation does not arise.

Because the approach taken here weights the Ly error over the entire interval [0, 7], there
are no natural band edges to use in (8) of the quadratic program formulation. For this reason, the
approach to filter design described here can not be described by a quadratic program. It should be
noted that the new criterion also applies to multiband filter design, but for clarity, only the lowpass
case is examined in this paper. The extension to arbitrary responses is not developed here but it
is expected that some extensions to nonpiece-wise constant responses are possible.

The use of this criterion for lowpass filter design is suitable for situations where the maximum
peak error size is to be controlled and where there is no reason to assume that the input signals
to be filtered have no energy in a transition band. If the peak errors are unimportant, then the
sinc function obtained by minimizing an unweighted unconstrained L is more suitable. When it
is known that input signals do not have energy in a transition band (or very little), then the use of
a specified transition band is well motivated. In this case, the transition band constitutes a non-

critical part of the response. Examples of this are when well separated signals are to be filtered.



For such applications, the PM algorithm, the algorithm of Adams’, or the linear programming
algorithms of [33] are better suited.

The approach we propose in this paper and the algorithm we describe are intended to com-
plement the existing methods by providing an approach with few assumptions for a basic lowpass

filtering problem.

4 A New Algorithm for Lowpass Filter Design

The algorithm described below produces lowpass linear phase FIR filters according to the new crite-
rion described in the previous section. It is a rapidly converging, robust, simple multiple exchange
algorithm that uses Lagrange multipliers and the Kuhn-Tucker conditions on each iteration [10, 34].
Although we have not proven its convergence, the algorithm converges in practice when used for
lowpass filter design. A Matlab program that implements this algorithm is especially simple and
is given in the appendix. For multiband filter design, the algorithm must be modified to obtain
robust convergence [29].

The algorithm will design linear and minimum phase lowpass FIR filters and gives the best
L, filter and a continuum of Chebyshev filters as special cases. The algorithm can be modified to
allow different L, error weighting in different bands and to allow other types of constraints. We
have designed lowpass filters of lengths over 3,000 and have used loose and tight constraints that

differed in the passband and stopband by factors as much as 106.

4.1 The Equality Constrained Minimization Problem

The amplitude A(w) of the filter minimizing the Ly error subject to peak constraints will touch the
lower and upper bound functions at certain extremal frequencies of A(w). (By extremal frequencies
of A(w) we mean local minima and maxima of A(w)). If these frequencies were known in advance,
then the filter could be found by minimizing || E||2 subject to equality constraints at these frequen-
cies. The procedure below determines the appropriate set of frequencies by solving a sequence of
equality constrained quadratic minimization problems. The solution to each minimization problem
is found by solving a linear system of equations.

This iterative algorithm is based on those of [1, 18]. The constraints are on the values of A(w;)
for the frequency points w; in a constraint set. On each iteration, the constraint set is updated so
that at convergence, the only frequency points at which equality constraints are imposed are those
where A(w) touches the constraint. The equality constrained problem is solved with Lagrange

multipliers. The algorithm below associates an inequality constrained problem with each equality



constrained one. According to the Kuhn-Tucker conditions, the solution to the equalily constrained
problem solves the corresponding inequality constrained problem if all the Lagrange multipliers are
non-negative (where the signs of the multipliers are defined appropriately). If on some iteration
a multiplier is negative, then the solution to the equality constrained problem does not solve the
corresponding inequality constrained one. For this reason, before the constraint set is updated
in the algorithm described below, constraints corresponding to negative multipliers (when they
appear) are sequentially dropped from the constraint set. In this way, an inequality constrained
problem is solved on each iteration, albeit over a possibly smaller constraint set. It turns out that
in the special case of lowpass filter design considered here, this simple iterative technique converges
in practice.

Let the constraint set S be a set of frequencies S = {wy,...,w,} with w; € [0,7]. Let S be
partitioned into two sets, 57 and 5, , where 5; is the set of frequencies where we wish to impose the
equality constraint

Alw) = L(w), (13)
while 5, is the set of frequencies where we wish to impose the equality constraint

Aw) = U(w). (14)

Let us have 5; = {wy,...,w,} and S, = {wg41,...,w,}. To minimize ||E(w)||2 subject to these
constraints we form the Lagrangian [10, 20, 34]:
q T
L= [E@)5=> milAw) = Llw)]+ Y pilAlwi) = U(ws)]. (15)
=1 1=g+1
Necessary conditions for ||E£(w)]||z to be minimized subject to the constraints above, are obtained

by setting the derivative of £ with respect to a; and p; to zero. This yields the following equations:

IEWIE <~ 0Awi) , <~  0Awi)
. - i— + i— =0 16
day ;'M day, i:zq;-l s day, (16)
for0< k<M,
A(w;) = L(w;) (17)
for 1 <1< gq, and
A(wi) = U(wi) (18)

for g + 1 < ¢ < r. According to the Kuhn-Tucker conditions, when the Lagrange multipliers
{1, ..., iy are all nonnegative, then the solution to equations (16,17,18) minimizes || F(w)||2 subject

to the inequality constraints

A(w;) > L(w;) (19)

10



for 1 <1< ¢, and
A(w;) < U(w;) (20)

forg+1<e<r.

