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Abstract

This paper describes an exchange algorithm for the frequency domain design of linear-phase
FIR equiripple filters where the Chebyshev error in each band is specified. The algorithm is
a hybrid of the algorithm of Hofstetter, Oppenheim and Siegel and the Parks-McClellan algo-
rithm. The paper also describes a modification of the Parks-McClellan algorithm where either
the passband or the stopband ripple size is specified and the other is minimized.
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1 Introduction

The Chebyshev norm is widely used for the design of linear-phase FIR filters for two reasons. (i) For
certain applications it is a meaningful error criterion as shown by Weisburn, Parks and Shenoy [25]
and (47) there is an excellent program, the Parks-McClellan (PM) program [14, 16, 21], that designs
optimal filters according to this norm. Recall that in this approach to the design of digital filters,
the band edges are specified and the weighted Chebyshev error is minimized. In this short paper we
revisit equiripple filter design and describe a complement to the PM program. In the program we
propose, the weighted Chebyshev error is specified and the width of the transition region is variable.

For example, consider the usual ideal lowpass filter. Figure 1 shows a typical equiripple frequency
response. The passband and stopband edges are denoted by w, and ws. The Chebyshev errors in
the passband and stopband are denoted by 6, and é;. The figure also shows the half-magnitude
frequency, w,. The filter in fig. 1 was designed to posses a specified half-magnitude frequency of
w, = 0.47 with specified Chebyshev errors of 6, = é; = 0.05. The passband and stopband edges are
‘induced’ by these specifications.

While the PM program allows the filter designer to specify w,, ws and the ratio 8,/d,, it does
not allow the user to specify both é, and d, directly. Although the user can indirectly control 4,
and é; with the PM program by iteratively adjusting the band edges and the ratio 6,/d, [17, 19],
the exchange algorithm below obtains the specified ¢, and é, directly.

The algorithm described below is similar to the algorithm of Hofstetter, Oppenheim and Siegel
[12, 13, 20]. Although their algorithm predates the PM program and produces equiripple filters
with specified ¢, and ¢y, it is not widely used because it permits limited control over the location of
the band edges and only produces extra-ripple filters. Moreover, the location of the band edges can
be controlled only indirectly in the Hofstetter algorithm: only the number of extremal frequencies
in each band can be specified. Their algorithm is interesting, however, because extra-ripple filters
have a minimum transition width property [20, p143][13, 21]. More specifically, for a fixed filter
length and fixed 6, and é5, extra-ripple filters locally minimize the transition band width as a
function of, say, the passband edge. The design formulation leading to these extra-ripple filters
was originally described by Herrmann and SchiiBler [9, 11] and is also described in [20, 21]. The
algorithm of Hofstetter et al can also be used for the design of maximum-ripple multiband filters
having a specified ripple size in each band.

In [23] Shpak and Antoniou present an interesting modification to the PM program in which the
Chebyshev error in respective bands are not constrained by a ratio. In this way they are able to
obtain extra-ripple filters without sacrificing the ability to specify the band edges. This technique
can be used to prevent transition region anomalies that sometimes occur in the design of optimal
Chebyshev multiband filters [18]. By maintaining the ability to specify band edges in the design
of extra-ripple filters, however, the Shpak-Antoniou algorithm gives less control over the weighted
Chebyshev error. Clearly, for a fixed filter length, there is a tradeoff between the ability to specify
the weighted Chebyshev error and the ability to specify the band edges.

Another approach to the filter design problem uses linear programming [8, 24]. Steiglitz, Parks
and Kaiser have presented a very general and flexible program [24] that meets Chebyshev and other
constraints. In this paper, we discuss multiple exchange Remez-type algorithms which are more



efficient than linear programming methods.

The algorithms described below produce lowpass and bandpass linear-phase FIR filters having
a specified Chebyshev error in each band and a single transition region frequency, such as the
half-magnitude frequency, to control the location of the transition region. They are hybrids of
the algorithm of Hofstetter, Oppenheim and Siegel [12, 13] and the PM algorithm. Like those
algorithms, it employs a reference set of frequencies. On each iteration (¢) an interpolation problem
is solved and (i7) the reference set is updated. The efficient computational techniques used for the
PM program [1, 2, 3, 4, 6, 23] can also be used for the algorithms below.

2 Equiripple Filter Design

The frequency response of a linear-phase FIR filter is given by the discrete-time Fourier transform of
its impulse response and can be written as H(w) = A(w)e ?M“ where A(w) is a real valued periodic
function of w called the amplitude and M = (N — 1)/2 for length-N filters [15].

