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1 Summary

We overview a new non-parametric method for estimating the time-varying
spectrum of a non-stationary random process. Our method extends Thomson’s
powerful multiple window spectrum estimation scheme to the time-frequency
and time-scale planes. Unlike previous extensions of Thomson’s method, we
identify and utilize optimally concentrated Hermite window and Morse wavelet
functions and develop a statistical test for extracting chirping line components.
Examples on synthetic and real-world data illustrate the superior performance
of the technique.

2 Introduction

Many methods exist for estimating the power spectra of stationary signals [1].
However, these methods are insufficient for the non-stationary signals that
occur in important applications such as radar, sonar, acoustics, biology, and
geophysics. These applications demand time-frequency representations that
indicate how the power spectrum changes over time. To date, research in
time-frequency analysis has mainly focused on deterministic signals. Only
more recently has attention turned to non-stationary random processes [2-13].

Unlike the power spectrum for stationary random processes, there is no
unique definition for the time-varying spectrum of a nonstationary random
process x. Perhaps the best compromise is the Wigner-Ville spectrum (WVS)
Wy [9]. Given the instantaneous auto-correlation function

r«(t,7) := E[x*(t — 7/2) x(t + 7/2)], (2.1)
the WVS is defined as its Fourier transform

Wy (t, f) == /Tx(t,T) e 21T dr. (2.2)

Alternatively, the WVS can be defined as the expected value of the empirical
Wigner distributions (WDs) Wy [14,15] of the realizations of the process

Wa(t, f) = E[W(t, f)] = E [ / X (t—7/2)x(t + 7/2)e 7 gr| . (2.3)
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In this framework, the problem of time-varying spectrum estimation can be
stated as estimating the WVS Wy given only one realization of the nonsta-
tionary process X.

A number of different WVS estimates have been proposed. The simplest is
the empirical WD W, itself. However, while it is unbiased, it has very large
(infinite in theory) variance and cross-components — artifacts produced due
to its quadratic nature [9]. Figure 1 plots a test signal composed of a determin-
istic FM chirp with sinusoidal instantaneous frequency [14,15] submerged in a
realization of an additive bandpass Gaussian process of linearly rising center
frequency, its ideal time-varying spectrum, and four different WVS estimates.
The large variance and the cross-components cloud the WD’s interpretation,
as can be seen in Figure 1(c).

To reduce the variance of the WVS estimate at the expense of some bias,
the WD can be smoothed through convolution with a 2-D kernel function [9].
This bias-variance tradeoff is well illustrated by the spectrogram estimator of
Figure 1(d). (The spectrogram smoothing kernel is the Wigner distribution of
the analysis window [14,15].)

Unfortunately, the large amount of smoothing required to obtain a low vari-
ance WVS estimate damages the resolution of deterministic chirping signals
of the form e/2™()  whose ideal time-frequency representations have the form
0(f —~'(t)). In this paper, we focus on estimating the WVS of mixed stochas-
tic/deterministic signals of the form

X(t) = ¥(t) + 3 ilt) 270, (24)

with y a zero-mean, nonstationary, Gaussian random process and p;(t) e7277%(?)
a deterministic “chirp” signal with instantaneous amplitude p;(t) and instanta-
neous phase 7;(t). For inspiration, we turn to the seminal stationary spectrum
estimation work of Thomson [16].

Realizing that random and deterministic spectral components must be dealt
with separately, Thomson introduced a powerful multiple window (MW) spec-
trum estimator for stationary signals in [16] to obtain a low variance spectrum
without degrading the resolution of line components. His method uses a sta-
tistical significance test to detect and extract stationary deterministic line
components (sinusoids) from the data, computes a MW spectrum estimate
of the sinusoid-free data using a set of optimal windows, and reshapes the
spectrum to account for the excised sinusoids.

Because of its excellent performance, several groups have applied this tech-
nique, ad hoc, to nonstationary signals in a sliding-window fashion [2-4, 17].
There are two potential problems to such an approach: 1) the windows used
by Thomson are not optimal in a joint time-frequency setting and 2) the
chirping rates of the line components must be very low (for them to be well
approximated as piecewise sinusoidal). Figure 1(e) shows the sliding-window
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Figure 1: (a) Test signal x composed of a chirp with sinusoidal instantaneous fre-
quency plus an additive bandpass Gaussian noise of linearly rising center frequency.
(b) Ideal representation. (c) Empirical Wigner distribution Wy. (d) Spectrogram
using a Gaussian window. (e) Sliding window Thomson’s method as in [2-4]. (f) Mul-
tiple window (MW) time-frequency distribution.

