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Abstract
Recent work in terahertz “T-Ray”  imaging is reported.  With the ongoing development of commercially
viable THz-TDS imaging system, optimal signal processing strategies for the THz waveforms must be
developed.  Algorithms based on wavelet decomposition of the time and frequency-localized signals offer a
number of advantages.  Examples of denoising, deconvolution, and other waveform analysis tools are
described.

Introduction

We have recently described a new imaging modality, based on terahertz time-domain
spectroscopy.1,2  Here, we discuss the extension of T-ray imaging to 3-dimensional tomographic imaging,
by analyzing the temporal structure of THz waveforms returned from objects in a reflection geometry.  The
return time of reflected pulses directly correlates with the location of the dielectric interfaces along the
propagation direction of the beam.  Because the arrival time of the THz waveforms can be determined with
an accuracy of a few femtoseconds, i.e., much less than the pulse duration, the positions of reflecting
surfaces within the object under study can be determined with an accuracy of a few microns, when
successive reflections are well separated in time.3  In contrast to the two-dimensional T-ray transmission
images published earlier, it is now possible to obtain full volume images of many objects in the terahertz
frequency range.

The experimental setup is described in detail in reference 2.  The beam of THz pulses is incident on
the sample at nearly normal incidence, and comes to a focus at the sample surface.  The beam reflected
from the object is re-collimated, then captured by a pick-off mirror, which directs it to the receiver antenna.
The generation, detection and real-time processing of the THz waveforms are similar to what is described
in the original transmission experiments.1

For an object with multiple reflecting internal surfaces, the reflected waveform consists of a series
of replicas of the input pulse of varying magnitude, polarity, and temporal distortion.  This is illustrated
using the example of a ball-point pen.  The input and reflected THz waveforms from a single point on the
pen are shown in figure 1.  The upper waveform (figure 1a) is obtained by replacing the object with a
mirror, and thus represents the pulse incident on the sample.   The small oscillations which follow the main
pulse in this waveform are a result of residual water vapor in the beam path,4 as well as electrical
impedance mismatch effects in the antennas.  The second curve (figure 1b), a representative reflected



waveform, consists of a series of replicas of the input waveform.
These correspond to reflections from the dielectric interfaces of the
pen, either from air to plastic, or plastic to air. The polarity and
magnitude of each reflection are given by the reflection coefficient
at each interface, and are related to the size and sign of the
corresponding index step.  In this example, the temporal
waveforms hardly change shape while traversing the object because
the plastic material has little absorption and dispersion.   In a more
general situation, reflected waveforms may be significantly altered
in shape.

Deconvolution

In order to accurately extract information from a measured
waveform, it is necessary to distinguish between those features
which result from the interaction of the radiation with the sample
under study and those which are intrinsic to the THz system, i.e.,
the instrument response function.  An illustrative example of this is
found in the application of terahertz time-domain spectroscopy for gas sensing.5,6  Figure 2 depicts sample

gas sensing data.  It shows the THz waveform transmitted
through a ~30 cm gas cell, both (a) without and (b) with a sample
gas (in this case, HCl) present.  Curve (b) (signal) displays the
distortions imposed on the waveform, in the time domain, by the
absorption in the gas.  Note that the ‘ ringing’  which constitutes
the signature of the gas closely resembles the features which
follow the main pulse in curve (a) (reference).  These features
(largest ones indicated by arrows) are a result of either electrical
or optical reflections, due to impedance mismatches in the emitter
antennas, multiple reflections in the cell windows, or similar
effects.  These are characteristic of the THz system, and not of
the action of the gas, and they therefore appear identically in both
waveforms.  This close resemblance between features of the
reference waveform and the signatures of the gas can limit the
effectiveness of any estimation algorithm designed to extract
quantitative gas concentrations.  Evidently, a robust means for

deconvolving this known system response function, including both the initial peak and the subsidiary
reflections, will improve the performance of the gas identification system.

One obvious solution is to perform a deconvolution of these features by means of a ratio in the
Fourier domain.  However, it is desirable to design a linear filter which simultaneously deconvolves the
unwanted impulse response and discriminates against measurement noise.  A Wiener deconvolution filter
balances deconvolution and noise filtering.  The transfer function of such a filter is given by

G(f) = 
I*(f)P(f)

|I(f)|2 P(f) + σn
2 (1)

where I(f) is the spectrum of the impulse response, P(f) is the power spectrum of the input, and σn
2 is the

variance of the measurement noise, assumed here to be white noise.7  The power spectrum of the input is
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Figure 2  (a) reference waveform transmitted
through gas cell.  (b) waveform transmitted
through cell containing ~13 kPa of HCl
vapor.  (c) signature of the gas, deconvolved
from (b) as outlined in the text.
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Figure 1  Terahertz waveforms (a) incident
on, and (b) reflected from a ball-point pen.



not directly measured here, but a reasonable approximation can be obtained by simply inserting the known
high-frequency cutoff of the spectrum, ~2.1 THz in this example.  The
result of this simultaneous denoising and deconvolution is shown in Figure
2c.  Here, all of the features in the time-domain waveform which appear in
the reference have been removed, leaving only the oscillatory features
induced by the gas.