We first describe a version of the standard PM program for lowpass filter design in which either
0, or ¢, is specified and the other is minimized. We then describe the exchange algorithm for lowpass

and bandpass filter design in which the Chebyshev error in each band is specified.

2.1 The PM Program with an Affine Relation between ¢, and &;

The usual PM program can be modified so that it achieves a specified Chebyshev error in one
band and minimizes the Chebyshev error in the other. This can be achieved by imposing an affine
relationship between é, and d,, where 6, and 6, denote the Chebyshev errors of the realized frequency
response amplitude. Recall that by the standard PM algorithm for lowpass filter design, the user
specifies a linear relationship between ¢, and é5: the user specifies N, w,, ws and K, and obtains
a filter satisfying 6, = Ké,. However, the PM algorithm can be modified as described here so that
the user specifies N, w,, wy, K,, K, 7, and 75, and obtains a filter satisfying the following affine

relationship between 6, and é;:

op = Ky + 1 (1)
bs = K6 + ns. (2)

(So that the problem is well posed, the parameters K,, K, 7, and 75 supplied by the user must
all be nonnegative and satisfy the inequalities: K, + 1, > 0, K, + 1, > 0 and K, + K, > 0.) The
modified PM program minimizes 6. When 7, and 7, are both taken to be 0 this becomes the usual
linear relationship permitted by the PM program. However, if Ky = 5, = 0, then the stopband
ripple size é5 of the resulting equiripple filter has the specified value 7 and the passband ripple size
0, is minimized.

The first modification that needs to be made to the usual PM program is the interpolation step.
Given a reference set of M + 2 frequencies that includes wy, and wy, let wq,...,w, = w, denote those
in the passband and let wy = wy41,...,wp42 denote those in the stopband, listed, in each case, in
ascending order. The linear system of equations to be solved on each iteration is given by eq (1),



eq (2), and by
A(w;) = 1+ (-1)"F°, for1<i<gq 3)
A(w;) = (=1)*eé, forg+1<i< M+2
where ¢ is chosen to equal 0 or 1, whichever yields the equation A(w,) = 1 — §,. The system of
equations given by (1, 2, 3) is linear in §, é,, 6, and the filter coefficients. As in the PM algorithm,
this system can be solved efficiently using interpolation formulas.
Consider, for example, the design of a length-7 filter with w, = 0.27 and w; = 0.57. Here M =3
and A(w) can be written as A(w) = Y.7_, ax cos kw. Figure 2 shows a typical frequency response

amplitude during the course of the algorithm. In this case, eqs (1, 2, 3) can be written as

[l cosw; cos2wy; cos3dw; —1 0 0 7 TapT 17
1 coswy; cos2wy cos3dwy 1 0 0 aq 1
1 cosws cos2ws cos3dws 0 —1 0 ay 0
1 cosws cos2wy cosdwy O 1 0 az | = 1|0 (4)
1 cosws cos2ws cos3dws 0 —1 0 p 0
0 0 0 0 1 0 -K, b Mp
LO 0 0 0 0 1 —-K,]Léd] L 775

where w; =0, w, = wy = 0.27, wy, = w3 = 0.57, wy = 0.757, ws = 7 are indicated by circular marks
in fig. 2. Comparing system (4) to the corresponding system for the usual PM algorithm, we note
that there are two additional variables and two additional equations.

It is important to note that either §, or 6, given by the solution to (1, 2, 3) may be negative.
This generally occurs, if at all, during the early iterations of the algorithm. When it does occur,
however, it is important to modify the interpolation step in a simple way to ensure convergence. If
05 given by eqs (1, 2, 3) is negative on some iteration, then it is necessary to repeat the interpolation

step for that iteration using different interpolation equations. The equations in this case are given

by

Alw;)) =1+ (—1)2""06}7 for1<i<ygq
Alw;)) =0 forg+1<i1<M+2 (5)
b5 = 0.
In the length-7 example above, these equations can be written as
1 cosw; cos2w; cosdw; -1 ag 1
1 coswy cos2wy cos3dwy 1 aq 1
1 cosws cos2ws cosdws 0 az | =10 (6)
1 coswy cos2wy cosdwy O as 0
1 cosws cos2ws cos3ws O oy 0

Similarly, if 6, < 0 on some iteration, then the interpolation step for that iteration must be repeated
with the equations

Alw) = (=1)7*°8, for g +1< i< M+2 (7)
8, = 0.