Thomson’s method applied to the test signal. We see clearly that the method
comes short of detecting and extracting the nonstationary line component
(except where its chirp rate becomes small).
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In this chapter we overview a refinement of the previous extensions of Thom-
son’s method into an improved, unified time-varying MW spectrum estimate
for nonstationary signals of the form (2.4) [5-8]. We will identify the optimal
windows and develop a statistical test to detect and extract the time-varying
line components. Our method preserves the resolution of line components, has
low variance, and offers fine control over the bias-variance trade-off. Figure
1(f) shows the method applied to the test signal.

This chapter is organized as follows. In Section 3 we give a brief review of
Thomson’s MW method for stationary signals and explain the essence of his
statistical test for sinusoids. Section 4 discusses MW time-frequency analysis
and identifies the optimal (Hermite) windows to use in the MW method. Sec-
tion 5 extends the significance test to include rapidly varying line components
of the form e/277(®)_ Section 6 extends the ideas in Section 4 to the time-
scale plane, again identifying the optimal (Morse) windows. In Section 7 we
demonstrate the performance of the estimators and, in Section 8, we discuss a
number of related techniques and recent extensions of our approach. Section
9 concludes with a discussion.

3 Thomson’s Multiple Window Method

Here we overview the key elements of Thomson’s method for stationary power
spectrum estimation, reformulated in continuous time. The stationary version
of the signal model (2.4) reads

x(t) = y() +3_ p(fi) eIt (3.1)

with y a zero-mean, stationary, Gaussian random process having a continu-
ous power spectrum and pu(f;) e/27/i+Pi 3 deterministic sinusoid having a line
power spectrum.

The classical spectrum estimator for stationary signals, the periodogram,
is defined as simply the squared magnitude of the Fourier transform of a
windowed version of the data

B(f) = ‘ / x(t) w(t) 9271t gy (3.2)

with w(t) the window function. While the periodogram suffers from large
variance, this variance can be reduced by cutting the data into blocks, com-
puting a periodogram of each block, and then averaging the periodograms [18].
However, this procedure also smears and biases the resulting spectrum esti-
mate. The bias/variance tradeoff is clear: reducing the variance necessitates
averaging over a larger number of shorter blocks, which increases the bias.
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Figure 2: The first three prolate spheroidal wave functions in the time domain.

3.1 Summary of Thomson’s Method

Inspired by the notion of averaging but displeased with the resulting bias,
Thomson suggested computing several periodograms of the entire signal using
a set of different windows and then averaging the resulting periodograms [16].
For a low variance, low bias estimate, he demanded that the windows be or-
thogonal (to minimize variance) and optimally concentrated in frequency (to
minimize bias). The optimal windows satisfying these requirements for signals
of finite extent are the prolate spheroidal wave functions [16,19] (see Figure
2). These orthogonal functions are the eigenfunctions of a localization oper-
ator that band limits and then time limits functions. As windows, they are
perfectly suited to stationary spectrum estimation, because they are simulta-
neously compactly supported in time and optimally concentrated in frequency.
In addition to averaging over multiple windows, Thomson also introduced a
separate pre-estimate for deterministic sinusoidal components.

Thomson’s MW method consists of three main steps [16]:

1. Detect and extract all significant sinusoids (stationary deterministic line
components) in the data x using a statistical significance test (see Section
3.2) to obtain an estimate y of the part having a continuous spectrum

y = x — {sinusoids}. (3.3)

2. Average K “orthogonal” periodogram estimates of y using prolate
spheroidal data windows {vy} [16,19]

/ () v (£) €927t gy ’ (3.4)

~ L K-l
Pr(f) == K Z
k=0

The concentration of the prolate windows in frequency results in a low
bias estimate of the spectrum.

