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Abstract— Generalized joint signal representations extend
the scope of joint time-frequency representations to a richer
class of nonstationary signals. Cohen’s marginal-based gen-
eralized approach is canonical from a distributional view-
point, whereas, in some other applications, for example, in a
signal detection framework, a covariance-based formulation
is needed and/or more attractive. In this note, we present a
canonical covariance-based recipe for generating generalized
joint signal representations. The method is highlighted by
its simple characterization and interpretation, and naturally
extends the concept of the corresponding linear representa-
tions.

I. INTRODUCTION

Recognizing the limitations of time-frequency represen-
tations (TFRs), generalized joint signal representations
which analyze signals in terms of physical quantities other
than time and frequency have recently been investigated
by a number of authors [1], [2], [3], [4], [5], [6], [7]- For ex-
ample, joint time-scale representations analyze signals in
terms of time and scale content [1], [2].

In existing literature, the construction of joint signal
representations has been based on two main approaches.
Cohen’s pioneering method of constructing bilinear TFRs
interprets the TFRs as quasi-energy distributions which
satisfy certain marginal constraints analogous to probabil-
ity distributions. The other main approach is to consider
arbitrary quadratic forms in the signal, parameterized by
variables of interest, and then to impose certain covariance
constraints to characterize a certain class of joint signal
representations. For example, the affine class of time-scale
representations proposed by Rioul and Flandrin [1] and the
Bertrands [2] characterizes representations which are co-
variant to time-shifts and scalings. Such covariance prop-
erties are important in situations in which signals of inter-
est undergo certain unitary transformations, for example
time-frequency shifts and scalings. In particular, the use
of TFRs and TSRs in signal detection crucially depends on
such properties [8].

Cohen has recently extended his original marginal-based
method to joint representations which analyze signal en-
ergy in terms of arbitrary variables [3], [4]. A similar ap-
proach was proposed by Baraniuk [5] and was shown to
be equivalent to Cohen’s [7]. Cohen’s marginal-based ap-
proach seems fairly complete and is canonical from a dis-
tributional viewpoint because the representations measure
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the distribution of signal energy as a function of the vari-
ables. Some results on a covariance-based generalization
have also been recently reported by Hlawatsch et. al [9],
[10]. However, more work needs to be done before the
covariance-based theory is complete.

In this letter we present a canonical covariance-based
method for generating generalized joint signal representa-
tions. Our theory is similar in principle to that proposed
in [9], [10] but has a much simpler, direct form that makes
it conceptually more attractive. Some differences between
our approach and that presented in [9], [10] will be dis-
cussed.

II. PRELIMINARIES

We assume that the signals of interest belong to a closed
subspace H of the Hilbert space of finite-energy signals
L*(R). Let G C R be a parameter set and let {U/,}ycc
be a family of unitary operators defined on H; that is, for
any g € G, Uy : H — H and Uys,Uys) = (s,s) for all
s € H where (-,-) denotes the inner product defined on H.
For a given g € G, each “coordinate” represents a variable
or physical quantity of interest.

The family of unitary operators {U,} represents signal
transformations that are of interest to us; for example,
time-frequency shifts or time-shifts and scalings for N = 2.
In many cases, the following constraints can be naturally
imposed on the family {U,}:

1. The mapping g — U, is one-to-one.

2. The family {U,} is closed under composition (up to a

phase factor!); that is, for any a,b € G there exists a
c € G such that U, Uy = U,.

3. The effect of any mapping U, can be reversed; that
is, for each g; € G there exists a go € G such that
Ug,Uy, = I, where 7 is the identity operator on H.

4. The operators {U,} are associative; that Iis,
U (UU,) = (UU)U, for all a,b,c € G.

In other words, the family of operators {i/, } forms a group
(modulo a phase factor) with composition as the group
operation. This in turn implies that the set G is itself a
group with group operation e defined by (1) below; that is:
1)a,b e G = aeb e G,?2)ae(bec) = (asb)ecfor alla,b,c €
G, 3) there exists an identity element § € G such that
fea=aqaef =aforall a e, and4) for each a € G there
exists an a~! € G such that aea™' =a~ ' ea = 6. With
the above constraints, {{/,} is a unitary representation of

IIn certain cases U Uy = ej¢(a’b)uc but since we are mainly inter-
ested in quadratic signal representations, this phase factor will not
be an issue. Even for linear representations such a phase factor is
inconsequential in most cases.