Recalling equation (3), and letting W{(w) = 1, equations (16,17,18) can be written as

at+tGlu=c (21)

and
Ga=4d (22)
where a is the length M + 1 vector of unknown filter parameters a = (ag,...,ap ), and p is the
vector of Lagrange multipliers, one for each frequency in the constraint set: g = (p1,...,pu.)". G

is the » by M 4 1 matrix of cosine terms that calculates the amplitude response A(w) of the filter

a at the frequencies in the constraint set 5. The elements of G are given by

-1
Gio = — 23
,0 \/5 ( )
Girp = —coskw; (24)
for1<i<q, 1<k <M and

G:a = 1 (25)

Z,O - \/5
Gir = coskw; (26)

forg+1<1<r,1<k< M. cis the vector of coefficients for the unconstrained optimal L, filter

given by
o = @/ D(w)dw (27)
T Jo
2 ™
¢ = —/ D(w) cos kw dw. (28)
T Jo

Notice that the elements of ¢ do not depend upon the constraints imposed on A(w), in fact, they
are the Fourier coefficients. Indeed, if there are no constraints imposed upon A(w), then a(n) equals
¢(n), the best L filter. The term d is the vector of values the amplitude response A(w) is made to
interpolate and is given by

d; = —L(wi) (29)

for 1 <1< ¢, and
d; = U(w;). (30)

11



for ¢+ 1 <7 < r. It is necessary to introduce minus signs for the lower bound constraints so that
at the solution to the inequality constrained minimization problem, all of the Lagrange multipliers

will have the same sign. Equations (21,22) can be combined into one matrix equation:

e SIGI- L) @)

In equation (31), Ips4q is the (M + 1) by (M + 1) identity matrix. Similar expressions can be
derived for the even length filter and the odd symmetric filters [22].
It is easy to verify that

b= (GG (Ge-d) (32)
a = c-Glp (33)

is the solution to equation (31). Therefore, if the number of constraints (r) is small compared to
the number of filter coefficients (M + 1), then the system (31) is computationally very inexpensive
to solve. It requires the solution to an r X r system of linear equations. This is attributed to the
use of W(w) = 1 over [0, 7]. It is interesting to note that on each iteration the cosine coeflicients a
are obtained by adding to the best Ly (Fourier) coefficients ¢, a correction term. This is in contrast
to the window method, in which the best Lo coeflicients are multiplied by a window.
For non-uniform weighting functions, the identity matrix in (31) becomes a full symmetric
matrix [7, 8] and equations (16,17,18) become
¢
o S0 -1d] @
where the elements of the vector ¢ are given by

c = g/oﬂW(w)D(w)dw (35)
2 ks

k= ;/0 W(w)D(w) cos kw dw (36)
and the elements of the matrix R are given by
Roo = % /0 " W(w) dw (37)
Ror = Riro = g /07T W(w) cos kw dw (38)
Ryi=Rip = % /07T W(w) cos kw cos lw dw (39)

and where G and d are the same as above. It is easy to verify that

(GRT'GH)H(GR'c - d) (40)

n
a = R c—-G'p) (41)

12



is the solution to equation (34).

4.2 The Exchange Iterations

The equality constrained optimization procedure described above is performed at each step of an
iterative algorithm. At each iteration, the constraint set frequencies are updated, in much the same
way as are the reference set frequencies of the Remez algorithm.

The algorithm begins with an empty constraint set so that the first filter designed is the best
unconstrained L, filter. Then constraints are iteratively imposed upon A(w) at selected frequencies
until the best constrained L, filter is obtained. The constraint set is updated (¢) by locating the
local maxima of A(w) that exceed the upper constraint function U(w) and (ii) by locating the local
minima of A(w) that fall below the lower constraint function L(w). Note that the ‘induced” band
edges of the passband and stopband are not extremal frequencies of A(w). Unlike the program of
Adams and the Parks-McClellan program, the band edges are not included in the constraint set
(in the case of the PM program, the reference set). The mechanism that yields a sharp transition
between the passband and stopband is the inclusion of the transition region in the integral square
error.

The algorithm can be summarized in the following steps.
1. Initialization: Initialize the constraint set to the empty set: S = 0.

2. Minimization with Equality Constraints: Calculate the Lagrange multipliers associated
with the filter that minimizes ||E(w)||z subject to the equality constraints A(w;) = L(w;) for
w; € 5;, and A(w;) = U(w;) for w; € Sy. (Solve equation (32)).

3. Kuhn-Tucker Conditions: If there is a constraint set frequency w; for which the Lagrange
multiplier u; is negative, then remove from the constraint set the frequency corresponding
to the most negative multiplier and go back to step 2. Otherwise, calculate the new cosine

coeflicients using equation (33) and go on to step 4.