!Thomson actually weights the periodogram computed with window vz with the recip-
rocal of the corresponding prolate spheroidal eigenvalue A, [16]. However, since these are
typically very close to 1, we will neglect them until Section 8.
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3. Reshape the spectrum estimate Ps to account for the sinusoids excised
in Step 1.
3.2 Thomson’s F-test For Sinusoids

Before we can extract the significant sinusoids from the data x as in (3.3), we
must detect their presence and estimate their parameters. Assume the signal
model (3.1) and define the k-th eigenspectrum xj as the Fourier transform of
the windowed original data

()= [ x(t) vty e 2 at (35)
The expected value of x; at frequency f; is given by

Elxk (fi)] = w(fi) Ve (0), (3.6)

with Vi the Fourier transform of vg. Using a simple linear regression, the
complex amplitude u(f;) of each possible sinusoid can thus be estimated as

K-—1
> Vi(0) xi ()
afi) = = — : (3.7)

The eigenspectra yield a simple statistical test for whether sinusoids are
actually present in the data. Assuming that a sinusoid is present at frequency
fi with complex amplitude i(f;), we subtract it from the data to obtain an
estimate of the “background” continuous spectrum around f;. Comparing the
power in the background spectrum with the power in the assumed sinusoid
yields an F' variance-ratio test with 2 and 2K — 2 degrees of freedom for the
significance of the estimated line component [16]. Defining

K-1
(K —1) |[a(f)l? > vi(0)?
F(fi) == 17— A=0

, (3.8)

Ik (fi) — A(f:) Vi (0)]?
k=0

if F(fi) exceeds a significance threshold then we say that a sinusoid exists at
frequency f;.

The probability of missing a sinusoid increases with the threshold. On the
other hand, the false alarm probability increases with decreasing threshold.
False alarms give rise to spurious peaks in the spectrum estimate. For very
closely spaced sinusoids, the above F' test fails. For such situations Thomson
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suggests a double F' test that searches for the existence of two sinusoids at a
time instead of one [16].

Summary: Averaging orthogonal periodogram estimates reduces the variance
of the MW power spectrum estimate by approximately K times compared to
the variance of a single periodogram (in which K = 1) [16]. Furthermore,
the concentrated prolate windows and sinusoid extraction ensure high resolu-
tion. These properties make Thomson’s MW method the tool of choice for
estimating the power spectra of stationary random processes.

4 Multiple Window Time-Frequency Analysis

The excellent performance of Thomson’s MW method for stationary signals
has led several groups to apply the method to time-varying spectrum estima-
tion by simply sliding the estimator along the signal [2-4,17]. While reasonably
effective for certain classes of piecewise stationary signals, this approach suf-
fers from two primary drawbacks. First, prolate spheroidal window functions
have no inherent optimality properties in the joint time-frequency domain.
Second, Thomson’s F-test sinusoid extraction procedure fails on chirping line
components of rapidly changing instantaneous frequency (as we saw in Figure
1(e)). In this Section, we will begin a more thorough extension of Thomson’s
MW method to the time-frequency plane by first identifying an optimal set of
windows [5-8].

4.1 Hermite Windows

One of Thomson’s key insights is to smooth the spectrum estimate using or-
thogonal windows that are concentrated in the smallest possible region in the
domain of interest (the frequency domain in his case). The foundation of
the stationary MW method rests on the fact that the prolates are the most
frequency-concentrated of all sets of orthogonal, time-limited windows. For
time-frequency signal analysis, it is clear that we should average over multiple
orthogonal windows that are optimally concentrated in an appropriate time-
frequency domain. The optimality of the prolate functions is not as natural
in time-frequency, since these functions treat the time-frequency plane as two
separate spaces rather than as one geometric whole [20-23].