G on H and this will be assumed throughout the rest of
the letter; that is,

U.Uy = U,ep, (within a phase factor).

(1)

Although we have considered arbitrary group represen-
tations of the form {U,}, it is worth noting that in most
cases of interest, the operator U, will be a composition
of N unitary operators that are themselves unitary repre-
sentations of one-parameter groups.? The reason is that
in most cases, we associate individual variables of inter-
est, like time, frequency or scale, with operators and then
construct the joint representations.

ITII. A CANONICAL COVARIANCE-BASED METHOD

Suppose that {I/, } is a group of unitary operators and we
are interested in bilinear (quadratic) signal representations
which are covariant to the unitary transformation i, in the
sense that

(PUys)(a) = (Ps)(g ' ea) forall a,ge G, (2)

where the signal s belongs to H and the quadratic signal
representation is denoted by the operator P which maps the
signal into the space of (possibly) complex-valued functions
defined on G.? Recall that each “coordinate” of an element
a of G represents a variable or quantity of interest. The
following theorem provides a simple characterization of all
bilinear signal representations covariant to {Uy}.
Theorem. For any bilinear signal representation P satis-
fying (2) there exists a linear operator Kp : H — H such
that

(Ps)(a) = (KpUy-18,Uy-18) , forall se H ,a e G . (3)

Conversely, any linear operator Kp : H — H defines a
bilinear signal representation via (3) which satisfies the co-
variance relation (2).

Proof. First suppose that P is defined by (3). Then, we
have

(PUys)(a) =

(Kpua—lugs,ua—lugs)
(KPu(g—l.a)—lS,u(g—l.a)—13>
= (Ps)(g7" ea) (4)

and thus P satisfies (2). Conversely, suppose that P is
an arbitrary bilinear representation that satisfies (2). It
follows that there exists a family of linear operators {/C, }
such that (Ps)(a) = (K45, s), a € G. Now, (2) implies that

(Kalhgs,Uys) = (Kg-1405,5) (5)

for all s € H and for all a,g € G. By setting a = 6 and
substituting g for g~1, (5) yields

(Ps)(g) = (Kgs,8) = (Koldy-15,Uy-15)

(6)

2To be more precise, the underlying group G is an exponential Lie
group [11].

3Related group theoretic and covariance-based arguments (coad-
joint representations and the method of orbits [11]) are used in [2] to
derive analogues of the Wigner distribution for the affine group, and
in [12] to define wideband ambiguity functions.

which completes the proof.*

The covariance properties of the representations are de-
termined by U, in (3) and all the other properties are com-
pletely determined by the linear operator X p.> The choice
of the operator Kp in controlling the properties of the rep-
resentation is completely equivalent to the choice of the
“kernel” in Cohen’s and affine classes.

Further insight into the interpretation of (3) can be
gained by using the singular value decomposition of the
operator Kp (if it is compact [13]):5

(Ps)(a) = Z or{Uy-18, ) (ug,Uy-18)
k

Z ok (s, Ugur) (Uauk, S)
k

(7)

which implies that the value of Ps at a particular value of
a is completely determined by the projection of U,-1s onto
the singular vectors, u’s and v;’s, and the singular values
or’s. If Kp is Hermitian, then

(Ps)(@) = ) Axl(s, Uaux)[? (8)
k

where the A\;’s are the eigenvalues and the wuy’s are the
eigenfunctions. In particular, (8) implies that the result-
ing representation is real-valued. Moreover, if Kp is rank-
1 then (8) reduces to (Ps)(a) = M|(s,U,u)|?> which is a
generalization of the spectrogram/scalogram, where u is
analogous to the analyzing window or the mother wavelet.
Thus, any arbitrary bilinear representation (corresponding
to a compact operator) can be thought of as a higher-rank
extension of the energetic version of the corresponding lin-
ear representation (s, U, u).