4. Multiple Exchange of Constraint Set: Set the constraint set S equal to 5;US5, where S} is
the set of frequency points w; in [0, 7] satisfying both A'(w;) = 0 and A(w;) < L(w;), and where
Sy is the set of frequency points w; in [0, 7] satisfying both A’(w;) = 0 and A(w;) > U(w;).

5. Check for Convergence: If A(w) > L(w) — € for all frequency points in .5; and if A(w) <
U(w) + € for all frequency points in 5, then convergence has been achieved. Otherwise, go

back to step 2.
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According to the Kuhn-Tucker conditions, because g > 0 in ensured for each set of computed cosine
coefficients a, each filter minimizes the Ly error subject to the inequality constraints (19,20) over a
set of frequencies. At convergence, the constraint set frequencies are exactly those extrema of A(w)
where A(w) touches the lower and upper bound function. It should be noted that negative multipli-
ers generally appear only during the early iterations of the algorithm. € in step 4 is a small number
(like 107°) indicating the numerical accuracy desired. In appendix A, some issues concerning the
convergence of the algorithm and the optimality of the filters it produces are discussed.

A flowchart is shown in figure 1. The Matlab program below implements this algorithm with
W(w) = 1. For the sake of space and clarity, it uses a grid of frequency values. However, it is
much preferable to refine the location of the extremal frequencies by Newton’s method; otherwise
a rather dense grid is sometimes required for convergence. The use of Newton’s method is easily
incorporated.

The computational complexity is O(M?) per iteration, however, the computation required
for each iteration depends upon the size of the constraint set for that iteration. Some of the
efficient computational techniques that have been used to improve the implementation of the Parks-
McClellan program can also be applied to the algorithm described here [3, 4, 5, 6, 9, 32]. These
techniques are used to (1) increase the speed of execution, (2) reduce memory requirements, and
(3) improve numerical accuracy of the result.

Example 1: We let D(w) be the usual ideal lowpass filter with a cut-off frequency w, = 0.37
shown in figure 2. We use 31 cosine coefficients (3 = 30 and the filter length is 61), U(w) =
D(w)+ 6, and L(w) = D(w) — ¢ with 6§ = 0.02. We use the L, weighting function W(w) = 1. In
4 iterations, the above described algorithm converges to the frequency response amplitude shown
in figure 4. In the figure, the circular marks indicate the 14 constraint set frequency points upon
convergence. Compared to the best unconstrained L filter shown in figure 3, the constrained filter
in figure 4 has a considerably smaller peak error near the band edge. This is achieved with a small
increase in the transition width and the Ly error. The L, error and the peak error associated with
the best unconstrained L, filter are || E||3 = 0.003375 and 0.09369 respectively. For the constrained
Ly filter, they are ||E||3 = 0.003858 and 0.02 respectively. The resulting ‘induced’ band edges of
the constrained L filter are w;, = 0.27287 and w;, = 0.32707.

The convergence of the algorithm is illustrated in figure 5. The amplitude Ag(w) shown
in figure 5(a) is the best unconstrained L; filter (given by the sinc function). The first set of
constraints formed are taken to be the extrema of Ag(w) that violate the upper and lower bound

constraints. When equation (32) is used with this constraint set to calculate p it turns out that
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two of the Lagrange multipliers are negative. (The two constraints corresponding to these two
negative Lagrange multipliers are the local maximum and the local minimum nearest w = 0.) In
this example, after the constraint set frequency corresponding to the more negative of these two
negative multipliers is removed from the constraint set and equation (32) is used again, there is still
one negative multiplier. After the corresponding constraint is removed from the constraint set and
equation (32) is used a third time to calculate p, it is found that all the multipliers are positive.
Now equation (33) is used to compute the filter coefficients a, the new amplitude A;(w) is shown
in figure 5(b). The circular marks in this figure indicate the constraint set used to obtain A;(w).
Aj(w) interpolates L(w) and U(w) at the constraint points because equations (32,33) were derived
from equations (16,17,18) and because equations (17,18) are interpolation equations. As above,
the extrema of A;(w) that violate the upper and lower bound constraints are used to form a new
constraint set. Equation (32) is used with this constraint set to compute a new set of multipliers.
It is found that all the new multipliers are positive and so no constraints are removed from this
constraints set. Equation (33)is then used and the amplitude Ay(w) is shown in figure 5(c). Asz(w)
is obtained similarly, also without the appearance of negative multipliers.

It should be noted that this example and the following examples were generated using a
version of the program that uses a grid to approximately locate the extrema of A(w) and Newton’s

method to refine these frequencies.

5 Interpretations and Extensions

There are several observations and interpretations of this algorithm that may be helpful in under-
standing it in relation to other approaches and in modifying it for other applications.