More natural for time-frequency are the Hermite functions, defined by

d\* _p
-—)e*/{ k=0,1,2,... (4.1)

ha(t) = 71/ 2k 1) ~1/2 (t -4

The zeroth-order Hermite function is the Gaussian. The Hermite functions
are optimally concentrated in the circular time-frequency region

{(t,f) 24 f2< R2} (4.2)
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Figure 3: (a) Circular concentration region (4.2) for the Hermite functions. (b)-
(d) Solid: Eigenvalues of the Hermite functions over this circular region for three
different areas Ay < As < As. Dashed: Eigenvalues of the Morse wavelets (to come
in Section 6.1) over the tear-drop region (6.2) shown in Figure 9 for the same three
areas. Clearly more Hermite functions than Morse wavelets are concentrated in a
region of area A.

of area A = mR? (see Figure 3(a)) and thus treat all time-varying spectral fea-
tures in the same fashion [20-23]. Hermite functions optimally concentrated in
elliptical time-frequency regions are easily obtained by compressing or dilating
the hk

Figure 4 plots the first three Hermite functions, their Fourier transforms,
and their Wigner distributions. Note the circular symmetry of the Wigner
distributions that matches the circular shape of the concentration region.

The Hermite functions are eigenfunctions of the Fourier transform and also
of a time-frequency localization operator over the circular time-frequency re-
gion (4.2) [20]. The eigenvalues in this latter case are a function of the area
A = R? of the region [20]

_R2 1 . ..
MEB) =1—e7 3 T2 R (4.3)
=0 "
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Figure 4: Hermite functions in the (left) time domain, (middle) frequency domain,
and (right) time-frequency domain via Wigner distribution. (a) hg (Gaussian), (b) hy
(since the Fourier transform of hy is purely imaginary, we plot the imaginary part),
(C) hg.

In Figure 3(b)—(d) we plot the behavior of these eigenvalues with k and area
A. The closer )\ is to one, the better concentrated hy is in the circular region
(4.2). Thus, as the area increases, more Hermite functions are concentrated
within the circular region.
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4.2 Multiple Window WVS Estimate

Under the stationary signal model (3.1), Thomson’s MW spectrum average
(3.4) estimates the energy content of the stationary signal y at frequency f
by projecting onto the prolate-windowed sinusoids vy (t) e/>"f*. By analogy,
under the nonstationary signal model (2.4), we estimate the energy content
of the non-stationary signal y at time ¢ and frequency f by projecting onto
the sliding Hermite-windowed sinusoids hy, (T — t) e/2™/7. The estimate can be
written as the average of K Hermite-windowed eigenspectrograms of the data

2

1 K-1 )
/ () hio(r — t) e 9297 g || (4.4)

Wy (. f) = 2 2

k=0

We choose K such that for a given radius R in (4.2) the first K eigenvalues
in (4.3) are very close to one. The bias/variance tradeoff is clear: smaller R
mean smaller K and thus lower bias in the estimate at the expense of less
averaging and hence higher variance.

4.3 Cohen’s Class Interpretation

The MW WYVS estimate (4.4) belongs to Cohen’s class of time-frequency dis-
tributions. All distributions C in Cohen’s class can be written as [14,15]

Cy(tvf) = Wy(ta f) ** ¢(ta f) (45)

with ¢ a kernel function and *x 2-D convolution. The kernel generating the
spectrogram is precisely the Wigner distribution of the window function.

The Wigner distribution of the k-th order Hermite function is the k-th order
Laguerre function [24-26]

k 1 2 2\1m
LT (42 1 £2) e o (PP k! [—m (t* + %))
Wi (t, f) = Li(t" + f7) = e 4 ) Z_(k—m)!m! m! )
m=0
(4.6)
Therefore, we have a closed form expression for the kernel ¢ corresponding to
the MW WVS estimate (4.4) as a weighted sum of K Laguerre functions. In

this interpretation, the MW WVS estimate (4.4) reads

K-1
Wy (1, f) = We(t,£) w2 3 Lali + 7). (@)
k=0

In Figure 5, we plot the kernel for a MW spectrum estimate using four Hermite
windows.

The fact that thus far the MW WYVS estimate is just a distribution from
Cohen’s class seems to imply that we could and should just smooth the em-
pirical Wigner distribution with a “top hat” function (which is one inside a
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Figure 5: Cohen’s class kernel function ¢ corresponding to the MW WYVS estimate
using the first four Hermite windows (sum of the first four Laguerre functions). Note
how closely it approximates a “top hat.”

circle and zero outside) rather than go through the rigmarole of (4.4). As we
will see in the next section, however, the eigenspectrograms play a key role in
detecting/extracting the chirping line components from the signal (recall the
model (2.4)).