On the following iteration, after the reference set is updated, the eqs (1, 2, 3) are again used. We
also note that 6, and és given by the solution to eqs (1, 2, 3) can not both be negative, because if

they were, then A(w) would have more extrema than is possible for a degree M cosine polynomial.



The procedure to update the reference set from one iteration to the next is the multiple exchange
of the PM algorithm: Let S be the set obtained by appending w, and w, to the set of extrema of
A(w)in [0, 7]. S will have either M 42 or M + 3 frequencies and will include both 0 and «. If S has
M + 2 frequencies, then take the new reference set to be S. If § has M + 3 frequencies, then remove
either 0 or 7 from S according to the following rule: If w = 0 is a local maximum of A(w) then let
a = 1, otherwise set @« = —1. If w = 7 is a local maximum of A(w) then let § = 1, otherwise set
g=—-1.1f

(A(0) — Da—6, < A(T)B — 65 (8)

then remove 0 from 5, otherwise remove 7 from 5, and take the new reference set to be the resulting
set 5. The expressions on each side of the inequality indicate the amount by which the error exceeds
its intended value. a and B must be chosen appropriately because both the magnitude and the sign
of this value is important: negative values appear in the design of filters possessing a scaled extra-
ripple. The rule states that the frequency to be retained in S is the one at which the error exceeds
its intended value the most. The reference set, in the example, is updated by updating only wy. Its
new value is indicated by the x mark in fig. 2.

A flowchart for this algorithm is shown if fig. 3. This modification of the PM algorithm is easily
incorporated and permits (¢) the specification of w, and w, and (i) the affine constraint on 6, and
0. It is useful because by taking K, =7, = 0, or K, = 5, = 0, the filter obtained by this algorithm
achieves a specified Chebyshev error in one band and minimizes the Chebyshev error in the other.
The algorithm works for other choices of K,, K, n,, n,, but the meaning of arbitrary values for
these parameters is unclear. The general afline constraint is a convenient way to solve the problem,
without requiring special cases.

The following example illustrates the situation in which 6, is negative on some iteration. The
parameters are chosen to be N =19, w, = 047, ws =0.57, K, =1, Ks =0, n, = 0 and 7, = 0.05.
In this case M = 9. When the reference set is initialized to be 4 equally spaced frequencies in
the passband and 7 equally spaced frequencies in the stopband, the solution to eqs (1, 2, 3) gives
6, = —1.9619, 6; = 0.05 and the amplitude A(w) shown in fig. 4(a). Because ¢, < 0, the algorithm
we describe requires that the iteration be repeated using eq (7) and the same reference set. The
solution to eq (7) gives ¢, = 0, 65 = 0.0096 and the amplitude shown in fig. 4(b). The reference
set is then updated and on the next interpolation step, 6, is positive, and remains positive for the
duration of the algorithm. The amplitudes associated with this and next iteration are shown in figs.

4(c) and 4(d). The algorithm converges in only a few more iterations.

2.2 A New Equiripple Lowpass Filter Design Algorithm: Specified ¢,, 6, and w,

In order to exactly achieve specified values for ¢, and é§, with the PM program, it is necessary to
iteratively adjust the parameters w,, w,, and the ratio §,/6,. We propose an algorithm for the
design of equiripple lowpass filters that allows (¢) the explicit specification of 6, and 6, and (ii)
the specification of the half-magnitude frequency. The band edges w, and w, can not be explicitly
specified — they are ‘induced’ by the specified values of 6,,, 6, and w, as in the algorithm of Hofstetter
et al. [12]. As above, on each iteration, the filter interpolating the appropriate values over the

reference set is computed and the reference set is updated.



As in the PM program, extremal frequencies may migrate from one band to another during the
course of the algorithm. Therefore the initialization of the reference set is not critical for convergence,
but does affect the speed of convergence. The reference set here, however, does not contain two
band edges as in the PM program, instead, it contains the half-magnitude frequency, w,. Therefore,
the reference set contains M + 1 frequencies, not M + 2 as in the PM program. The circular marks
in fig 1 indicate the reference set frequencies upon convergence for a length 21 filter. The resulting
filter satisfies the alternation property for the correct choice of band edges, so it could have been
designed using the PM program if the band edges had been known in advance.