The constraint set at each step in the iteration contains the candidates for the final extremal
frequencies that touch the constraint. Satisfying these constraints forces A(w) to interpolate L(w)
and U(w) at the frequencies in the constraint set. This is quite similar to the behavior of the
Remez algorithm used in the Parks-McClellan program. The process of the algorithm has three

major differences to the PM program:

1. The number of reference set frequencies in the PM program is fixed and does not change
throughout the algorithm, while here, the number of constraint set frequencies does change
and is generally smaller than the number used in the PM program. Also, the alternation of
the signs of E(w) that holds for a Parks-McClellan equiripple filter and is enforced at each

step of the Remez algorithm does not necessarily hold here.
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2. The size of the Chebyshev error changes (increases) on each step of the PM program, while
here it is prescribed. Here, the Lo error generally increases and the induced transition band

generally widens.

3. In the PM program, the number of reference set frequencies is M + 2, this is one greater than
the number of unknown cosine coeflicients. In our algorithm, unless the constraints are tight,
the number of frequencies is less than the number of unknowns, and those degrees of freedom
not used to satisfy interpolation constraints are used to minimize the integral square error at

each step.

Nevertheless, the overall behavior is similar to that of the PM program. As in the Remez algorithm
used in the PM program, on each iteration (1) an optimization problem is solved over a finite set of
frequencies and (2) the set of frequencies is updated. Indeed, the interpolation step of the Remez
algorithm can be interpreted as an optimization problem: The filter found at each iteration of the
Remez algorithm minimizes the Chebyshev error over the updated reference set [23].

Often it is desirable to include equality constraints on the value and derivatives of A(w)
at prescribed frequency points. An application is given, for example, in [21], where flatness at
w = 0 is achieved by imposing appropriate equality constraints. The inclusion of these and other
linear equality constraints on the cosine coefficients in the approach described in this paper is
straight forward. It requires only the use of extra Lagrange multipliers, the signs of which are
unimportant. For example, magnitude squared design of minimum phase filters can be accomplished
by taking the lower bound function L(w) to be 0 in the stopband and by spectrally factoring the
resulting nonnegative frequency response amplitude. A polynomial root finding algorithm and the

computation of spectral factors is discussed in [19].

5.1 Chebyshev Solutions

Observe that if, for a fixed number of filter coefficients, the constraint on the weighted Chebyshev
error ||E(w)||eo in [1, 18] is chosen too small, (or equivalently, ¢, and és in (7,8) are chosen too
small) then no filter satisfies the constraint. In this case the algorithms of [1, 18] can not converge.
Although this problem can be avoided by computing the minimum value of ||F(w)||s with the
Parks-McClellan program, it is interesting to note that there is no minimum é, and 6, below which
the approach described in this paper fails to converge. If ¢, and é, are taken to be small, then the
transition region between the passband and stopband simply becomes wider. Therefore, for a fixed

Wy, by decreasing ¢, and d,, a continuum of Parks-McClellan equiripple filters are obtained.
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Example 2: We use the same desired lowpass amplitude as in example 1, we keep M = 30,
but we use § = 0.004. We use the unity L, weighting function. The resulting frequency response
shown in figure 6 is obtained in 6 iterations and the size of the constraint set upon convergence
is 30. Here, the peak error is significantly reduced with a corresponding increase in the transition
width and L, error. The L, error associated with this filter is ||F||2 = 0.004780. The resulting
‘induced” band edges of this constrained L filter are w;, = 0.25767 and w;s; = 0.3421x.

Note that although this filter was not designed using the Parks-McClellan program, it corre-
sponds to a best Chebyshev filter for appropriately chosen band edges because then the alternation
theorem will be satisfied. For this example, this algorithm takes about the same number of itera-
tions as does the Parks-McClellan program when the PM program is executed without a superior
initialization of reference frequencies such as those given in [6, 9, 32]. This comparison is made to
evaluate the convergence in the number of iterations, not to compare execution times.

It is interesting that the filter in example 2 is both (i) a best peak constrained L filter,
and (i) a best Chebyshev filter for an appropriate transition band. There are other algorithms
for the design of equiripple filters with specified peak errors [13, 14, 15, 16, 26, 27], but the peak
constrained L, approach used here gives a way to design a subset of such filters which incorporates

the Ly error.

5.2 Trade-off Curves

In [1] Adams provides a curve illustrating the trade-off between the weighted Ly error and the
Chebyshev error for the filters produced by his approach. It is quite convincing that the filters on
the endpoints of this curve do not provide the most desirable trade-off. The same is true here.

By decreasing the peak error é to 0, a curve illustrating the trade-off between the unweighted
integral square error and § can be obtained. Figure 7 shows the curve for length 61 filters designed
using the approach of this paper, where the cut-off frequency is w, = 0.37 and 6 = 6, = é5. 0 is
varied to obtain the curve in the figure. The circle at the right end of the figure indicates the best
unconstrained Lo filter. As ¢ is decreased from that point, the Ly error increases as illustrated.
The circular mark at 6 = 0.0086 indicates the point where ¢ first becomes small enough to produce
a Parks-McClellan equiripple filter. In this example, all points on the curve to the left of this point
represent Parks-McClellan equiripple filters. Because there is no smallest value for 8, the curve
approaches a point on the § = 0 axis. We conjecture that the point on the § = 0 axis this curve
approaches represents a maximally flat (digital Butterworth) filter [13].