Note that, unlike most Cohen’s class time-frequency distributions [14, 15],
the MW WYVS estimate is manifestly positive for all signals. And the con-
nection with positive distributions does not stop here. Computation of the
jackknife estimate of the variance of the MW WVS estimate [27] leads natu-
rally to the concept of combining eigenspectrograms using a geometric rather
than arithmetic mean. This is closely related to Loughlin, Pitton, and Han-
naford’s generation of positive time-frequency distributions using products of
spectrograms [28].

5 Extracting Line Components

As in Thomson’s method for stationary signals, the averaging inherent in (4.4)
will degrade the resolution of chirping line components. Following Thomson’s
programme, we will first detect and extract all line components in the data
before performing (4.4) and then reshape the estimate accordingly.

A straightforward application of Thomson’s sinusoid extraction algorithm
to a signal from the model (2.4) as in [3, 4] relies on an assumption that
the chirp functions e/27%(®) can be closely approximated locally as sinusoids.
Unfortunately, this is not the case for rapidly chirping components, as we saw
in Figure 1(e). In order to detect and extract highly non-stationary chirps, we
now present a simple statistical significance test for linear chirps of the form
e2m(fot-+et?) [7]. Linear chirps can closely approximate locally all but the most
rapidly changing chirp functions. Our approach can thus be interpreted as a
first extension of Thomson’s technique to time-frequency line components.
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5.1 Algorithm to Detect and Extract Chirp Components

We make two basic assumptions about the chirp components. We assume
1) that not more than one chirp is present within the elliptical analysis region
of the Hermite windows hy and 2) that the highest chirp rate c¢ attained by any
chirp ef2m(fot+ct?) g &, with T the effective time support of the Hermite win-
dows. Within the windows’ support, we will approximate the line components
as piecewise linear chirps

D (t) €2 37 (1) e OO (5.1)

with time-varying offset frequency f;(¢) and chirp rate ¢;(¢).
The chirp detection and extraction algorithm runs as follows:

1. Project the data x onto linear chirps of the form e/27(f t+¢t”) for a fine grid
of offset frequencies f and chirp rates c¢. This is equivalent to Thom-
son’s F-test (3.8) applied at each frequency and each chirp rate. A
two-dimensional test statistic F'(f,c) results.

2. Repeat the above steps at each time point to obtain the 3-D test statistic
F(t, f,c).

If the chirp rates of the line components in (2.4) are too high, we must use
shorter Hermite windows to deal with (5.1). However, short windows will not
detect line components with low chirp rates, because there may not be enough
oscillations within the windows for the F' test to be reliable. Therefore, for
signals containing line components of both high and low chirp rates, it may be
necessary to run the above algorithm for different sized windows and combine
the results into one test statistic.

5.2 Suppressing Spurious Peaks

Due to the repeated application of the test (3.8), the number of spurious peaks
in F increases far beyond that seen with stationary signals. (For stationary
signals, Thomson applies the test at only one chirp rate ¢ = 0, whereas we
apply it for each time and chirp rate.) Roughly, if the F' test is performed at
M chirp rates for each frequency f, then M times more spurious peaks will
appear compared to when the test is performed at only one chirp rate (¢ = 0).
These peaks must be suppressed to create a readable time-frequency image.

To suppress spurious peaks that peek above the significance threshold, we
employ the following nonlinear cleaning algorithm:

1. Slice F(t, f,c) along the chirp-rate dimension at several {c;}.

2. For each c¢;, apply a nonlinear order-statistic filter to F'(¢, f, ¢;) to remove
peaks that have not coalesced into a region larger than the Heisenberg
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Figure 6: Test statistic F'(t, f,cq) for a fixed co before and after nonlinear cleaning.

uncertainty principle mandates. (Intuition: spurious peaks are isolated
in F(t, f, ¢j), while true peaks lie along curves in F'(¢, f, ¢;).) The nonlin-
ear filter essentially counts the number of peaks that lie on a line within
a region and compares the count to a threshold.

3. Combine the results from each c; to obtain the cleaned F' test statistic.

While the linear chirp detection/cleaning/extraction algorithm is computa-
tionally expensive, it is readily parallelizable.