Wavelet Processing of THz Waveforms

Since THz pulses are localized in both time and frequency, they are
naturally suited to signal processing methods based on wavelets.  This is
particularly true for tomographic imaging data, such as shown in Figure 1.
The wavelet transform performs a ‘ local Fourier analysis’  by analyzing and
representing signals in terms of shifted and dilated versions of time-
localized, oscillating functions.8  Since the elements of a wavelet basis can
be designed to closely resemble the underlying waveforms in the THz
system, wavelet-based signal processing algorithms will outperform more
traditional techniques.  Indeed, it has been shown that noise removal,
compression, and signal recovery methods based on wavelet coefficient
shrinkage or wavelet series truncation enjoy excellent asymptotic
performance and moreover, do not introduce excessive artifacts in the
signal reconstruction.9  Thus wavelets appear to be a natural tool for
addressing the processing challenges presented by the THz-TDS system,
including tomographic image reconstruction.

Measurement noise is an issue which will inevitably limit the
performance of the sensing system, particularly as the speed of waveform
acquisition is increased.  Removing noise from a measured waveform prior
to processing will be an important aspect of any pre-processing procedure.

Wavelet-based denoising
will be far superior to the
more familiar Fourier-based
techniques.9,11 particularly when the raw data resembles the
waveforms of Figure 4.  Because the elements of a wavelet
basis can be tailored to closely resemble these THz-TDS
signals, fewer coefficients are required to represent the
signals in a wavelet basis than in a Fourier expansion.  This
is illustrated in Figure 3, using the waveform of Figure 4a as
an example.  Here, Figures 3a and 3b depict the
representations of this data in the Fourier and wavelet bases,
respectively.  Because the wavelet transformation is a mixed
time-frequency representation, the wavelet decomposition
of a temporal waveform is displayed in a two-dimensional
format, as shown.  This display (b) shows that the wavelet
representation requires a small number of coefficients of
significant amplitude, mostly localized along the time axis at
the two positions where the waveform is large.  In (c), the
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Figure 3  (a) Fourier representation
of the waveform from Figure 4a.  (b)
Wavelet representation of the same
waveform.  (c) The two sets of 1024
coefficients, sorted in descending
order.  There are far fewer wavelet
coefficients of significant amplitude.
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Figure 4 (a) Waveform obtained after transmission
through acetonitrile vapor.  The small echo at ~78
psec delay is the first rephasing of the rotational
manifold [10], and thus represents the signature of
the gas.  (b) Same waveform, with ~10% white
Gaussian noise added numerically.  (c) Curve (b)
denoised using a Butterworth filter.  (d) Curve (b)
denoised using a wavelet filter with soft
thresholding.



1024 coefficients in these two expansions are sorted in descending order, and displayed on a logarithmic
scale.  The Fourier coefficients decay more slowly, confirming that more large coefficients are required for
an accurate representation of the signal.  Also, the noise floor at ~10-3 of the peak signal is evident, where
the curve exhibits a ‘knee’ followed by a noise-limited plateau.  A simple Fourier-based denoising would
consist of truncation of these coefficients at this point, thus reducing the number of non-zero coefficients
from 1024 to ~360.  The wavelet coefficients decay far more rapidly, thus permitting a truncation much
sooner.  This enables a far more efficient denoising strategy, as well
as substantial signal compression.  Figure 4 shows a comparison of
denoising of a THz waveform using these two methods.  Here, a
THz waveform is artificially supplemented with white Gaussian noise
(Figure 4b), and subsequently processed using both a parabolic
Fourier filter (Figure 4c) and a soft threshold in the wavelet domain
(Figure 4d).  The wavelet denoising is evidently far superior for this
type of noise.  The development of a wavelet-based denoising
strategy for 1/f noise, of the type expected in these measurements, is
a topic of current research.
The waveform reflected from the pen (Figure 1b) can be used to
illustrate an additional capability of wavelet processing.  Evidently,
each reflected pulse in this pulse train contains information about
each of the layers through which it passed, as well as the interface
off of which it reflected.  By analyzing the first pulse in the sequence,
it should be possible to extract spectroscopic information about the
first interface encountered, including both the frequency-dependent
absorption and refractive index.  This information could then be
used, in combination with the second pulse in the sequence, to
determine these parameters for the second layer.  This iterative
procedure should permit full spectroscopic analysis in combination
with tomographic imaging.

Because the wavelets effectively permit a local analysis of
each reflected pulse in the pulse train, they are a natural tool for an
analysis of this type.  Figure 5 shows early results of such an
analysis.  In Figure 5a, the average refractive index profile is
extracted, as a function of depth into the material.  Evidently, the
alternating air-plastic-air structure is well reproduced, although the
small amplitude noise mentioned above limits the accuracy of this procedure.  Figure 5b shows the results
of the spectroscopic analysis for two of the regions identified in the upper figure.  Again, the noise limits
the accuracy of the technique.  Implementation of the aforementioned wavelet-based denoising prior to this
spectroscopic analysis should improve these results.
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Figure 5 (a) The average refractive index
profile of the ball-point pen, extracted
from the reflected waveform, which is
reproduced here for comparison.  (b) The
frequency-dependence of the refractive
indices in the two regions (one of plastic,
and one of air) labeled with Roman
numerals in (a).
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