We should note that even though all points on the curve for § < 0.0086 in figure 7 represent
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equiripple filters, this is not true in general. For example, suppose 45 is decreased towards zero and
0, is kept constant. Then it is sometimes the case that the set of é,, for which the points on the

curve represent equiripple filters, is a union of disjoint intervals.

5.3 Specified Band Edges

The approach taken in this paper does not preclude the specification of a transition band edge in
the design of a lowpass filter. Let w, < w, be a specified passband edge. This subsection describes

how to append the constraint

L{wp) < A(wp) < U(wy) (42)

to the formulation of section 3. By doing so, the frequency response amplitude A(w) will be
guaranteed to lie between the lower and upper bound functions L(w) and U(w) for all w in the
passband [0,wp]. This is because the only way in which A(w) can violate the lower and upper
bound constraints in the passband is by violating one of them at w, or by violating one of them
at a local extremal. Because the algorithm described in section 4.2 ensures that L(w) and U(w)
are not violated at the local extremals of A(w), it is sufficient to append the single constraint (42).
The appropriate modification to the algorithm of section 4.2 is described below and a program is
available from the authors or electronically (see below).

Appending the constraint (42) to the existing constraints requires modifying only the way in
which the constraint set is updated. There are two issues that must be addressed.

First notice that the constraint (42) may be satisfied by the filter produced by the basic
algorithm of section 4.2 - the constraint is met with no additional effort. This is the case when
the induced passband edge w;, is closer to w, than is the specified passband edge w,. When this
is not the case, it is necessary to simply append w, to the constraint set. To detect, during the
iterative algorithm, exactly when it is necessary to include w, in the constraint set, the following
decision rule is used: Let w, be the passband extremum of A(w) closest to w,. If w, < w, < w, and
A(w,) < L(wy), then include w, in the constraint set, otherwise leave the constraint set unchanged.

The second issue that must be addressed is the occurrence of an over-constrained problem on
some iteration. After appending w, to the constraint set, the number of constraints may outnumber
the number of cosine coefficients by one. When this occurs, equations (21,22) are in general over-
determined and can not be solved. Consequently, a frequency must be removed from the constraint
set before the algorithm can proceed. This occurs only when the constraints are relatively tight,
in which case the algorithm described here reproduces a modified Parks-McClellan algorithm [26].

Likewise, the rule for deciding which frequency to remove is similar to the rule used in [26] and is
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described below. Note that in this situation, the constraint set necessarily contains 0 and 7. Step

4 of the algorithm described in section 4.2 becomes:

4 Multiple Exchange of Constraint Set: Let 5; be the set of frequency points w; in [0, 7]
satisfying both A’(w;) = 0 and A(w;) < L(w;). Let S, be the set of frequency points w; in
[0, 7] satisfying both A’(w;) = 0 and A(w;) > U(w;).

Let w, be the passband extremum of A(w) closest to w,. If w, < w, < w, and A(w,) < L(w,),
then let 5; = 5, U w,.

If w =0 1is a local maximum of A(w), let £y = A(0) — U(0), otherwise set £y = L(0) — A(0).
If w = 7 is a local maximum of A(w), let £, = A(w)—U(r), otherwise set £, = L(m)— A(7).

If |S)] 4+ |Su| = M + 2 and Ey < E,, then remove 0 from S; or S, whichever contains 0.
If |S)| 4+ |Su| = M + 2 and Ey > E,, then remove 7 from 5; or Sy, whichever contains 7.

Set the constraint set S equal to 5; U S,.

A stopband edge w; can be specified instead of a passband edge in exactly the same way. If both
the passband and the stopband are to be specified simultaneously, then the problem can be posed
as a quadratic program as discussed above, and Adams’ approach should be used. When both
band edges are specified, it is possible that no solution exists because the transition band can not
be arbitrarily sharp. Note that here a distinction is being made between the cut-off frequency w,
and the band edges w, and w, (w, < w, < wy).

Example 3: We use the same desired lowpass {requency response as in the previous two
examples with 6 = 0.020 and M = 30, but we require that the passband edge be located at
0.2857. We use the L; weighting function W(w) = 1. In 7 iterations the algorithm converges to
the frequency response shown in figure 8. The size of the constraint set upon convergence is 28.
The L, error associated with this filter is || E||2 = 0.006893. The resulting ‘induced’ stopband edge
of this constrained Lq filter is w;; = 0.33767.