In Figure 6, we demonstrate the performance of this algorithm on the signal
x(t) = /27§ s +ot) L (4, with a, b, and fy constants and n(t) a stationary
Gaussian white noise. The signal-to-noise ratio was set to 0.4 dB. The figure
plots F(t, f,co) for a fixed chirp rate ¢y that corresponds to spurious peaks
for early ¢ and intersects the true line component for late £. The nonlinear
cleaning algorithm exploits the fact that the peaks corresponding to true line

components form curves, whereas the spurious peaks lie isolated.

5.3 Impulses and Closely Spaced Chirps

In our signal model (2.4) and the above line detection/extraction algorithm,
we have not explicitly addressed impulses, which are vertical time-frequency
line components of the form §(t—tp). Since the Fourier transform of an impulse
is a complex sinusoid, we can detect and extract impulses from the data by
applying the above algorithm in the Fourier domain with ¢ = 0.

Multiple, crossing chirps will confuse any algorithm that seeks to extract
them one at a time. The above approach can be extended & la Thomson to
seek and destroy more than one chirp at each time-frequency point. However,
as in the stationary case, the detection power of such a test will suffer.
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Figure 7: (a) Cohen’s class kernels smooth by translating in time-frequency.
(b) Affine class kernels smooth by scaling and translating in time-frequency.

6 Multiple Window Time-Scale Analysis

For random processes containing scaling phenomena (high frequency com-
ponents of short duration and low frequency components of long duration),
standard time-frequency techniques are not appropriate. These types of pro-
cesses are better matched by the time-scale representations from the affine
class [15,29]. The smoothing kernels in the affine class change with frequency
to accommodate component scaling. The smoothing regions in different parts
in the time-frequency plane for Cohen’s class and the affine class are shown in
Figure 7. To reach higher frequencies, Cohen’s class kernels translate, whereas
affine class kernels scale.

To estimate the time-varying frequency spectrum of scaling processes, we
will modify our Thomson-inspired estimation procedure to incorporate the
wavelet transform (replaces the spectrogram) and the Morse wavelets (replace
the Hermite windows) that are optimally concentrated in tear-drop shaped
regions in time-frequency matched to the scaling behavior in Figure 7(b) [5-8].

6.1 Morse Wavelets

The Morse wavelets [30-33] play a role in time-scale analogous to that of the
Hermite windows in time-frequency. The k-th order Morse wavelet? 1 (t) is
defined in the frequency domain as

& leﬂ d

Ui(f) = fPPe 172

afp |© arek (ro+k ef")] , k=0,1,2,... (6.1)

with 8 > 0 the degree of flatness at f = 0 and v > 0. The zero-th order Morse
wavelet is commonly known as the Klauder wavelet [34], although it goes by

*While Morse defined only a special case of these wavelets for v = 1 [33], we will refer to
the entire class derived in [31,32] as the Morse wavelets.
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Figure 8: Morse wavelets in the (left) time domain, (middle) frequency domain, and
(right) time-frequency domain via Wigner distribution. (a) ¢ (Klauder wavelet),
(b) ¢ (since the Fourier transform of v, is purely imaginary, we plot the imaginary

part), (c) ¢2.

other names as well [35, p. 25], [36,37]. Figure 8 shows the first three Morse
wavelets in time, their Fourier transforms, and their Wigner distributions.

The Morse wavelets are the eigenfunctions of a localization operator over a

tear-drop shaped region whose exact formula for any 8 and v can be found
in [32]. For the special case 3 = v = 1, the Morse functions are mutually
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Figure 9: The tear-drop shaped concentration region (6.2) for the Morse wavelets
forB=v=1.

orthogonal and maximally concentrated in the time-frequency region [30, 32]

9 3C
t,f): t2+—+1§—} 6.2

{en: e4gprasiy 02
of area A = 37(C — 2) [32]. Figure 9 depicts this region. Just as a circular
disk contains all points equidistant from the center point in the Euclidean
distance, this region contains all points equidistant from the center point in
the (scale-invariant) Lobachevsky distance [31].

For # =~ =1, the eigenvalues of the bandpass localization operator corre-
sponding to the Morse wavelets are given by

M(C) == (6.3)

2(k +1) C — 1\
(C+1)(k+1) (C+1> '

(No closed form expression exists for the eigenvalues for any other choices
of B and 7.) As in the Hermite case, these eigenvalues indicate the degree
of concentration of the corresponding Morse wavelet in the tear-drop region
(6.2).