The algorithm proceeds by computing the filter that alternately interpolates 1 4+ 6,, 1 — 6, over
the reference set frequencies in the passband, alternately interpolates 65, —ds; over the reference
set frequencies in the stopband, and interpolates 0.5 at w,. As in the PM program, interpolation
formulas can be used to find the filter efficiently. Note that, because é, and 4, have been explicitly
specified, é does not have to be computed at each iteration.

Suppose wq,...,war+1, listed in increasing order, is a reference set of M + 1 frequencies in
[0, 7] that includes w,. Let wy,...,w,_1 denote those in the passband (to the left of w,) and let
W41, - - -, whm+1 denote those in the stopband (to the right of w,). The linear system of equations
to be solved on each iteration is given by

Alw;)) =1+ (=1)*e6, for1<i<qg-1
A(w,) = 0.5 (9)
Aw;) = (—1)+e+ts, forg+1<i<M+1

where ¢ is chosen to equal 0 or 1, whichever yields the equation A(w,—1) =1+ 6,.

Consider, for example, the design of a length 9 filter with w, = 0.4x, 6, = é5 = 0.1. Figure 5
shows a typical amplitude response before convergence is attained. In this case, the equations (9)
can be written as

1 cosw; cos2w; cos3dw; cosdwy ag 1—-40,

1 coswy; cos2wy cos3dwy cosdwy aq 1+ 0,

1 cosws cos2ws cos3ws cosdws | |ag| =] 0.5 (10)
1 coswy cos2wy cos3dwy cosdwy as —bp

1 cosws cos2ws cos3dws cosdws ay 0p

where wy = 0, wy = 0.17, w, = w3 = 0.47, wy = 0.77, ws = 7 are indicated by circular marks in fig.
5.

The procedure to update the reference set from one iteration to the next is similar to the multiple
exchange of the PM algorithm: Let S be the set obtained by appending w, to the set of extrema of
A(w) in [0,7]. S will have either M + 1 or M + 2 frequencies and will include both 0 and =. If §
has M + 1 frequencies, then take the new reference set to be 5. If § has M + 2 frequencies, then

remove either 0 or 7 from S according to the following rules:
1. If A(w) has no extrema in the open interval (0,w,), then remove 0 from S.

2. If A(w) has no extrema in the open interval (w,, ), then remove = from 5.



3. Otherwise, let w, be the extrema of A(w) in (0,w,) closest to 0, and let wy be the extrema of
A(w) in (w, ) closest to 7. If

85| A(0) = A(wa)| < 6p|A(T) = A(wy)] (11)
then remove 0 from §, otherwise remove 7 from 5.

Take the new reference set to be the resulting set 5. The reference set, in fig. 5 for example, is
updated by updating wy, wy and ws. Their new locations are indicated by the x marks in fig. 5. It
should be noted that case(1) and case(2) only occur when w, is taken to be near 0 or 7 relative to
the filter length (in these cases, the reference set upon convergence contains no frequencies in one
of the bands).

Note that any transition region frequency can be fixed. Instead of the half-magnitude frequency,
the half-power frequency, the passband edge, or stopband edge can be fixed by respectively imposing
A(w,) = 1/v/2, A(w,) = 1 — é,, or A(w,) = é,. It should also be noted that if the half-magnitude is
taken to be too close to either 0 or 7 relative to the filter length, then there will exist no filter with
the specified Chebyshev error in each band. Either the passband or stopband will be too narrow.

When the specified ripple sizes are achievable, this algorithm produces exactly the same lowpass
filters as does the PM program, however, it allows one to specify a different set of parameters in the

design process.

2.3 Bandpass Filter Design

The design of multiband filters achieving a specified Chebyshev error with specified half-magnitude
frequencies requires more care than the design of lowpass filters with this approach. There a three
reasons for this. (i) There is generally more than one equiripple filter satisfying these constraints.
(it) The procedure for updating the reference set of frequencies is less obvious because the optimal
filter may have scaled extra ripples at frequencies other than 0 and 7. (7i¢) The transition region of
a multiband filter designed by the PM program may contain large undesirable peaks [18]. Despite
these aspects of the multiband case, the algorithm below remains simple, robust, and rapid as long
as the specified Chebyshev error is not taken too small relative to the filter length.

We consider the design of bandpass filters and denote the Chebyshev errors of the first stopband,
the passband, and the second stopband by 61, 63 and 3 respectively. The half-magnitude frequencies
are denoted by w, and wy. When the band edges are not explicitly specified, the non-uniqueness of
the bandpass filter achieving a specified Chebyshev error with specified half-magnitude frequencies
is easily ascertained. The specifications can be summarized by 5 values: 6y, 82, 63, w, and wy.
However, the PM algorithm requires 6 values for bandpass filters: 4 band edges and 2 ratios, §3/6;
and d3/68,. Therefore, in a complement to the PM program, we require an additional constraint.