IV. EXAMPLES

We now illustrate our method by applying Theorem 1 to
some well-known classes of joint signal representations.
Cohen’s class of bilinear TFRs. Let H = L2(IR) and
let G = IR? with the group operation defined by (z1,y1) e
(z2,92) = (@1 +y1,22 + 2); (2,9)"" = (—z,—y).” For
(1,v) € R?, define the time-shift and frequency-shift op-
erators as (7,s)(z) = s(x — 7) and (F,s)(z) = e/2™%s(x),
respectively. Let a = (¢, f) and define the time-frequency-
shift operators {U r)} as Uy, ) = F,Tr which satisfy the
group composition law (1). Using (3) in Theorem 1, the
class of representations covariant to time-frequency shifts
is characterized by

(Ps)(t, f) (KpUs,py-15, Uy, 5)-15)
= (ICP]:ffotS, fffT7t8>

4We note that in [2], the Bertrands arrive at a specialized version
of (6) for signal representations covariant to time-shifts and scalings.

SOperators of the form Uy KUy ! are discussed in [12] with regard
to covariance properties of phase space functions defined on G.

6Similar expansions for Cohen’s class of time-frequency representa-
tions are discussed in [14] and [15].

7G can be thought of as a 2D subgroup of the Weyl-Heisenberg
group [16].



//Kp(Ug,Ul)S(Ul +t)s"(ug + 1)

—J27rf(u1 u2) du1 dUQ

= [ [o@ns(t+u+])

* (t +u— 5) e 27 qudr 9)

where K p is the kernel corresponding to the operator Kp,
and ®(u,7) = Kp(u — 7/2,u + 7/2). We note that (9)
is a familiar expression for Cohen’s class [17], and that
this operator-based characterization of Cohen’s class is also
used in [14].

Affine class of bilinear TSRs. Let H = L?(IR) and
G = IR x (0,00), and let the group operation be de-
fined by (t1,c1) ® (t2,c2) = (t1 + c1ta,c1ce) (affine group);
(t,c)™" = (—t/e,1/c). Define the dilation operator as
(Des)(x) = %s(w/e) and the time-shift and scaling oper-
ator as U,y = Ty D. which satisfies the composition group
law (1). Using (3) in Theorem 1, the class of bilinear rep-
resentations covariant to time-shifts and scalings is charac-
terized by

(Ps)(t,e) = <leU(t 0)-18, U(t C)—IS)
= (KpT-¢/cD1/c5,T-1/cD1/c5)

[ Rt (55 1)

ej27rf°(”1_“2)dfdu1 dus

_ //n( ,fc) (u, f)dudf

where W, is the Wigner distribution of s defined by
Ws(t, f) = [s(t+7/2)s*(t — 7/2)e 92"/7dr and the ker-
nel II is related to Kp as Il(u, f) = [Kp(u + 7/2,u —
7/2)e~92"7dr . Note that (10) is a familiar characteriza-
tion of the affine class [1].

Other covariance-based classes, like the hyperbolic class
[6] covariant to scalings and hyperbolic time-shifts, can be
characterized in a similar way (within a remapping of co-
ordinates).

(10)

V. CONCLUSION

Cohen’s marginal-based recipe for constructing general-
ized joint signal representations, although canonical from
a distributional viewpoint, is not adequate to characterize
the effect of certain unitary transformations on signals; a
covariance-based method is needed in such situations (for
example, in signal detection scenarios). In this paper, we
have presented a simple technique for generating joint rep-
resentations having arbitrary group covariance properties
with respect to given unitary signal transformations.

Our method, although similar in principle to that pre-
sented in [9], [10], is simpler and more direct. In particu-
lar, in [9], [10] generalized time-frequency representations
are considered which necessarily involve a remapping of co-
ordinates that makes their characterization more unwieldy

and complicated.?

It is worth mentioning that in the marginal-based ap-
proach of Cohen’s, the covariance properties are difficult
to analyze in general, and in the covariance-based method,
the marginal properties become nontrivial to characterize.
Some preliminary results on such issues have been recently
reported [18], [10] but still more work needs to be done to
completely bridge the gap between the methodologies of
the two approaches.
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