A simple comparison of the concentration properties of the Morse wavelets
and the Hermite functions is easily made. In Figure 3(b)—(d), we plot the
eigenvalues of the Morse wavelets and Hermite functions for three different
areas of their concentration regions. Clearly, for a given area, the Hermite
functions have more eigenvalues close to one compared to the Morse wavelets.
Therefore, the concentration properties of the Hermite functions on the cir-
cular region (4.2) are much better than the concentration properties of the
Morse wavelets on the tear-drop region (6.2). Roughly speaking, this means
that the bias introduced by averaging over K Morse wavelets should be larger
than that due to averaging over K Hermite functions.
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6.2 Multiple Window WVS Estimate

We form our time-scale MW WVS estimate as the weighted average of the
squares of K eigenscalograms (squares of wavelet transforms) using Morse

wavelets
(D) [sorm(Le—o)ar

Here fy is a reference frequency (the peak frequency of ¥y, for example).
Again we see a clear bias/variance tradeoff: larger K implies more averaging
(smaller variance) but a larger concentration region (larger bias).

(6.4)

- 1 K-1
Wy(taf) = E Z
k=0

A chirp line detection algorithm can be performed similarly to the time-
frequency case.

6.3 Affine Class Interpretation

The time-scale MW WVS estimate (6.4) belongs the affine class of time-scale
covariant distributions [15,29]. Each distribution 2 in this class can be inter-
preted as an affine-smoothed version of the Wigner distribution

f

with kernel II centered at time zero and frequency fo = 1. The affine class
can also be defined in terms of the unitary Bertrand distribution [38, 39].
Interestingly, the Klauder wavelet 1y has a positive Bertrand distribution,
just as the Gaussian hy has a positive Wigner distribution [40].

Qy(t,f)://Wy(T,V)H<f(T—t), )deu (6.5)

As in the time-frequency, Cohen’s class case, the MW time-scale spectrum
estimator can be interpreted as a member of the affine class with a kernel that
is a weighted sum of Wigner (or Bertrand) distributions of Morse wavelets (see
Figure 10). Unfortunately, closed form formulas for the Wigner and Bertrand
distributions of any of the Morse wavelets have not been found. Neverthe-
less, like the time-frequency MW WYVS estimate, the time-scale estimate is
manifestly positive.

7 Examples

For a first example, refer to Figure 1, where we illustrate the performance
of the time-frequency MW WYVS estimate using a test signal composed of a
chirp with sinusoidal instantaneous frequency in an additive bandpass Gaus-
sian noise of linearly rising center frequency. The time-domain signal and its
ideal representation in time-frequency are shown in Figure 1(a) and (b). It is
not possible to identify the components of the test signal from the empirical
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frequency

time

Figure 10: Affine class kernel function corresponding to the time-scale MW WVS
estimate using four Morse wavelets (sum of their Wigner distributions).

Wigner distribution due to its high variance. The spectrogram smooths the
Wigner distribution to reduce the variance, but smears the line component
excessively. A sliding version of Thomson’s method as proposed in [2-4] does
not perform well for this non-stationary data, since a local sine approximation
to the chirping line component is inadequate. In contrast, the MW estimate of
Figure 1(f) has both high resolution and low variance. The empirical variance
of the MW WVS estimate is approximately % that of the spectrogram, which
agrees with the fact that four windows were employed in its computation.

In Figure 11, we demonstrate the ability of the linear chirp detec-
tion/extraction algorithm to detect four hyperbolic chirps simultaneously.
The data is a digitized 2.5 msec echo-location pulse emitted by the Large
Brown Bat, Eptesicus Fuscus. There are 400 samples, and the frequency
range spanned is approximately [0,70] kHz. Comparing the time-frequency
MW method against the Wigner distribution and spectrogram, we see that
the detection algorithm successfully pulls out even the weakest high frequency
line component. The method even reveals aliasing in this component due to
under-sampling in data acquisition (note the “wraparound” in frequency). In-
spection of the early part of each chirp in the MW estimate reveals a threshold
effect before which the line extraction algorithm locks on to each component.