We have chosen to require that the derivative of A(w) at the half-magnitude frequencies are equal
in magnitude and opposite in sign. We chose this constraint because (7) in a sense, it weights the
widths of the transition regions equally, because the width of the transition region is related to the
slope of A(w) at the corresponding half-magnitude frequency, and, (77) it can be easily incorporated

into a simple exchange algorithm.



The algorithm for producing equiripple bandpass filters is similar to the algorithm above for
lowpass design. Excluding the two half-magnitude frequencies, the reference set for the bandpass
case contains M — 2 frequencies, and is updated by locating the local extrema of the new frequency
response amplitude A(w). The interpolation step consists of finding the filter that alternately
interpolates 1 + §;, 1 — §; over the reference set frequencies in band ¢, interpolates 0.5 at w, and at
wy, and for which A'(w,) = —A’(wp). This filter can be found by solving a system of linear equations
or by modifying the usual interpolation formulas.

It follows from the interpolation step that there will be at least M — 2 local extrema of A(w),
however, there may be as many as M + 1. Because the reference set must contain M — 2 extremal
frequencies, it will therefore be necessary to exclude 0, 1, 2 or 3 local minima and maxima when
updating the reference set. The rule we use for updating the reference set is most easily stated by
describing which local extrema are not included. Suppose wy,...,wy, are the local extrema of A(w)

listed in order.

1. To exclude 1 local extremum (L = M — 1), use the same update rule used for the lowpass

case.

2. To exclude 2 local extrema (L = M), find the index ¢ that minimizes
(E(wi) = E(wipr) (-1)'* (12)

where s = 1 if wy is a local maxima and s = 0 if wy is a local minima. F(w) denotes the error
function: E(w) = (A(w) — D(w)) /6(w) where D(w) is 1 for w < w,, 0 for w > w, and where
d(w) is 6, for w < w,, 65 for w > w,. If 1 < @ < M — 2, then exclude w; and w;yq from the
reference set. If ¢ = 1 or ¢ = L, then exclude w; and use the procedure above for excluding 1
local extremum.

3. To exclude 3 local extrema (L = M +1), use the procedure for excluding 1 extremum, followed

by the procedure for excluding 2 extrema.

By following this simple procedure for updating the reference set the algorithm rapidly converges
and, like the PM algorithm, is capable of producing equiripple filters with extra ripples at frequencies
other than 0 and 7. Figure 6 shows a bandpass frequency response with three scaled extra ripples.
The reference set frequencies upon the convergence of the algorithm are indicated with circular
marks. Again, although this filter was not obtained by the PM program, it could have been if the
resulting band edges were known in advance. That is, the filter in fig 6 is an optimal Chebyshev
filter for the correct choice of band edges.

For some specifications, the filters produced by this algorithm for bandpass filter design are not
optimal Chebyshev filters for any choice of band edges. Specifically, this algorithm can produce
filters possessing a pair of adjacent scaled extra ripples that straddle a half-magnitude frequency.
The filter in fig 3, for example, was obtained with this algorithm. Although the alternation property
is satisfied on the extremal reference set frequencies, it is not an optimal Chebyshev filter for any
choice of band edges because the induced band edges can not be included in the reference set without
destroying the alternation property. Nevertheless, this filter does achieve the specified Chebyshev

error and has narrow transition bands of approximately equal width.



When the specified Chebyshev error is taken to be very small relative to the filter length this
algorithm may occasionally produce filters with undesirable transition region behavior or may fail
to converge. This is due to the necessarily wide transition regions associated with very small
ripple sizes. When the transition regions are wide, the half-magnitude and derivative constraints
become inappropriate since they no longer accurately reflect the behavior of the frequency response
throughout the transition region. However, it should be noted that optimal Chebyshev multiband
filters having very wide transition regions may also possess undesirable transition region behavior.