5.4 The Use of L, Weighting

Although the algorithm described in section 4.2 was introduced with a uniform L, weighting func-
tion, the algorithm can also be used with an Ly weighting function that equals zero in a specified
transition band, if so desired. As discussed above, when it is known that the signals in the input
class have no (or little) energy in a transition region, the use of a zero-weighted (or lightly-weighted)
transition band is well motivated. The only modification required is the substitution of equation

(34) for equation (31). The method for performing the multiple exchange of the constraint set
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remains unchanged. In this case, the Ly weighting function possesses band edges, but the upper
and lower bound functions are not enforced at these two frequencies. As in section 4.2, the upper
and lower bound functions are used to constrain the frequency response amplitude only at its local
extrema. This variation of the algorithm combines the approach of Adams’ with the approach
suggested in section 3 in which a uniform L, weighting is used. Like the uniformly L, weighted
approach, this variation avoids the infeasibility problems associated with the quadratic program

approach.

5.5 Remarks on Comparisons

As mentioned above, when the present algorithm yields an equiripple filter, it gives the same result
as the PM algorithm when the PM algorithm is used with the appropriate specifications. Also,
the frequency responses of the filters produced by the algorithm described in this paper are similar
to those obtained by the approach of Adams. It should be noted that although the responses
are similar, they are not exactly the same in general. This is because the quadratic program
formulation Adams gives is not equivalent to the formulation given in section 3. The differences lie
in the weighting of the error and the way in which the constraints are imposed. Note that when
the algorithm presented here and that of Adams each give an equiripple PM filter with the same
lower and upper bound functions and the same transition band (‘induced’ in the case of the present
algorithm) then certainly the two filters are identical.

The approaches of [13, 14, 15, 16] should also be mentioned. While they employ implicitly
defined transition bands and provide direct control of the peak errors, those algorithms (i) do not
incorporate the Ly error into the design procedure and (#7) provide only approximate control of the
location of the cut-off frequency. (Although for lowpass filter design limitation (ii) can be overcome
[26, 27]). In addition, it should also be noted that while the program of [33] is very flexible, it does

not incorporate the Ly error.

5.6 Multiband Filters

When used for the design of multiband filters, the simple algorithm we have described for lowpass
filter design does not, in general, converge. We have have found as in [2] that it is necessary to use
a single point update procedure for some iterations to obtain robust convergence [29]. Thus, by
maintaining the approach of using a sequence of equality constrained L, minimizations, best peak
constrained Lo multiband filters can be readily designed without the use of ‘don’t care’ regions. A

program for the multiband case using the criterion described in this paper is also available from the
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authors or electronically. Adams et al. address algorithm issues concerning the design of multiband

filters via the quadratic program formulation in detail in [2].

6 Conclusion

We have considered the design of optimal filters and have discussed the implicit assumptions as-
sociated with the use of explicitly specified transition bands in the frequency domain design of
FIR filters. We have also put forth the notion that explicitly specified transition bands have been
introduced in the filter design literature in part as an indirect approach for dealing with Gibbs’
phenomenon occuring at the discontinuities in the desired frequency response. Moreover, the results
of Weisburn, Parks, and Shenoy suggest that if a ‘don’t care’ region is used for filter design, then
unless the input signals have no energy in the ‘don’t care’ region, the optimality of the best Cheby-
shev and L, filters in the operator norm sense is problematic. Because the minimization of the
Chebyshev norm requires the use of a specified transition band, this suggests that the Chebyshev
criterion is better suited as a constraint rather than the primary optimization criterion. This is
also consistent with the motivation Adams gives to support the constrained Lo approach described
in [1].

This paper (7) proposes that the unweighted (or weighted) integral square error be minimized
such that the peak errors lie within the specified tolerances, and (i) describes a simple multiple
exchange algorithm for lowpass filter design according to this design formulation that is robust and
efficient. Because the proposed approach does not ignore the Ly error around the band edge, it does
not implicitly assume that signals in the input class have no frequency content there. In addition,
the constraints imposed upon the peak errors can be made arbitrarily small. For a fixed cut-off
frequency, it also gives the best L filter and a continuum of Chebyshev filters as special cases.
With the weighting function W(w) = 1, the optimal filter coefficients are obtained by making a
simple additive correction to the Fourier series coefficients.

The approach taken in this paper is distinct from many other filter design methods because
it does not exclude from the integral square error a region around the cut-off frequency, and yet, it
overcomes Gibbs’ phenomenon without resorting to windowing or ‘smoothing out’ the discontinuity
of the ideal lowpass filter. The algorithm is also appealing because it can be implemented with an
especially simple Matlab program. Versions of this and other programs (multiband, etc.) can be

found on the World Wide Web at URL hitp://www-dsp.rice.edu.

21



7 Acknowledgment

We wish to express appreciation to Professor Hans W. Schiifller for his interest, careful review of
the manuscript, observations, and valuable suggestions. We also wish to thank the anonymous

reviewers. Responding to their comments helped us improve the paper.