In Figure 12, we illustrate the performance of the time-scale MW method
using a 256-point test signal containing two Holder singularities [41,42] in
additive white Gaussian noise n(t)

x(t) = |t — 64| %1 + |t — 180 * + n(?). (7.1)

Unlike the scalogram in Figure 12(c), the MW estimate of Figure 12(d) clearly
captures the cone-like time-frequency structure of the singularities even in the
presence of significant noise.
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Figure 11: Three WVS estimates of the echo-location pulse emitted by the Large
Brown Bat: (a) empirical Wigner distribution, (b) spectrogram with Gaussian win-
dow, and (c) time-frequency MW estimate.

8 Related Work

Our primary contributions to MW time-varying spectral analysis have been
identifying the Hermite windows for the time-frequency estimate, introducing
the time-scale estimate and its Morse wavelets, and extending the line compo-
nent F' test to the linear chirps [5-8]. Since our original papers were published,
a number of interesting extensions and improvements have been made to the
technique. We will review these here, as well as point to a large body of related
work.

Different sets of orthogonal window functions: Xu, Haykin, and Racine
compare and contrast prolate and Hermite windows in [43]. Pitton has devel-
oped new sets of concentrated time-frequency windows functions that balance
the advantages of prolate and Hermite windows [44-46]. Lilly and Park have
also considered multi-wavelet time-scale spectrum estimation using a specially
designed set of wavelets [47].
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Figure 12: (a) Test signal composed of two singularities in additive white Gaussian
noise. (b) Scalogram of noise-free signal with Klauder wavelet. (c) Scalogram of noisy
signal with Klauder wavelet. (d) MW time-scale estimate of noisy signal.

Adaptive weighting algorithms: We have oversimplified our explanation
of Thomson’s method. Thomson does not weight each eigenspectrum by
K~! as we have; rather, he adaptively changes the weights to optimize the
bias/variance tradeoff of the estimator. The improvement can be dramatic
[16]. In the time-frequency setting, Cakrak and Loughlin adaptively weight
Hermite eigenspectra using a least squares procedure [48,49], while Pitton ex-
ploits knowledge of the windows’ leakage characteristics [45]. Other stationary
adaptation schemes such as that of Hansson [50] and Walden et al [51] could
also prove useful in the time-frequency setting.

Ezxtended chirp extraction algorithms: Many alternatives exist to our simple
linear chirp extraction algorithm. Cakrak and Loughlin employ a multiple win-
dow estimate to estimate the instantaneous frequencies of polynomial-phase
line components [52]. Pitton has furthermore extended the F' test in [46]. Fur-
ther afield, we could extract chirps using the polynomial phase transform [53],
the reassignment method [54-57], the ridge and snakes method [58], or the
squeezing method [59].
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Alternative frameworks: Multiple window estimates succeed when the time-
frequency spectrum can be approximated as “locally stationary” within time-
frequency regions larger than the concentration region of the orthogonal win-
dows. As such, they can be viewed as special cases of the more general esti-
mation frameworks of Sayeed and Jones [10] and Kozek et al [11,12, 60, 61].
Rather than assuming a parametric Cohen’s class kernel that is the sum of
several Wigner distributions of Hermite functions (recall (4.5)—(4.7)), Sayeed
and Jones [10] design an optimal kernel ¢ that minimizes the mean-square er-
ror between the true WVS and the estimate. Other estimation procedures for
locally stationary time-frequency spectra that fit within these general frame-
works include those of Mallat et al [13] and von Sachs et al [62,63].

9 Conclusions

In this chapter, we have overviewed two multiple-window time-frequency and
time-scale spectrum estimators that extend Thomson’s seminal work [16] on
multiple-window spectrum estimation. The hallmarks of our approach are:

1. Averaging over sets of orthogonal, optimally concentrated windows, the
Hermite functions for time-frequency analysis and the Morse wavelets
for time-scale analysis. A low bias/low variance estimate results.

2. Detecting and extracting non-stationary line components by approxi-
mating them as piece-wise linear chirps. This pre-processing preserves
the resolution of the line components.

As we saw in Section 8, much progress has been made recently in extend-
ing this framework. But many interesting open issues remain in the theory,
implementation, and application of these time-varying spectrum estimators.
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