Indeed, the behavior of the frequency response of optimal Chebyshev multiband filters can be
quite different than that of two-band filters. In [18] Rabiner, Kaiser and Schafer give three strategies
for avoiding nonmonotonic transition region behavior: (i) modify the stopband edge frequencies,
(it) modify the error weighting function, and (7ii) design maximal ripple filters only. Shpak and
Antoniou [23] address the occurrence of transition region ripples by employing extra é§ variables. By
doing this they are able to obtain extra-ripple filters and can avoid some of the undesirable behaviors
of multiband equiripple filters while maintaining specified band edges. The method described in this
paper, however, takes a different direction. Instead of introducing extra é§ variables, we give up the
explicit control over the band edges, employ half-magnitude frequencies, and explicitly control the
Chebyshev error in each band.

It should also be noted that all the exchange algorithms discussed in this paper can be adopted
for the design of minimum phase FIR filters. Grenez describes a simple modification of the PM
program for constrained Chebyshev approximation that can be used to design linear-phase filters
with nonnegative frequency response amplitudes [7]. If in each iteration of the exchange algorithm,
the stopband interpolation condition A(w;) = —¢ is replaced by A(w;) = 0, then the resulting
frequency response amplitude will be nonnegative. The FIR filter can then be spectrally factored to
obtain a minimum phase filter. This technique is especially useful when the stopband ripple sizes of
a multiband filter are unequal. For multiband filters for which the stopband ripple sizes are equal
and for two-band filters, the classical technique of raising the amplitude and spectrally factoring the

filter can be employed [10].

3 Conclusion

Optimal Chebyshev linear-phase FIR filters are usually found by fixing the filter length N and the
band edges and by minimizing the weighted Chebyshev error. Another approach is to fix N, é,, 6,
and a single transition region frequency and to adjust the transition width. The same approach can
be applied to the design of bandpass filters that achieve a specified Chebyshev error in each band
and have transition regions of approximately equal width.

Table 1 classifies four approaches to the design of equiripple filters. The approaches under
‘Nonextra-ripple’ produce filters that may or may not possess extra-ripples, depending on the spec-
ifications. The approaches under ‘Extra-ripple’ are able to produce filters that are constrained to
possess extra-ripples. (Recall, however, that the Shpak-Antoniou algorithm is a generalization of
the PM algorithm and a variable number of extra ripples can be specified.) This table clarifies the
relationship among previously reported exchange algorithms for equiripple linear-phase filter design
and the way in which the algorithms described in this paper relate to them.



Matlab programs are available from the authors and electronically on the World Wide Web at
URL http://www-dsp.rice.edu.
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Table 1: Exchange Algorithms for Equiripple Filters

Nonextra-ripple

Extra-ripple

Band edges w,,w; specified

PM [14, 16]

SA [23]

Weighted Chebyshev error 6,,6, specified

New

HS [9, 11], HOS [12]

Frequency Response

Amplitude
o o © ©
N H [*2] (o]

o

Figure 1: N =21, ¢, = 65, = 0.05, w, = 0.47, w, = 0.34187, wy; = 0.45807
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Frequency Response

Amplitude
©c o o o
N D [e2] [ee)

o

Figure 2: N =7, w, = 0.21, w, = 0.57

Input: N’ wPa Ws, [(Pa [(Sa I’TPa s

Initialize reference set

Calculate A(w), 6p, b5, 6
by egs (1, 2, 3)

Y Calculate A(w), 6

613’
by egs (5) or (7

b, <0or b, <07

N N

Update reference set

Convergence 7

Y

End

Figure 3: Flowchart for the PM algorithm for lowpass filter design modified to include an affine
constraint between 0, and é;.
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Frequency Response Frequency Response
1 1
0.8
0.8
8 0.6 o)
£ Zos
£ 04 =
3 £
< 0.2 <0.4
0 0.2
-0.2
0
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Wt /T
(c) 6, = 0.1038, §. = 0.05 (d) 6, = 0.1175, 6. = 0.05

Figure 4: N =19, w, = 0.47, w, = 0.57 (a) iteration 1 (b) iteration 1b (c) iteration 2 (d) iteration
3.

Frequency Response

Amplitude

Figure 5: N =9, w, = 0.4m, ¢, = 65 = 0.1
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Frequency Response
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Figure 6: N = 55, 6y = §3 = 63 = 0.05. The specified half-magnitude frequencies were w, = 0.16757,
wp = 0.5017. The ‘induced’ band edges are 0.14807, 0.18707, 0.48157, and 0.52057.

Frequency Response
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Figure 7: N =55, 61 = 63 = 63 = 0.05. The specified half-magnitude frequencies were w, = 0.2047,
wp = 0.547. The ‘induced’ band edges are 0.18447 0.22357 0.52057 0.55957.
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