Appendices
A On Optimality and Convergence
To discuss the optimization problem discussed above, define the feasible set @:
Q ={ac RM*: [(w) < A(w;) < U(w;) for the local extremal frequencies w; of A(w)}. (43)

The problem is to minimize ||E||3 over the set @. Since @ is closed and ||A — D||2 is a convex
function of a, a minimizer exists. Usually uniqueness of a minimizer is established by ascertaining
the convexity of the feasible set. However, the set () is not convex as is easily explained: Note
that a maximally flat frequency response will always be feasible (it has extremal frequencies only
at 0 and 7, where A(w) equals 1 and 0 respectively). If a filter is obtained by averaging a feasible
equiripple (PM) filter and maximally flat (Herrmann) filter, then the frequency response amplitude
of the filter will have local extrema around the cut-off frequency which will generally violate the
upper and lower bound functions L(w) and U(w). Therefore () is not convex. Because @ lacks
convexity, it is necessary to use a different perspective to discuss optimality, as follows.

Although the minimization of ||E||2 over @ is not a quadratic program, it is closely related
to one. Suppose the Ly weighting function is set to unity throughout the following discussion. If
the algorithm converges, then the filter obtained by the algorithm is optimal in the sense that it is
the solution to a meaningful quadratic program: Given a filter produced by the algorithm, define
the two ‘induced’” band edges as follows: Define the induced passband edge w;, to be the highest
frequency less than w, at which A(w) equals L(w). Similarly, define the induced stopband edge w;s
to be the lowest frequency greater than w, at which A(w) equals U(w). See figure 9. Second, label
the two extremals of A(w) that are adjacent to w;, and w;s: Let w, be the frequency at which A(w)
achieves its first local maximum to the left of w,. Similarly, let wy be the frequency at which A(w)
achieves its first local minimum to the right of w,. With these definitions of w,, wy, w;, and ws, it
can be said that, if w, and w, are two frequencies satisfying w, < w, < w;;, and w;s; < w,; < wy, then
the filter obtained by the algorithm described above solves the quadratic program (7,8), where the

weight function W(w) =1 for all w € [0, 7] is used, not the weight function of expression (9).
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The intervals [wy,w;;,] and [w;s,wp] give insight into the properties of the solution. If w, €
[wis,ws] but w, is taken to be a frequency less than w,, then the solution to the quadratic program
(7,8) is a filter having peak errors in the passband that exceed ¢,. On the other hand, if w, is taken
to be a frequency greater than w;,, then the L, error of the resulting filter must be greater (because
it is subject to additional constraints). Similar statements are true for ws. Therefore, these values

have the following two properties:

1. Filters obtained by solving the quadratic program (7,8, but with W(w) = 1Vw) with narrower
transition widths (ws — w, < w;s — wj,) necessarily have a greater Ly error (assuming same

the peak constraints).

2. Filters obtained by solving the quadratic program (7,8, but with W(w) = 1Vw) with wider

transition widths (ws — w, > wp — w, ) have peak errors around w, that exceed ¢, and/or é.

Although we have not proven that the filters obtained by the algorithm are global minimizers of
||E|% over @, the quadratic program analysis given here is highly suggestive.

Regarding the convergence of the algorithm, the non-convexity of ¢) has little bearing. Non-
convexity of the feasible set is a problem for algorithms that proceed by updating one feasible
solution to obtain another feasible solution by moving within the feasible set. The algorithm
described above begins with the best unconstrained minimizer, and each filter produced during
the course of the algorithm is infeasible. This sequence of filters approaches the feasible set. The
algorithm terminates exactly when feasibility is achieved. The progress of this kind of algorithm is
affected less by the lack of feasible set convexity.

The quadratic program analysis above also suggests that a unique minimizer exists (the QP
has a unique minimizer), although we do not give a proof of this here. Note that because the
algorithm always begins with the best unconstrained L, filter, there is no ambiguity about the
initial filter used in the iterative procedure above. However, as mentioned above, we have not
proven the convergence of the algorithm presented in this paper, but have found it to converge
reliably in practice for lowpass filter design. Indeed, even though it can be posed as a sequence
of similar quadratic programs, the convergence of this algorithm is not supported by the theory
of quadratic programming. That it does in fact converge in practice is due to properties of the
particular problem of lowpass filter design. When used for bandpass filter design, for example, this
algorithm does not converge in general. For multiband filter design we have found as in [2] that it
is necessary to modify the update procedure for some iterations to obtain robust convergence. It

should be noted, however, that because the constrained Lo approach of Adams can be formulated
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as a quadratic program, the existence of a unique optimal solution to the problem posed by him is

assured, and the algorithm of [2] is guaranteed to converge to it .

B A Matlab Program

The Matlab program c121p below implements the algorithm described in section 4.2 of the paper.
The program local max computes the indexes of a vector corresponding to its local maxima by
comparing each vector element with the two adjacent elements. This version of c121p does not
use Newton’s method to refine the position of the extrema of A(w), so a possibly dense grid is
required in order to obtain convergence (I > 219821071y A version using Newton’s method (and

other programs) can be obtained from the authors or electronically on the World Wide Web.

function h = ¢121p(m,wo,up,lo,L)

% Constrained L2 Low Pass FIR filter design

% Author: Ivan Selesnick, Rice University, 1994
% See: Constrained Least Square Design of FIR
% Filters Without Specified Transition Bands
% by I.W.Selesnick, M.Lang, C.S.Burrus

% h : 2#m+1 filter coefficients

% m : degree of cosine polynomial

% wo : cut-off frequency in (0,pi)

% up : [upper bound in passband, stopband]
% 1o : [lower bound in passband, stopband]
% L : grid size

% example

% up = [1.02, 0.02]; 1lo = [0.98, -0.02];

% h = cl21p(30,0.3%pi,up,lo,2711);

r = sqrt(2); w = [0:L]’*pi/L;

Z = zeros(2*%L-1-2%m,1); q = round(wo*L/pi);
u = [up(1)+*ones(q,1); up(2)*ones(L+1-q,1)];
1
c
a

= [lo(1)*ones(q,1); lo(2)*ones(L+1-q,1)];
= 2#[wo/r; [sin(wo*[1:m])./[1:m]]1°]/pi;

= c; % best L2 cosine coefficients
mu = []; % Lagrange multipliers
SN = le-6; % Small Number
while 1
h ——— calculate A —————————————————————————

A= fft([a(1)*r;a(2:m+1) ;Z;al(m+1:-1:2)]);

A = real(A(1:L+1))/2;

h ———- find extremals ——————————————————————
kmax = local_max(A); kmin = local_max(-A);
kmax = kmax( A(kmax) > u(kmax)-10%SN );

kmin = kmin( A(kmin) < 1(kmin)+10%SN );

% ————= check stopping criterion ------------
Eup = A(kmax)-u(kmax); Elo = 1(kmin)-A(kmin);
E = max([Eup; Elo; 0]); if E < SN, break, end

% ————= calculate new multipliers -----------
nl = length(kmax) ; n2 = length(kmin);
0 = [ones(nl,m+1); -ones(n2,m+1)];
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G =0 .* cos(w([kmax;kmin])*[0:m]);
G(:,1) = G(:,1)/r;

d = [u(kmax); -1(kmin)];

mu = (G*G’)\(G*c-d);

% ————- remove negative multiplier -----———--
[min_mu,K] = min(mu);
while min_mu < 0
G(K,:) = [1; d(K) = [1;
mu = (G*G’)\(G*c-d);
[min_mu,K] = min(mu) ;
end
h ——— determine new coefficients --—————--—-
a = c—-G’*mu;
end
h = [a(m+1:-1:2); a(1)*r; a(2:m+1)1/2;

function k = local_max(x)

% finds location of local maxima

s = size(x); x = [x(:)].’; N = length(x);
bl = x(1:N-1)<x(2:N); b2 = x(1:N-1)>x(2:N);
k = find(b1(1:N-2)&b2(2:N-1))+1;

if x(1)>x(2), k = [k, 1]; end

if x(M)>x(N-1), k = [k, N]; end

k = sort(k); if s(2) == 1, k = k’; end
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Input: N, w,, by, 6

Initialize constraint set to 0

Calculate p (eq 32)
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Calculate a (eq 33)
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Figure 1: Flowchart for the exchange algorithm for the constrained least square design of lowpass
filters.
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Figure 2: The desired amplitude of an ideal lowpass filter.
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Figure 3: Best unconstrained L, filter (N = 61, w, = 0.37), given by the sinc function. ||E|[3 =
0.003375, peak error = 0.09369.
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Figure 4: Best constrained Lj filter (N = 61, w, = 0.37) with 6, = &, = 0.02. ||E||3 = 0.003858.
The ‘induced’ band edges are w;, = 0.27287 and w;; = 0.32707.
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(a) Iteration 0. Maximum constraint violation =
0.07369.

(b) Iteration 1. Maximum constraint violation =
0.006481.

c) Iteration 2. Maximum constraint violation =
0.001308.

(d) Iteration 3. Maximum constraint violation =
0.000003541.

Figure 5: lllustration of the convergence behavior of the algorithm.
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Figure 6: Best constrained Ly filter (N = 61, w, = 0.37) with §, = §; = 0.004. || E||3 = 0.004780.
The ‘induced’ band edges are w;, = 0.25767 and w;; = 0.3421x.
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Figure 7: The trade-off curve for integral square error and peak size error: ||E||3 versus §,. This
curve illustrates the trade-off for filters of length 61 designed with w, = 0.37, and 6 = ¢, = é;.
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Figure 8: Best constrained Lj filter (N = 61, w, = 0.37) with §, = é; = 0.02 and a specified
passband edge at 0.2857. ||E||3 = 0.006893. The ‘induced’ stopband edge is w;; = 0.33767.
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Figure 9: Passband and stopband details of the amplitude shown in figure 4. w, = 0.26137,
wip = 0.27287, wis = 0.32707, wyp = 0.33867.
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